ChemComm

CORRECTION

View Article Online

Cite this: Chem. Commun., 2018, **54**, 13161

Correction: CuAAC click chemistry for the enhanced detection of novel alkyne-based natural product toxins

Edward S. Hems, Ben A. Wagstaff, Gerhard Saalbach and Robert A. Field*

DOI: 10.1039/c8cc90504e

Correction for 'CuAAC click chemistry for the enhanced detection of novel alkyne-based natural product toxins' by Edward S. Hems et al., Chem. Commun., 2018, 54, 12234-12237.

rsc.li/chemcomm

The authors regret that Table 1 was displayed incorrectly in the original article. The correct version is shown below.

Table 1 Prymnesium strains and corresponding HRMS identification of 8 prymnesin compounds, including prymnesin-A1 and -A2 originally reported by Igarashi et al., $^{8.9}$ based on MS/HRMS and subsequent labelling with 3-azido-7-hydroxycoumarin (3). Masses reported correspond to $[M + 2H]^{2+}$ ion, unless denoted with a '*' which reports the $[M + Na + H]^{2+}$ ion. Toxins that share the same backbone only have 1 value reported for the clicked aglycone, which is an average signal for the aglycone from all toxins

Strain	Prymnesin- type	Elemental composition of aglycone	[M-glycone + 2H] ²⁺	Elemental composition	$[M + 2H]^{2+}$ $[M + Na + H]^{2+*}$	Elemental composition of 'clicked' toxin (aglycone)	[M-glycone + azido- coumarin + 2H] ²⁺
P. parvum 946/6	Prymnesin-A1	$C_{91}H_{128}Cl_3NO_{31} \ (\Delta 0.6 \ ppm)$		$C_{107}H_{154}Cl_3NO_{44} \ (\Delta 4.0 \text{ ppm})$	1131.9482	$\begin{array}{c} C_{100}H_{133}Cl_{3}N_{4}O_{34} \\ \left(\Delta 4.0 \ ppm\right) \end{array}$	1020.3965
	Prymnesin-A2	$C_{91}H_{128}Cl_3NO_{31}$ ($\Delta 1.3 \text{ ppm}$)	918.8853	$C_{96}H_{136}Cl_3NO_{35}$ ($\Delta 1.5 \text{ ppm}$)	984.9037		"
P. parvum 94A	Prymnesin-A1	$C_{91}H_{128}Cl_{3}NO_{31}$ ($\Delta 4.6 \text{ ppm}$)	918.8798	$C_{107}H_{154}Cl_3NO_{44}$ ($\Delta 6.0 \text{ ppm}$)	1131.9460	$C_{100}H_{133}Cl_3N_4O_{34}$ ($\Delta 6.4 \text{ ppm}$)	1020.3941
	Prymnesin-A2	$C_{91}H_{128}Cl_3NO_{31}$ ($\Delta 4.2 \text{ ppm}$)	918.8802	$C_{96}H_{136}Cl_3NO_{35}$ ($\Delta 5.5 \text{ ppm}$)	984.8998	"	"
<i>P.</i> sp. 595	Prymnesin-B6	$C_{85}H_{121}Cl_2NO_{29}$ ($\Delta 2.1 \text{ ppm}$)	845.8756	$C_{85}H_{121}Cl_2NO_{29}$ ($\Delta 2.1 \text{ ppm}$)	845.8756	$C_{94}H_{126}Cl_2N_4O_{32}$ ($\Delta 5.8 \text{ ppm}$)	947.3884
	Prymnesin-B7	$C_{85}H_{121}Cl_2NO_{29}$ ($\Delta 3.4 \text{ ppm}$)	845.8745	$C_{91}H_{131}Cl_2NO_{34}$ ($\Delta 4.9 \text{ ppm}$)	926.8992	" "	"
P. patelliferum 527D	Prymnesin-D1	$C_{85}H_{114}Cl_{3}NO_{32}$ ($\Delta 0.3 \text{ ppm}$)	883.8270	$C_{101}H_{140}Cl_3NO_{45}$ ($\Delta 0.5 \text{ ppm}$)	1107.8870*	$C_{94}H_{119}Cl_3N_4O_{35}$ ($\Delta 0.4 \text{ ppm}$)	985.3437
	Prymnesin-D2	$C_{85}H_{114}Cl_3NO_{32}$ ($\Delta 3.4 \text{ ppm}$)	883.8298	$C_{90}H_{122}Cl_3NO_{36}$ ($\Delta 0.5 \text{ ppm}$)	949.8484	" " " " " " " " " " " " " " " " " " "	"
	Prymnesin-D3	$C_{85}H_{113}Cl_2NO_{32}$ ($\Delta 0.2 \text{ ppm}$)	865.8386	$C_{101}H_{139}Cl_2NO_{45}$ ($\Delta 0.7 \text{ ppm}$)	1078.9063	$C_{94}H_{118}Cl_2N_4O_{35}$ ($\Delta 4.1 \text{ ppm}$)	967.3510
	Prymnesin-D4		865.8388	$C_{90}H_{121}Cl_2NO_{36}$ ($\Delta 0.7 \text{ ppm}$)	931.8589	"	"

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.