ChemComm

CORRECTION

View Article Online
View Journal | View Issue

Cite this: *Chem. Commun.*, 2018, **54**, 3672

Correction: Highly photoluminescent copper carbene complexes based on prompt rather than delayed fluorescence

DOI: 10.1039/c8cc90135j

rsc.li/chemcomm

Correction for 'Highly photoluminescent copper carbene complexes based on prompt rather than delayed fluorescence' by Alexander S. Romanov et al., Chem. Commun., 2016, **52**, 6379–6382.

The original article reported photoluminescence data on cyclic (alkyl)(amino)carbene complexes of copper and gold halides **1a–c** and **2a–c** based on time-correlated single photon counting (TCSPC) measurements carried out over a 10–60 nanosecond timescale which at the time were interpreted as evidence for prompt fluorescence. The authors have remeasured these complexes and this has shown that fluorescence is not the major emission pathway. Given the lifetimes in the microsecond range, the major emission pathway is consistent with phosphorescence. Using either a 370 nm nano-LED or operating in the phosphorimeter mode (with an F1-1029 lifetime emission PMT assembly, using a 450 W Xe lamp with $\lambda_{\rm ex}$ 370 nm, and a decay window of 160–200 μ s) gave the lifetimes τ as shown in Table 1.

Table 1 Excited state lifetimes τ [µs] of (CAAC)metal halides

1a	1b	1c	2a	2b	2c
$24.9 \pm 0.1^a 27.2 \pm 0.3^b$	22.6 ± 0.1^a	$1.3 \pm 0.1 \ (12\%) \ 17.0 \pm 0.1 \ (88\%)^a$	2.4 ± 0.1^a	$1.8 \pm 0.1 \ (26\%) \ 16.7 \pm 0.1 \ (74\%)^a$	$\begin{array}{c} 2.0 \pm 0.1 \ (47\%) \\ 17.3 \pm 0.1 \ (53\%)^a \end{array}$

^a Measured at λ_{max} of the emission peak with nano-LED excitation. ^b Excitation with a Xe lamp.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a School of Chemistry, University of East Anglia, Earlham Road, Norwich, NR4 7TJ, UK. E-mail: m.bochmann@uea.ac.uk

^b Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, UK

^c Department of Chemistry, University of Eastern Finland, Joensuu Campus, FI-80101 Joensuu, Finland