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Electrooxidative peri-C—H activation was accomplished by versatile
ruthenium(i) catalysis in terms of C—H/N-H and C-H/O-H func-
tionalization. Thus, alkyne annulations proved viable with ample
scope by organometallic C—H activation. The sustainable electro-
catalysis exploited electricity, thereby avoiding the use of toxic
transition metals as sacrificial oxidants. The robust ruthenium(u)-
electrocatalysis was operative in a protic alcohol/H,O reaction medium
with excellent levels of position-, regio- and chemo-selectivity.

Transition metal-catalyzed oxidative C-H activation' has been
recognized as a powerful tool for the assembly of n-conjugated
heterocycles, with major potential for molecular syntheses and
material sciences.”> Despite of considerable progress, these
oxidative C-H functionalizations heavily rely on stoichiometric
amounts of expensive and toxic metal salts as the sacrificial
oxidants.®> Electrosynthesis® has emerged as an increasingly
viable platform for sustainable transformations, which enables
the use of inexpensive electricity as the terminal oxidant.” In this
context, major advances were achieved, exploiting transition-
metals based on inter alia palladium,® cobalt,” ruthenium,®
rhodium,’ copper,'® or iridium."

Recently, we have introduced a versatile ruthenium'? catalyst
for oxidative C-H/O-H annulation of alkynes'® by 1-naphthols to
access fused pyran derivatives."* Despite considerable experi-
mentation, these transformations were restricted to the use of
anti-bacterial copper(u) oxidants. Within our program on sustain-
able C-H activation,'> we have now developed the first electro-
chemical, organometallic peri C-H activation with synthetically
meaningful arylcarbamates,'® on which we report herein (Fig. 1).
Notable features of our finding include (a) the first electro-
oxidative ruthenium-catalysed peri C-H activation, (b) C-H/N-H
annulation by electrooxidative ruthenium catalysis, (c) weakly
coordinating’” naphthol for C-H/O-H alkyne annulations with
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Fig. 1 Electrochemical C—H/Het—H activation with alkynes.

electricity as the terminal oxidant, and (d) mechanistic insights
into electrochemical peri C-H activation by experiments. It is
furthermore noteworthy that our electrooxidative strategy also
set the stage for the first ruthenium-catalyzed C-H/N-H activation/
alkyne annulation of naphthylcarbamates.

At the outset of our studies, we tested various reaction conditions
for the envisioned electrooxidative annulation of alkyne 2a by easily-
accessible ethyl naphthalen-1-ylcarbamate (1a) (Table 1 and Table S-1
in the ESIt)."® Among a set of representative solvents, DMF and
t+AmOH furnished promising results (entries 1 and 2), while a
solvent mixture of +AmOH and H,0," along with KOAc as the
additive, proved to be ideal (entries 3-6). The catalytic efficacy could
be further improved when the electrolysis was conducted at a
constant current regime of 1.5 mA (entries 7-9). Control experiments
demonstrated the outstanding performance of the ruthenium(n)
carboxylates (entries 9-11), while typically used rhodium(m) catalysts
fell short in delivering the desired product 3aa (entry 12).

With the optimized ruthenium electrocatalysis being estab-
lished, we explored its versatility with a set of representative
internal alkynes (Scheme 1). Thus, the broadly applicable
ruthenium(u) catalyst enabled the efficient conversion of diaryl-
and dialkyl-substituted alkynes 2a-2i. The robust ruthenium-
electrocatalysis displayed a remarkable tolerance of valuable
functional groups, such as ester, fluoro, chloro, or bromo
substituents, setting the stage for further late-stage diversifica-
tions. Unsymmetrical alkyne 2j delivered the desired product 3aj
with high levels of regio-control, placing the aromatic moiety in
proximity to the nitrogen heteroatom.
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Table 1 Establishing the electrochemical C—H/N—-H activation?

o Ph O
H H‘NJ\OEt oy VO rﬁ Pt P N)J\OEI
| = O
KOAc, n-BuyNPFg
e,
CCE at4.0 mA
1a 2a 3aa
Entry [T™] Solvent Yield [%]
1 [RuCl,(p-cymene)], DMF 35
2 [RuCl,(p-cymene)], t-AmOH 51
3 [RuCl,(p-cymene)], t-AmOH/H,0 (3/1) 61
4 [RuCl,(p-cymene)], DMF/H,0 (3/1) 28
5 [RuCl,(p-cymene)], t-AmOH/H,0 (3/1) 577
6 [RuCl,(p-cymene)], t-AmOH/H,0 (3/1) 65°
7 [RuCl,(p-cymene)], t-AmOH/H,0 (3/1) 364
8 [RuCl,(p-cymene)], t-AmOH/H,0 (3/1) 77°¢
9 [RuCL,(p-cymene)], t-AmOH/H,0 (3/1) 825/
10 [RuCl,(p-cymene)], t-AmOH/H,0 (3/1) 3198
11 — t-AmOH/H,0 (3/1) <59/
12 [CP*RhCl,], +-AmOH <5

