Carbon dioxide-based facile synthesis of cyclic carbamates from amino alcohols†

Teemu Niemi,§ Israel Fernández, ① Bethany Steadman, ① Jere K. Mannisto① and Timo Repo ①,②,①,*

We report herein a straightforward general method for the synthesis of cyclic carbamates from amino alcohols and carbon dioxide in the presence of an external base and a hydroxyl group activating reagent. Utilizing p-toluenesulfonyl chloride (TsCl), the reaction proceeds under mild conditions, and the approach is fully applicable to the preparation of various high value-added 5- and 6-membered rings as well as bicyclic fused ring carbamates. DFT calculations and experimental results indicate a $S_N 2$-type reaction mechanism with high regio-, chemo-, and stereoselectivity.

Cyclic carbamate core structures are present in a plethora of valuable chemicals. In particular, 2-oxazolidinones are found in chiral auxiliaries (with 4-substitution) and in superantibiotics such as Linezolid and Tedizolid (with 3-aryl,5-alkyl substitution pattern), whereas aroyl-fused 6-membered rings are present in some HIV-battling antiretrovirals and N-methyl-α-aspartate (NMDA) receptor antagonists. 1–5 These compounds are commonly synthesized by utilizing hazardous or expensive reagents such as isocyanides and phosgene. 1,4,6,7 As such, the replacement of these starting materials with the relatively cheap and safer carbon dioxide offers a unique opportunity to enhance the sustainability and greenness of the synthesis of these high value-added chemicals.

Several strategies for CO$_2$-based preparation of cyclic carbamates have been reported, such as CO$_2$’s cycloaddition to aziridines, oxetanes, or amino epoxides, 8–12 and the transesterification of amines with cyclic organic carbonates, which are formed in situ in the cycloaddition of carbon dioxide and epoxides. 13,14 More recently, approaches utilizing the addition of CO$_2$ to acyclic unsaturated compounds such as alkenes, alkynes, and propargylic amines or alcohols, have garnered attention. 15–26 Meanwhile, our group has studied the synthesis of cyclic carbamates utilizing haloalkylamines, 27 and the multi-component reaction between anilines, dihaloalkanes, and carbon dioxide. 28 While certainly more efficient than conventional non-CO$_2$-based carbamate syntheses, all these methods have one or more drawbacks, namely the lack of stereoselectivity, 29 toxicity, and commercial unavailability of the starting materials, or the inability to easily access the substitution patterns required for pharmaceuticals.

Amino alcohols (AAs) are often seen as ideal nitrogen sources in the synthesis of cyclic carbamates from CO$_2$ due to their inexpensiveness, nontoxicity, and ready accessibility. However, the cyclization of AAs with carbon dioxide usually requires high temperatures and pressures even when catalysts, dehydrating agents, or electrochemical methods are employed. 8,30–40 As a result of these harsh conditions, side reactions (such as a second dehydration to yield the corresponding cyclic urea) are commonplace. 30,32,34,35,41 Furthermore, previous reports are mainly limited to the synthesis of alkyl substituted oxazolidinones, and additional functionalization is required to prepare high value-added chemicals.

Herein, we present the synthesis of cyclic carbamates from carbon dioxide and amino alcohols. Utilizing p-toluenesulfonyl chloride (TsCl) as an activating reagent, the reaction proceeds under mild conditions with good yields and high enantioselective excess, giving 2-oxazolidinones with the 3-aryl-5-alkyl substitution pattern desired for pharmaceutical applications in a single step. This straightforward method offers predictable regio-, chemo-, and stereoselectivity, and the scope is expandable to the syntheses of 6-membered rings and fused bicyclic compounds, making the process unprecedentedly versatile. In addition, the reaction mechanism was elucidated by DFT calculations.

Our one-pot approach involves the formation of a carbamate salt from CO$_2$ and AAs in the presence of an external base, followed by the tosylation of the alcohol group to improve its leaving group character, and the subsequent ring-closing via intramolecular substitution (Fig. 1). ROH-tosylation has been

† Electronic supplementary information (ESI) available: Experimental and computational details, spectroscopic data. See DOI: 10.1039/c8cc00636a

§ Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Finland. E-mail: timo.repo@helsinki.fi

① Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain. E-mail: israel@quim.ucm.es
Table 1 | Reaction condition optimization for maximum selectivity towards 2a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Base</th>
<th>ρ (bar)</th>
<th>T (°C)</th>
<th>Conversion (%)</th>
<th>Selectivity (a) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeCN</td>
<td>Cs₂CO₃</td>
<td>1</td>
<td>60</td>
<td>72</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>MeCN</td>
<td>Cs₂CO₃</td>
<td>5</td>
<td>RT</td>
<td>41</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>EtOH</td>
<td>Cs₂CO₃</td>
<td>5</td>
<td>RT</td>
<td>25</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>DCM</td>
<td>Cs₂CO₃</td>
<td>5</td>
<td>RT</td>
<td>5</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>DMF</td>
<td>Cs₂CO₃</td>
<td>5</td>
<td>RT</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>Acetone</td>
<td>Cs₂CO₃</td>
<td>5</td>
<td>RT</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>Acetone</td>
<td>Et₃N</td>
<td>5</td>
<td>RT</td>
<td>18</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>Acetone</td>
<td>TMG</td>
<td>5</td>
<td>RT</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>Acetone</td>
<td>KOH</td>
<td>5</td>
<td>RT</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>Acetone</td>
<td>K₂CO₃</td>
<td>5</td>
<td>RT</td>
<td>27</td>
<td>40</td>
</tr>
</tbody>
</table>

(a) Based on total GC yield of 2a and 3a with mesitylene as external standard. (b) Defined as yield(2a)/yield(2a + 3a). (c) TMG = 1,1,3,3-tetramethylguanidine.
to the slightly enhanced yield observed for 2d, whereas the more strongly activating alkoxymesityl affords quantitative conversion at the cost of selectivity, and 2e and the corresponding N-tosylated amino alcohol are isolated in a ca. 1 : 1 ratio. This marks the only occasion in which any N-tosylation was detected under the optimized reaction conditions. A deactivating halogen substituent, meanwhile, leads to a decrease in conversion, but full selectivity is maintained in the synthesis of 2f.

