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Diagnosis of pancreatic cancer via 1H NMR
metabolomics of human plasma

Lenka Michálková, a,b Štěpán Horník, a,b Jan Sýkora, b Lucie Habartová *a

and Vladimír Setnička a

Metabolic changes induced by pancreatic cancer were investigated by 1H NMR spectroscopy of plasma

samples of patients and healthy controls. The acquired data were submitted to multivariate statistical ana-

lysis providing clear discrimination between both groups. The most significant differences were found in

levels of 3-hydroxybutyrate and lactate. The obtained results (100% sensitivity, 90% specificity) clearly

show the potential of 1H NMR spectroscopy in pancreatic cancer diagnosis. Therefore, the NMR-based

metabolomics may contribute to the early diagnosis, prevention and/or therapy of diseases in the future.

On the other hand, the number of samples in the presented pilot study is limited and has to be significantly

increased in the future in order to obtain solid statistical models and to confirm the current findings.

Introduction

Pancreatic cancer is among the most aggressive types of
cancer, with a 5-year survival rate of only 5%.1,2 The high
mortality is mainly caused by problematic early diagnosis.
Establishing the diagnosis is difficult as the symptomatology
(nausea, weakness, weight loss, abdominal pain, etc.) is not
disease-specific and may have many causes.3,4 Unfortunately,
pancreatic cancer often develops silently without any symp-
toms at its early stage, but progresses very rapidly. The clinical
diagnosis of pancreatic cancer is mainly dependent on
imaging examination, such as magnetic resonance imaging,
computed tomography, endoscopic retrograde cholangiopan-
creatography and endoscopic ultrasound.4,5 However, the
specificity and sensitivity of these techniques are insufficient.
On the other hand, traditional protein biomarkers for pancrea-
tic cancer have been described,2,4 including carbohydrate
antigen 19–9 (CA 19–9), a cell surface associated mucin that
protects against infection through binding to pathogens
(MUC1), the immunoglobulin carcinoembryonic antigen-
related cell adhesion protein 1 (CEACAM1) and protein marker
MIC-1. Unfortunately, the commonly used protein biomarkers
are not suitable for early detection. Recently, attention has
also been focused on the genetic level of pancreatic cancer,
especially on the inspection of micro-RNAs.6 Another strategy
for early detection of pancreatic cancer can also be based on
the spectroscopic analysis of blood plasma.7

Metabolomics is an effective analytical approach to detect the
metabolome of cells, tissue, or biofluids.8,9 Subjects of interest
are small molecules (<1500 Da), such as lipids, carbohydrates,
amino acids, nucleotides and many other organic compounds,
which are the reactants, intermediates and products of bio-
chemical reactions or basic units for other molecular structures.
The general objective of the metabolomic approach is to deter-
mine fluctuations of endogenous metabolites by analysing bio-
logical matrices (biofluids, tissues or cell extracts) and to deduce
the relationship between metabolic changes and specific patho-
physiological conditions (e.g. diseases, diet and therapeutic
interventions).9 Nuclear magnetic resonance (NMR) spectroscopy
and mass spectrometry (MS) are the major analytical platforms
of this rapidly growing field.8,9 The high data reproducibility,
quantitative analysis and determination of unknown structures
are the main advantages of NMR spectroscopy. Moreover, NMR
is a non-destructive technique. The potential of metabolomics
for disease diagnosis, prognosis and therapy relies on the ability
to extract statistically relevant data from metabolic profiles.8,9

The combination of the NMR spectra of biofluids and methods
of pattern recognition has driven forward the application of
metabolomics in the field of biomarker discovery.8,9

In this study, 1H NMR was employed to investigate the
metabolic features in human plasma of pancreatic cancer
patients and healthy controls.