“ General reaction conditions: 1a (0.60 mmol), 2a (0.30 mmol), [TM]
(10 mol %), KOAc (0.60 mmol), n-Bu,NPF, (0.18 mmol), solvent (4.0 mL),
100 °C, 16 h, under N,, constant current electrolysis (CCE) at 4.0 mA,
undivided cell, RVC anode, Pt-plate cathode. Isolated yields. b NaOPiv
(0.60 mmol) instead of KOAc. ¢ n-Bu,NCIO, (0.18 mmol) instead of
n-BuyNPF,. 910 mA, 2.5 h. ¢ 2.0 mA, 16 h./ 1.5 mA, 24 h. € Without
current, 24 h.
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Scheme 1 Electrochemical C—H/N—-H annulation of alkynes 2.

Subsequently, a variety of arylcarbamates 1 were probed,
highlighting an outstanding selectivity for the peri C-H activa-
tion to deliver benzoquinoline derivatives 3 (Scheme 2). Ethyl
naphthalen-1-ylcarbamates 1 bearing either electron-withdrawing
or electron-donating groups on the naphthyl ring provided the
corresponding benzoquinolines 3 with high efficacy. It is worth
noting that the ruthenium(u) electrocatalysis was likewise applic-
able to heterocyclic substrate ethyl quinolin-5-ylcarbamate 1d,
selectively furnishing the annulated product 3da. Likewise,
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Scheme 2 Electrochemical C—H/N-H activation with amides 2.

the extended aromatic substrate fluoranthen-3-ylcarbamate 1f was
smoothly converted to give the n-conjugated polyheterocycles 3fa,
featuring unique fluorescence emission.
The ruthenium(u) electrocatalysis was not limited to C-H/N-H
activation with arylcarbamates 1. Indeed, highly effective annu-
lations of alkynes 2 proved to be viable with the weakly coordi-
nating'” naphthol derivatives 4 (Scheme 3, and Table S-2 in the
ESI¥).'® Thus, a series of fluorescent pyrans were accessed in a
step-economical fashion via the chemo-selective C-H/O-H func-
tionalization, featuring electricity as the sacrificial oxidant.
Given the unique site- and regio-selectivity of the electro-
chemical ruthenium(u) catalysis, we became interested in its
modus operandi. To this end, a catalytic C-H transformation
in the presence of D,O employing an excess of substrate la
resulted in a significant H/D exchange in the peri-position of
the recovered starting material [D;]-1a (Scheme 4a). This obser-
vation provided strong evidence for a reversible, organometallic
C-H ruthenation step. In good agreement with this finding,
a kinetic isotope effect (KIE) was not observed, when comparing
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Scheme 3 Electrochemical C-H/O—-H activation with naphtholes 4.
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Scheme 4 Summary of key mechanistic findings.

the initial rates of transformations with substrates 1a and [D,]-1a
(Scheme 4b). Furthermore, we performed intermolecular compe-
tition experiments between differently substituted arylcarbamates
1 and alkynes 2, which revealed electron-deficient alkynes and
arylcarbamates to be preferentially converted (Schemes 4c and d).
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Scheme 5 Proposed catalytic cycle.
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Based on our mechanistic studies, we propose a plausible
catalytic cycle to commence by a facile organometallic C-H
activation (Scheme 5). Thereby, ruthena(u)cycle 7 is generated,
along with two equivalents of carboxylic acid. Thereafter, migratory
alkyne insertion furnishes the seven-membered ruthena(u)cycle 9,
which rapidly undergoes reductive elimination to deliver the
ruthenium(0) sandwich complex 10. The key reoxidation of the
thus-formed ruthenium(0) complex 10 is finally accomplished by
anodic oxidation, while cathodic reduction generates molecular
hydrogen as the sole stoichiometric byproduct.

In summary, we have reported on the first electrocatalytic
organometallic C-H activation with aromatic carbamates and
phenols. Hence, a versatile ruthenium(u) carboxylate catalyst
enabled electrooxidative C-H/N-H and C-H/O-H activation/alkyne
annulations with ample scope. The C-H activation employed
electricity as the sacrificial oxidant, which avoids the use of toxic
metals as terminal oxidants, generating molecular hydrogen as the
only byproduct. Mechanistic studies provided strong support
for an organometallic C-H ruthenation, along with an efficient
electro-reoxidation of the key ruthenium(0) intermediate by
environmentally-benign electricity that is amenable for renewable
forms of energy. The electrochemical C-H/Het-H activation was
operative in protic aqueous reaction media.
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