The reaction can also be extended to the synthesis of fused rings 5 from 2-aminobenzyl alcohols with yields up to 80%. Like N-aryl-2-oxazolidinones, these structures are omnipresent in pharmaceuticals, and can be found, for instance, in Efavirenz, an antiretroviral used to treat HIV, and in NMDA receptor antagonists, useful for treating stroke, cerebral ischemia, and depression. To our knowledge, the present work represents the first example of a CO₂-based synthesis of these compounds, and is in fact as efficient as the phosgene-based method.

To further establish the generality and applicability of this methodology in synthesis, we probed the chemo- and stereoselectivity of the reaction by screening difunctionalized and enantiopure amino alcohols as starting materials (Fig. 3). We have previously shown that the cyclization of carbon dioxide and 2,3-dichloropropan-1-amine strongly favors the formation of the more stable 5-ring (81% 5-ring, 17% 6-ring): the amino alcohol 1j, on the other hand, gives a mixture of the two possible products in a ca. 5 : 6 ratio, as the thermodynamic stability of the 5-ring is offset by the better leaving group nature of the –Cl. The easily synthesizable amino diol 1j, meanwhile, expectedly shows preference towards the formation of the 5-ring 2h, which can be isolated in 85% yield, and intriguingly with a higher selectivity towards the 5-ring than when the dihaloalkylamine was employed.

As we envision our method applicable to the synthesis of pharmaceutical compounds and chiral auxiliaries, predictable stereochemistry is of utmost importance. To our delight, the reaction also proceeds with high stereoselectivity, and >99% ee is observed for most substrates. In fact, only the amino diol 1l undergoes some racemization, but the corresponding oxazolidinone 2j is still isolated in a good yield and 90% ee. The products have inverted configuration at the stereocenter, which hints at a SN₂-type mechanism during the ring-closing step. To shed some further light on the involved reaction mechanism, the transformation was next studied in silico.

The computed reaction profile for the reaction of the parent amino alcohol 1a and CO₂ in the presence of mesylchloride (MsCl), as a model of the experimentally used TsCl, is shown in Fig. 4, which gathers the corresponding relative Gibbs free energies (ΔG₂₉₈ at 298 K) in acetone computed at the PCM(acetone)-M062X/def2-TZVPP//PCM(acetone)-M062X/6-31+G(d) level. Our DFT calculations indicate that the process begins with the formation of zwitterionic intermediate INT1 via transition state TS1, a saddle point associated with the nucleophilic attack of the amino group of 1a to the electrophilic CO₂. The alternative reaction of 1a with the activating agent MsCl, leading to INT1’ via TS1’, is not competitive in view of the much higher activation barrier (ΔΔG‡ = 12.8 kcal mol⁻¹) and endergonicity (ΔG_{R} = 11.4 kcal mol⁻¹) associated with this process, which is fully consistent with the complete regioselectivity observed for the transformation (see above). Although the formation of INT1 is endergonic (ΔG_{R} = 17.3 kcal mol⁻¹), the subsequent base-mediated deprotonation of this species is highly exergonic (ΔG_{R} = −46.2 kcal mol⁻¹) and drives the transformation forward. This step leads to the formation of the highly stabilized anionic intermediate INT2, which readily reacts with MsCl to produce, in an exergonic process (ΔG_{R} = −3.2 kcal mol⁻¹), the corresponding mesyl derivative INT3. This step occurs via TS2 (activation barrier of 21.4 kcal mol⁻¹) in a typical SN₂ reaction thus releasing HCl, which is then neutralized by the excess of base. The transformation ends up with the formation of the experimentally observed carbamate 2a via TS3 in a highly exergonic process (ΔG_{R} = −30.1 kcal mol⁻¹) with a reaction barrier of 18.1 kcal mol⁻¹ (fully compatible with a process occurring at room temperature). This saddle point is associated with the intermolecular synchronous displacement of the OMs leaving group by the nucleophile (O⁻→CO⁻) moietiy of INT3, thus forming the new C–O bond of the carbamate. According to the

![Fig. 3](image-url) Chemo- and stereoselectivity of the reaction. All yields are isolated yields. Reaction conditions: amino alcohol 1 (0.5 mmol), TsCl (1.1 equiv.), C₅H₅CO₃ (3 equiv.), CO₂ (5 bar), acetone (5 mL), room temperature, 20 h.

![Fig. 4](image-url) Computed reaction profile for the reaction of amino alcohol 1a and CO₂ in the presence of MsCl. Relative Gibbs free energies and bond distances are given in kcal mol⁻¹ and angstroms, respectively. All data have been computed at the PCM(acetone)-M062X/def2-TZVPP//PCM(acetone)-M062X/6-31+G(d) level.
Communication

Conflicts of interest

There are no conflicts to declare.

Notes and references

46 See computational details in the ESIF.