

Cite this: *Chem. Commun.*, 2018, **54**, 13161

DOI: 10.1039/c8cc90504e

rsc.li/chemcomm

Correction: CuAAC click chemistry for the enhanced detection of novel alkyne-based natural product toxins

Edward S. Hems, Ben A. Wagstaff, Gerhard Saalbach and Robert A. Field*

Correction for 'CuAAC click chemistry for the enhanced detection of novel alkyne-based natural product toxins' by Edward S. Hems *et al.*, *Chem. Commun.*, 2018, **54**, 12234–12237.

The authors regret that Table 1 was displayed incorrectly in the original article. The correct version is shown below.

Table 1 Prymnesium strains and corresponding HRMS identification of 8 prymnesin compounds, including prymnesin-A1 and -A2 originally reported by Igarashi *et al.*,^{8,9} based on MS/HRMS and subsequent labelling with 3-azido-7-hydroxycoumarin (**3**). Masses reported correspond to $[M + 2H]^{2+}$ ion, unless denoted with a '*' which reports the $[M + Na + H]^{2+}$ ion. Toxins that share the same backbone only have 1 value reported for the clicked aglycone, which is an average signal for the aglycone from all toxins

Strain	Prymnesin-type	Elemental composition of aglycone	$[M + 2H]^{2+}$	Elemental composition	$[M + 2H]^{2+}$	Elemental composition of 'clicked' toxin (aglycone)	$[M + 2H]^{2+}$
<i>P. parvum</i> 946/6	Prymnesin-A1	$C_{91}H_{128}Cl_3NO_{31}$ ($\Delta 0.6$ ppm)	918.8835	$C_{107}H_{154}Cl_3NO_{44}$ ($\Delta 4.0$ ppm)	1131.9482	$C_{100}H_{133}Cl_3N_4O_{34}$ ($\Delta 4.0$ ppm)	1020.3965
	Prymnesin-A2	$C_{91}H_{128}Cl_3NO_{31}$ ($\Delta 1.3$ ppm)	918.8853	$C_{96}H_{136}Cl_3NO_{35}$ ($\Delta 1.5$ ppm)	984.9037	"	"
<i>P. parvum</i> 94A	Prymnesin-A1	$C_{91}H_{128}Cl_3NO_{31}$ ($\Delta 4.6$ ppm)	918.8798	$C_{107}H_{154}Cl_3NO_{44}$ ($\Delta 6.0$ ppm)	1131.9460	$C_{100}H_{133}Cl_3N_4O_{34}$ ($\Delta 6.4$ ppm)	1020.3941
	Prymnesin-A2	$C_{91}H_{128}Cl_3NO_{31}$ ($\Delta 4.2$ ppm)	918.8802	$C_{96}H_{136}Cl_3NO_{35}$ ($\Delta 5.5$ ppm)	984.8998	"	"
<i>P. sp.</i> 595	Prymnesin-B6	$C_{85}H_{121}Cl_2NO_{29}$ ($\Delta 2.1$ ppm)	845.8756	$C_{85}H_{121}Cl_2NO_{29}$ ($\Delta 2.1$ ppm)	845.8756	$C_{94}H_{126}Cl_2N_4O_{32}$ ($\Delta 5.8$ ppm)	947.3884
	Prymnesin-B7	$C_{85}H_{121}Cl_2NO_{29}$ ($\Delta 3.4$ ppm)	845.8745	$C_{91}H_{131}Cl_2NO_{34}$ ($\Delta 4.9$ ppm)	926.8992	"	"
<i>P. patelliferum</i> 527D	Prymnesin-D1	$C_{85}H_{114}Cl_3NO_{32}$ ($\Delta 0.3$ ppm)	883.8270	$C_{101}H_{140}Cl_3NO_{45}$ ($\Delta 0.5$ ppm)	1107.8870*	$C_{94}H_{119}Cl_3N_4O_{35}$ ($\Delta 0.4$ ppm)	985.3437
	Prymnesin-D2	$C_{85}H_{114}Cl_3NO_{32}$ ($\Delta 3.4$ ppm)	883.8298	$C_{90}H_{122}Cl_3NO_{36}$ ($\Delta 0.5$ ppm)	949.8484	"	"
	Prymnesin-D3	$C_{85}H_{113}Cl_2NO_{32}$ ($\Delta 0.2$ ppm)	865.8386	$C_{101}H_{139}Cl_2NO_{45}$ ($\Delta 0.7$ ppm)	1078.9063	$C_{94}H_{118}Cl_2N_4O_{35}$ ($\Delta 4.1$ ppm)	967.3510
	Prymnesin-D4	$C_{85}H_{113}Cl_2NO_{32}$ ($\Delta 0.4$ ppm)	865.8388	$C_{90}H_{121}Cl_2NO_{36}$ ($\Delta 0.7$ ppm)	931.8589	"	"

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