Materials and methods
Plasma sample collection

Ten pancreatic cancer patients (aged from 53 to 83 years old,
6 male and 4 female) and ten healthy subjects (aged from 48
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to 78 years old, 4 male and 6 female) were recruited at the
Department of Gastrointestinal Endoscopy at the Internal
Clinic of the Military University Hospital and the First Faculty
of Medicine (Charles University in Prague, Czech Republic).
The patients were included in the study after the examination
following clinical protocol, i.e. using endoscopic ultrasound,
magnetic resonance imaging and/or computed tomography.
The presence of the tumour was verified by histopathology.
Venous blood (9 mL) from all subjects was collected using
sterile blood collection tubes with K3EDTA as an anticoagulant
and subjected to a routine biochemical test, assessing basic
physiological indicators, such as fasting plasma glucose (FPG),
glycated haemoglobin (HbA1c), human serum albumin (HSA),
protein or cancer biomarker (CA 19–9, CEA) levels (Table 1).
The plasma fractions were obtained by centrifugation at 1500g
for 10 min and frozen immediately afterwards (−80 °C).

All experiments were performed in accordance with the
principles expressed in the Declaration of Helsinki, the
Collection of Laws of the Czech Republic, and approved by the
Ethics Committee at the Military University Hospital Prague.
Signed informed consents were secured from all human par-
ticipants of this study.

Sample preparation and 1H NMR spectroscopic analysis

Prior to the NMR analysis, plasma aliquots of 300 μL were
thawed at room temperature and subjected to ultrafiltration on
an Amicon Ultra-0.5 mL 3 K filter (with a 3 kDa cut-off limit;
Merck Millipore, USA) at 12 000 rpm for 30 min to separate
macromolecular proteins and lipids. The centrifuged plasma
was mixed with 300 μL of phosphate buffer solution in D2O
(0.1 mol L−1, pH = 7.4). The phosphate buffer contained
sodium salt of trimethylsilylpropionic acid (TSP-d4) as an
internal reference standard (0.1 mmol L−1) and sodium azide
(38 mmol L−1) as an antibacterial agent. This mixture was
transferred into 5 mm NMR tubes for the analyses.

The 1H NMR spectra were acquired on a Varian INOVA
500 MHz spectrometer (Varian Instruments Inc., USA) operat-
ing at a frequency of 499.87 MHz for 1H at 298 K. The 1H NMR
spectra were acquired for each plasma sample using Carr–
Purcell-Meiboom-Gill (CPMG) spin-echo pulse sequence with
residual water signal suppression. A total of 10 000 scans with
an acquisition time of 2.7 s, a saturation period of 4 s and
128 cycles of a 180° pulse were collected for each NMR spec-
trum. All spectra were referenced to TSP δ = −0.016 ppm.

Data processing and multivariate analysis

All 1H NMR spectra were processed and analysed by ChenomX
NMR Suite 8.0 (ChenomX Inc., Canada). Metabolic profiling
allowed the identification of 66 metabolites in each sample.
Metabolites were quantified using a target profiling approach
as implemented in the ChenomX software. Processing of the
raw data was carried out by normalizing the concentration of
each metabolite to the overall concentration of all metabolites
identified in the sample.1 The metabolite concentration data
matrix was then analysed by methods of pattern recognition
within The Unscrambler X 10.3 (CAMO software AS, Norway).
Subsequently, principal component analysis (PCA) and linear
discriminant analysis (LDA) were used to discriminate
pancreatic cancer patients from healthy controls.

Results and discussion

In the present pilot study, the metabolomic profiling of
human plasma from pancreatic cancer patients and healthy
controls using 1H NMR spectroscopy and multivariate analysis
was performed.

Profile of 1H NMR spectra of plasma samples

The analysis of the 1H NMR spectra allowed the assignment
and quantitation of 66 metabolites in each blood plasma
sample according to the ChenomX database. Significant differ-
ences were found in individual metabolite levels comparing
the samples from pancreatic cancer patients and healthy con-
trols. Namely, substantially increased levels in the patient
group were found, e.g. for arginine, phenylalanine and acetoa-
cetate, while the control samples primarily contained higher
levels of hypoxanthine and isopropanol. The aromatic regions
of representative 1H NMR spectra of both groups are depicted
in Fig. 1. A bar chart of normalized concentration of selected
metabolites illustrating the main differences between patients
with pancreatic cancer and healthy controls is shown in Fig. 2.

Table 1 Selected biometrical and biochemical parameters of patients
with pancreatic cancer and of the control group

Patient Control

Age 69.1 ± 8.9 59.0 ± 9.2
FPG [mmol L−1] 6.5 ± 1.5 5.5 ± 0.4
HbA1c [mmol L−1] 51.0 ± 16.7 35.9 ± 3.9
HSA [g L−1] 37.9 ± 6.4 44.2 ± 5.7
Total protein [g L−1] 63.4 ± 7.5 66.9 ± 6.9
CA 19–9 [kU L−1] 3.3–4,275.0 2.6–19.6
CEA [kU L−1] 1.2–133.9 0.8–3.8

Fig. 1 Aromatic region detail of 1H NMR spectra (CPMG, 500 MHz) of
plasma samples of pancreatic cancer patients (top) and healthy controls
(bottom).
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Statistical evaluation of the metabolic profile of pancreatic
cancer

The first statistical model was based on all identified metab-
olites. For this purpose, the concentrations of potential bio-
markers were normalized to the overall concentration of the
selected metabolites.1 The discrimination of the examined
groups was not satisfactory. Therefore, the PCA loadings of
this model was used to identify metabolites of potential impor-
tance. The threshold value of principal components was set to
±0.020 and ±0.025 for PC1 and PC2, respectively. This lead to
the selection of 20 metabolites. Apart from that, Wilcoxon
rank-sum test10 was used to select other potentially significant
metabolites. The threshold of P-value < 0.05 was set for the
statistical significance and additional 14 metabolites were
included into the new model. Thus, the new model consisted
of 20 metabolites selected from the PCA loadings and 14 from
the Wilcoxon rank-sum test. Further optimization of the
model by removing and adding metabolites resulted in the
models presented here. In all attempts, a certain trend of
sample grouping was observed. The PCA of a model combining
6 metabolites can be seen in Fig. 3. The separation of two ana-
lysed groups is not complete, however, the trend of sample
grouping within each group is obvious. Two of the analysed
samples, one in each group, were identified as outliers. The
loading plots of these two samples revealed considerably
different metabolite levels from the rest of the group.

Therefore, these two samples were excluded from the statistical
analysis and two sets of 9 samples were used for the creation of
the final statistical model for the discrimination of pancreatic
cancer patients and healthy control subjects and submitted to
PCA and LDA.

The final model combining 12 metabolites (3-hydroxybuty-
rate, lactate, glutamine, alanine, valine, lysine, citrate, histi-
dine, isoleucine, glutamate, acetone and dimethylamine) in 18
samples provided a distinct separation of both groups. The
results of PCA and LDA can be seen in Fig. 4. The overall accu-
racy of the statistical model reached 94%. Only one patient
was misclassified, leading to the model sensitivity and speci-
ficity of 100% and 90% after leave-one-out cross validation,
respectively (Table 2).

The multivariate statistical analysis of the obtained results
revealed significant differences in levels of lactate and 3-hydro-
xybutyrate in the patient plasma compared to control samples.
Other statistically significant metabolites were alanine, gluta-
mine and valine.

Fig. 4 (A) Scores graph of PCA for the final model. (B) Graphical repre-
sentation of the results of LDA for the final model. Patients with pan-
creatic cancer ( ) and healthy controls ( ).

Table 2 Confusion matrix from linear discriminant analysis for patients
with pancreatic cancer and healthy controls after leave-one-out cross
validation

From/to Patient Control Total

Patient 9 1 10
Control 0 8 8
Total 9 9 18
Correct 100% 90% 94%

Fig. 2 Bar chart of normalized concentration for selected metabolites
found in human blood plasma revealing the differences between a
group of pancreatic cancer patients (red) and a healthy control group
(blue).

Fig. 3 Scores graph of PCA for the samples of blood plasma of patients
with pancreatic cancer ( ) and healthy controls ( ); PC1 + PC2 = 99%
variability.
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Lactate is known as the product of anaerobic glycolysis and
participates in many metabolic pathways, e.g. gluconeogenesis
or pyruvate metabolism. It is associated with anoxia,11 schizo-
phrenia,12 and also different types of cancer.13 Locally high
concentrations of lactate were found near many tumours due
to upregulation of lactate dehydrogenase. Lactate is also pro-
duced by tumours via aerobic glycolysis (Warburg effect) and it
acts as an immunosuppressant and tumour promoter.13

Moreover, lactate has been identified as a key factor and/or reg-
ulator in the development and malignant progression of a
variety of cancers. A number of studies have demonstrated that
malignant transformation is associated with an increase in
aerobic cellular lactate excretion.13

On the other hand, 3-hydroxybutyrate belongs to the ketone
bodies, whose blood levels are increased in ketosis. In
humans, 3-hydroxybutyrate is synthesized in the liver from
acetyl-CoA and can be used by the brain as an energy source
when blood glucose is low. This compound is also associated
with specific inborn metabolism malfunctions,14 e.g. deficiency
of fumarase and medium-chain acyl-CoA dehydrogenase.
Furthermore, it has been reported as a biomarker in the study
of schizophrenia,15 Alzheimer’s disease16 and cancer.17

Alanine is a non-essential amino acid serving as major
energy source, which participates on glucose metabolism.
Thus, its blood levels reflect blood sugar levels in diabetes.
Alanine itself is able to manage hypoglycaemia and reduce
ketosis in diabetic individuals. In addition, changes in alanine
levels were reported with schizophrenia,18 colorectal cancer,19

lung cancer20 and pancreatic cancer,21 the latter of which is
strongly associated with diabetes mellitus.

Glutamine, a non-essential amino acid, replenishes amino
acid levels. Therefore, glutamine is recommended during
fasting or for people, who suffer from physical trauma,
immune deficiencies or cancer. Disorders associated with glu-
tamine imbalance include Alzheimer’s disease,16 colorectal
cancer,17,19 leukemia22 and pancreatic cancer.21

Valine is also one of 20 proteinogenic amino acids, and it is
classified as a branched-chain amino acid (BCAA). BCAA are
essential to human life, as they are involved in energy and
muscle metabolism, and in stress management. Several
studies assigned valine as a biomarker for Alzheimer’s
disease,16 colorectal cancer17 and Crohn’s disease.23

The obtained results indicate that the statistical model
comprising of 12 metabolites may be used for the discrimi-
nation of pancreatic cancer patients from healthy subjects at
high level of accuracy. The model also identified lactate,
3-hydroxybutyrate, alanine, glutamine and valine as potential
metabolic markers of pancreatic cancer.

Conclusions

Based on principal component analysis and linear discrimi-
nant analysis of the 1H NMR metabolomic data obtained from
plasma samples, pancreatic cancer patients and healthy con-
trols can be distinguished with a high level of accuracy. In

agreement with the literature data, the most significant differ-
ences between both groups were found in levels of 3-hydroxy-
butyrate and lactate. Other statistically significant metabolites
were alanine, glutamine and valine, which may be regarded as
a new panel of biomarkers of pancreatic cancer.

The number of samples in the presented pilot study is
limited and has to be significantly increased in the future in
order to obtain solid statistical models and to confirm the
current findings. Nevertheless, the obtained results provide
support for the potential of 1H NMR spectroscopy in disease
diagnosis. Hopefully, 1H NMR-based metabolomics may con-
tribute to the early diagnosis, prevention and/or therapy of
pancreatic cancer in the future.
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