Multicolor 3D afterglow structures with high precision and ultralong lifetimes based on carbazole-doped photocurable resins†
Abstract
The majority of current research on organic room-temperature phosphorescence (RTP) materials focuses on film or powder forms, with limited exploration into the fabrication of complex 3D structures with high precision and enhanced RTP properties. Herein, a general strategy is proposed to construct 3D RTP models with precise structures and ultralong lifetimes by micro-doping carbazole-based chromophores into photocurable standard resins (SRs) and combining them with photocurable 3D printing technology. The highly cross-linked and rigid microenvironment formed after the curing of SRs endows the carbazole-doped SRs with a long RTP lifetime of up to 1.8 s. Utilizing digital light processing 3D printing technology, a series of multidimensional RTP models with precise structures and ultralong lifetimes are constructed based on these carbazole-doped SRs. Given the superior tunability of 3D printing blueprints and the excellent RTP properties of the printed models, these multidimensional models demonstrate great application prospects in advanced anti-counterfeiting and encryption applications.