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ESIPT-based fluorescence probe for the rapid
detection of hypochlorite (HOCl/ClO�)†
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ESIPT-based fluorescence probes are emerging as an attractive tool for

the detection of biologically relevant analytes owing to their unique

photophysical properties. In this work, we have developed an ESIPT-

based fluorescence probe (TCBT-OMe) for the detection of HClO/

ClO� through the attachment of a bioorthogonal dimethylthiocarba-

mate linker. TCBT-OMe was shown to rapidly detect HClO/ClO� (o10

s) at biologically relevant concentrations (LoD = 0.16 nM) and have an

excellent selectivity towards others ROS/RNS and amino acids. There-

fore, TCBT-OMe was tested in live cells and was successfully shown to

be able to detect endogenous and exogenous HClO/ClO� in HeLa

cells. Additionally, TCBT-OMe acts as a dual input logic gate for Hg2+

and H2O2. Interestingly, Hg2+ alone gradually causes a fluorescence

response but requires 430 min to produce a fluorescence response.

Test strips containing TCBT-OMe were prepared and were demon-

strated as an effective way to detect HClO/ClO� in water. Furthermore,

TCBT-OMe was shown to detect exogenously added HClO/ClO� in

three different water samples with little interference thus demon-

strating the effectiveness as a method for the detection of HClO/

ClO� in drinking water samples.

Hypochlorous acid (HOCl) is a biologically important reactive
oxygen species (ROS), which partially dissociates to form its
hypochlorite anion (ClO�) under physiological conditions. In
biological systems, myeloperoxidase, an enzyme found in leukocytes
produces HOCl/ClO� by catalysing the reaction between
Cl + H2O2 - HOCl.1 This vital ROS is used in immune defence
systems due to its microbicidal properties.1 Unfortunately, excessive

production of HOCl/ClO� can lead to the damage of a range of
biological targets such as amino acids, proteins, carbohydrates
and lipids.2,3 As a consequence, HOCl/ClO� has been associated
with a number of diseases causing cell and tissue damage.4

In addition to its role in biological systems, HOCl/ClO� is
produced by the chlorination of water (Cl2 + H2O - HOCl),
which is the most common method for the treatment of water
especially in public swimming pools.5 NaOCl (Bleach) is also
extensively used as a disinfectant for both domestic and
industrial purposes. Unfortunately, over-exposure to HOCl/
ClO�, results in swimming pool-associated asthma, irritation to
the oesophagus, throat and spontaneous vomiting (http://www.
who.int/water_sanitation_health/dwq/chlorine.pdf).6 Additionally,
there is an increased risk of bladder cancer associated with
chlorinated by-products produced from chlorinated water.7,8

Therefore, given the potential health hazard towards animals
and humans, the development of an effective method for HOCl/
ClO� detection is required.

Within our research group, we are interested in developing
reaction-based fluorescence sensors for the detection of bio-
logically important analytes.9–13 Small-molecule fluorescence
probes are a particular attractive tool owing to their high sensitivity,
selectivity and high spatial and temporal resolution.14 In particular,
we are interested in using Excited State Intramolecular Proton
Transfer (ESIPT)-based fluorescence probes due to their excellent
photophysical properties, which include intense luminescence,
photostability and a large stokes shift.15,16 Previously, we reported
an ESIPT-based fluorescence probe for the detection of peroxynitrite
(ONOO�) through the use of a benzyl boronic ester protecting group
(Scheme 1).15 This protecting group blocked the ESIPT process and
therefore a low fluorescence intensity was observed. The addition of
ONOO�, resulted in the fluorophore’s deprotection and an increase
in fluorescence intensity was observed.

In this work, we believed a methoxy-hydroxybenzothiazole
(HBT-OMe) fluorophore would provide an effective ESIPT fluores-
cence probe for the detection of HOCl/ClO� (see ESI,† S1).17,18

To obtain TCBT-OMe we first prepared HBT-OMe by the addition
of a 2 : 1 H2O2–(30% in H2O)/HCl solution to 2-aminothiophenol
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and O-vanillin in EtOH. This reaction proceeded quickly and
smoothly, in a good yield (68%). With HBT-OMe in hand, four
equivalents of dimethylthiocarbamoyl chloride was then added
slowly to a solution of HBT-OMe in DCM. DIPEA was subsequently
added dropwise to the reaction, which produced TCBT-OMe in
excellent yield (72%).

