Correction: Development of glycosynthases with broad glycan specificity for the efficient glyco-remodeling of antibodies

Sachin S. Shivatare,a Lin-Ya Huang,a Yi-Fang Zeng,a Jung-Yu Liao,a Tsai-Hong You,a Shi-Yun Wang,a Ting Cheng,b Chih-Wei Chiu,a Ping Chao,a Li-Tzu Chen,a Tsung-I Tsai,c Chiu-Chen Huang,a Chung-Yi Wu,a,b Nan-Horng Lin,a and Chi-Huey Wonga,b,c

Correction for 'Development of glycosynthases with broad glycan specificity for the efficient glyco-remodeling of antibodies' by Sachin S. Shivatare et al., Chem. Commun., 2018, 54, 6161–6164.

The authors regret that there was an error in Fig. 3 in the original manuscript. The value for the FcγIIIA binding of Rtx-G16 in Fig. 3 was given as 5.4 but should be 33. The corrected version of Fig. 3 is presented below. There was also an error in the original caption. The last sentence in the caption referred to “maximal FcγIIIA binding”. This should have read “maximal FcγIIIA binding”.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

DOI: 10.1039/c8cc90292e

rsc.li/chemcomm

Fig. 3 Rtx-variants generated via Fc-glycosylation using Rtx-N as an acceptor and various glycan oxazolines as donors. (a) EndoS2 mutant required. (b) Binding between FcγRIIIA and Rtx-variants. Fold of enhancement of EC50 compared to commercial Rtx. (c) ADCC activities of selected Rtx-variants. Fold of enhancement of EC50 compared to commercial Rtx. EC50 in ng mL−1 refers to the concentration of an antibody that gives 50% of the maximal FcγIIIA binding or maximal cell killing.

a CHO Pharma Inc., 18F, Building F, No. 3, Park Street, Nangang District, Taipei-11503, Taiwan. E-mail: nhlin@chopharma.com.tw
b Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang District, Taipei 115, Taiwan. E-mail: cyiwu@gate.sinica.edu.tw, chwong@gate.sinica.edu.tw
c Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA