ChemComm

CORRECTION

View Article Online

Cite this: Chem. Commun., 2018, **54**. 4882

Correction: Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction

Diyang Zhang, a Wenxing Chen, a Zhi Li, * Yuanjun Chen, Lirong Zheng, b Yue Gong,^c Qiheng Li,^a Rongan Shen,^a Yunhu Han,^a Weng-Chon Cheong,^a Lin Gu^c and Yadong Li*a

DOI: 10.1039/c8cc90183j

rsc.li/chemcomm

Correction for 'Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction' by Diyang Zhang et al., Chem. Commun., 2018, DOI: 10.1039/c8cc00988k.

A corrected version of the legend to Fig. 2 is shown below:

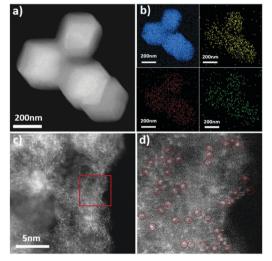


Fig. 2 (a) HAADF-STEM images of FeCo-ISAs/CN; (b) EDX elemental mappings of C (blue), N (yellow), Fe (red), Co (green) in FeCo-ISAS/CN (c) atomicresolution AC-STEM image of Fe-Co-ISAs/CN; (d) enlarged image of (c), the metal single atoms were labelled with red circles.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Department of Chemistry, Tsinghua University, Beijing 100084, China. E-mail: zhili@mail.tsinghua.edu.cn

^b Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

^c Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China