We then evaluated the UV-Vis of TCBT-OMe with the
addition of HOCl/ClO� (10 mM), which resulted in the formation
of a UV absorption peak at B310 nm (see ESI,† Fig. S1). Bhatta-
charyya et al. have reported that the fluorescence emission of the
ESIPT process can be effected by intermolecular hydrogen
bonding.19,20 Therefore, evaluation of ESIPT-based fluorescence
probes are commonly carried out in the presence of the surfactant
cetyl trimethylammonium bromide (CTAB, 1 mM) or by using a
large ratio of organic solvent.19,21–23 It is believed that the formation
of a micellar environment creates a hydrophobic pocket that aids
the ESIPT process. Therefore, we evaluated the ability of TCBT-OMe
to detect HOCl/ClO� by fluorescence in the presence of CTAB,
1 mM. As shown in Fig. 1a, TCBT-OMe was found to be very
sensitive towards HOCl/ClO� reacting with micromolar concentra-
tions to produce a large increase in fluorescence (B42 fold –
Fig. S3, ESI†). TCBT-OMe was shown to rapidly react with
HOCl/ClO� producing a fluorescence response within less than
10 s (see ESI,† Fig. S4) and have a very low Limit of Detection
(LoD) of 0.16 nM (see ESI,† Fig. S5). HOCl/ClO� (35 mM) was
added to TCBT-OMe at different pH values and a bell-shaped
curve was observed. The largest fluorescence response was seen at
the pKa of HOCl/ClO� = 7.53 (Fig. S5, ESI†) suggestive of general
acid–base catalysis being in operation. (see ESI,† Scheme S1 for
proposed mechanism).

We then evaluated the selectivity of TCBT-OMe towards
other reactive oxygen/nitrogen species (ROS/RNS) and amino
acids (Fig. 1b). Remarkably, TCBT-OMe had an excellent selec-
tivity towards HOCl/ClO� therefore permitting its use as a
fluorescence probe for the detection of HOCl/ClO� in live cells.
As shown in Fig. 2, TCBT-OMe was successfully used to visualise
endogenously stimulated HOCl/ClO� in HeLa cells using phorbol
12-myristate 13-acetate (PMA, which is a ROS stimulant that
induces the production of HOCl/ClO�). Separately, HeLa cells were

also pretreated with 4-aminobenzoic acid hydrazide (ABAH, which
is a specific inhibitor of MPO which suppressed the generation
of HOCl) and as expected only weak fluorescence was observed.
TCBT-OMe was also able to detect HOCl/ClO� added exogen-
ously to the HeLa cells.

The dimethylthiocarbamate linker of TCBT-OMe has previously
been used in the construction of dual input molecular logic gate24

for the detection of Hg2+ ‘AND’ H2O2 (see ESI† Scheme S2 for
proposed mechanism).25,26 Therefore, we evaluated the ability
of TCBT-OMe to perform molecular logic with the input of Hg2+

and H2O2. The presence of solely H2O2 (120 mM) led to a small
increase in fluorescence intensity (dashed line), however, with
subsequent additions of Hg2+ (0–9 mM) a large fluorescence
response was observed (Fig. 3a). To demonstrate that both
analytes are required, Hg2+ was added first, followed by the
addition of H2O2 (0–180 mM). As shown in Fig. 3b, the sub-
sequent addition of H2O2 rapidly led to an increase in fluores-
cence intensity. TCBT-OMe was shown to be selective towards
Hg2+ over other metal cations in the presence of H2O2 (see ESI,†
Fig. S9). Interestingly, Hg2+ alone resulted in a slow increase in
fluorescence intensity (see ESI,† Fig. S10). This is believed to be

Scheme 1 (a) Our previously reported ESIPT probe for the detection of
ONOO�. (b) This work – a thiocarbamate linker-based ESIPT TCBT-OMe
for the detection of HOCl/ClO�.

Fig. 1 (a) Fluorescence spectra of TCBT-OMe (5 mM) with increasing
additions of HOCl/ClO� (from 0 to 17 mM) in PBS buffer (pH 7.4, containing
1% DMSO, 1 mM CTAB). Measurements were taken after 1 min. lex = 310 nm.
Slit widths: ex = 6 nm em = 4 nm. (b) Selectivity bar chart of TCBT-OMe in
PBS pH 7.4, containing 1% DMSO, 1 mM CTAB with HClO (15 mM) and other
interfering reagents (ROS/RNS and various amino acids). 1, HClO; 2, blank; 3,
ONOO�; 4, H2O2; 5, ROO�; 6, �OH; 7, �O2

�; 8, 1O2; 9, NO; 10, glycine; 11,
asparagine; 12, cysteine; 13, homocysteine; 14, glutathione; 15, arginine; 16,
histidine; 17, serine; 18, glycine; 19, threonine. Note: the concentration of
TCBT-OMe and each interfering species are 5 mM and 100 mM respectively,
30 min wait before measurement in buffer solution. lex = 310 nm/lem =
472 nm error bars represent s.d. Measurements were taken after 30 min.
lex = 310 nm. Slit widths: ex = 6 nm, em = 4 nm.
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due to the instability of the dimethylcarbonate formed from the
reaction of TCBT-OMe with Hg2+.

Despite this interesting dual responsive reactivity of TCBT-
OMe, this ‘AND’ logic requires minutes to fully react, whereas
HOCl/ClO� reacts with TCBT-OMe within seconds. Therefore,
due to the significantly greater reactivity of TCBT-OMe towards
HOCl/ClO� over Hg2+, we believed we could use it as an
effective method for the detection of HOCl/ClO� in drinking
water sources.

We produced test strips by simply soaking a commercially
available test strip in water containing TCBT-OMe (0.8 mM).
After drying, test strips impregnated with TCBT-OMe were
placed in water containing HClO/ClO� (0–200 mM). As shown
in Fig. 4, there is a clear colour/intensity difference in the test
strips that have been dipped into water containing various
concentrations of HClO/ClO�.

In addition to detecting HClO/ClO� in water, TCBT-OMe was
added into three different water samples containing 1 mM
CTAB (Sample A, tap water from University of Bath; Sample B,
water from the Avon River (Bath); Sample C, water from Roman
spa in Bath). Interestingly, little interference was observed for
the exogenous addition of HClO/ClO� to each water sample
(495% recovery) – see ESI,† Table S1.

In summary, we have developed an ESIPT-based fluores-
cence TCBT-OMe for the detection of HClO/ClO�. TCBT-OMe
was shown to have a very high sensitivity and selectivity towards
HClO/ClO� fully reacting within 10 s and having a LoD of 0.16 mM.
Significantly, TCBT-OMe was able to detect endogenous and

exogenous HClO/ClO� in HeLa cells. Additionally, TCBT-OMe
was shown as a dual input logic gate with Hg2+ and H2O2 as
inputs. Interestingly, Hg2+ alone gradually produced a fluores-
cence response but required 430 min to produce a significant
fluorescence response. Test strips containing TCBT-OMe were
developed and shown to be an effective way to detect HClO/
ClO� in water. Furthermore, TCBT-OMe was shown to detect
exogenously added HClO/ClO� in three different water samples
with little interference demonstrating its effectiveness as a
method to detect HClO/ClO� in drinking water samples.

Fig. 2 (a) From top to bottom: HeLa cells were pretreated with TCBT-
OMe (40 mM) for 30 min; HeLa cells pretreated with TCBT-OMe (40 mM)
were then left for 30 min after preincubation with PMA (1.2 mg mL�1) for
90 min; HeLa cells pretreated with TCBT-OMe (40 mM) were then left for
30 min after preincubation with 250 mM ABAH for 70 min; HeLa cells
loaded with TCBT-OMe (40 mM) for 30 min followed by the exogenous
addition of 8 mM NaOCl for 5 min. Scale bar: 25 mm lex = 420 nm/lem =
420–590 nm. (b) The histogram shows the semi-quantitative calculation
of averaged fluorescence intensity (FI) of each fluorescence panel in the
displayed images by ImageJ software.

Fig. 3 (a) Fluorescence spectra of TCBT-OMe (5 mM) in the presence of
H2O2 (120 mM) – (dashed line represent probe and H2O2) with increasing
concentrations of Hg2+ (0–9 mM) in buffer solution pH 7.4, 1% DMSO,
1 mM CTAB 14 min wait between measurement. l = 310 nm. Slit widths:
ex = 6 nm em = 4 nm. (b) Fluorescence spectra of TCBT-OMe (5 mM) in the
presence of Hg2+ (9 mM) – (dashed line represents probe and Hg2+) with
increasing concentrations of H2O2 (final concentration: 0, 20, 40, 80, 100,
120, 140 mM and 180 mM) in PBS pH 7.4, containing 1% DMSO, 1 mM CTAB.
14 min wait between measurement in buffer solution. lex = 310 nm. Slit
widths: ex = 6 nm em = 4 nm.

Fig. 4 Photograph showing the colour changes of TCBT-OMe impreg-
nated test strips after addition to water samples containing different
concentrations of HClO/ClO� under UV light (365 nm).
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