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tumour spheroids
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There is currently a need to culture cells in 3D to better mimic the behaviour of cells growing in the
natural environment. In parallel, this calls for novel technologies to assess cell growth in 3D cell culture. In
this study, we demonstrated both in silico and in vitro that cell viability inside large cell spheroids could be
monitored in real time and label-free with electrical impedance tomography (EIT). Simulations using a
single shell model and the effective media approximation (EMA) method were performed to prove the
performance of EIT on spheroid imaging and viability monitoring. Then in vitro experiments were con-
ducted to measure in real time a loss of cell viability in MCF-7 breast cancer spheroids when exposed to
Triton X-100 and validate with conventional biochemical assays. It is shown that EIT has a spatial resolu-
tion of 1.14% and it could monitor the cell mortality over 20% of a spheroid under laboratory noise level.
The reconstructed conductivity images for cell mortality induced by the chemical are clear and match the
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result in the cellular metabolic viability assay. Furthermore, the image reconstruction speed in the experi-
ment was less than 0.3 seconds. Taken together, the results show the potential of EIT for non-destructive
real-time and label-free cellular assays in the miniature sensor, providing physiological information in the
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A Introduction

There is currently a need to move away from traditional two-
dimensional (2D) cell culture towards cell culture systems that
better mimic the behaviour of cells growing in the natural
environment."” For instance, three-dimensional (3D) tumour
cells are considered to have higher radio- and chemo-resis-
tance than cancer cells cultured at 2D because of the 3D cell-
cell and cell-matrix interactions,* which is pointed out as
one of the most important reasons for the low success rate in
anticancer drug discovery and development.” Because 3D
spheroid culture models are closer to an in vivo like mor-
phology, they can better reflect the biological mechanisms of
cell migration, differentiation and viability.®

End-point destructive assays, such as histopathology,
scanning electron microscopy (SEM) and transmission elec-
tron microscopy (TEM), can be used to evaluate frozen and
fixed cells within a 3D structure.” But currently, there is no
straightforward method to assess cell growth and cell activity
in live 3D structures. Confocal and fluorescence microscopies,
the methods of choice for 2D culture, are limited to a pene-
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applications of 3D drug screening and tissue engineering.

tration depth of a few micrometres (<50 micrometers) in
dense, highly scattering tissues. Consequently, multiphoton
microscopy and light sheet microscopy, in combination with
fluorophores, are a better choice to image cells within spher-
oids." Alternatively, optical coherence tomography can be used
to scan large spheroids and it was recently shown that cell via-
bility could be inferred from the optical signal.® This tech-
nique required analysing multiple scans at the same location
and has therefore limitations in terms of the scanning rate.
Simpler methods have been used to go towards high-through-
put imaging. For example, spheroid drug response has been
recorded with phase-contrast imaging by monitoring changes
in size and integrity’ but with no clear indication with regard
to change in cell viability. Therefore, at the moment, cellular
metabolic activity assays based on luminescence or fluo-
rescence are the states of the art to analyse drug response in
spheroids.'”" However, they don’t allow for real-time monitor-
ing of the drug response. In general, advanced optical imaging
technologies are not very well suited to implement multiplexed
real-time cell viability assays for 3D samples.

In recent years, impedance measurements were applied to
monitor microtissue spheroids continuously.”*" This tech-
nique is based on the measurement of the electrical properties
of biological cells and the external culture medium. The elec-
trical properties of biological cells under radio-frequency AC
fields are attributed to the interfacial polarization arising from
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the presence of an insulating double-lipid bilayer membrane
that separates two ionic media, ie. the cell cytoplasm and the
surrounding medium.'®'” By applying an AC current to the
sensing area through a pair of electrodes, the impedance of
the cells is measured through the same pair of electrodes or
the adjacent electrode pair, which can be used to deduce cell
concentration,'®'® cell viability®>*' and other cell activities.>>
It is generally agreed that impedance measurements are a con-
venient, non-destructive and reliable approach for cell-based
assays with high temporal resolution. The latest studies
reported that impedimetric analyses were successfully applied
to estimate the size,'>"'® proliferation’ and drug response'* of
3D microtissue spheroids. Currently, most of the existing
impedimetric studies are based on the analysis of measure-
ments taken at only one pair of electrodes. They can only give
a single lumped impedance value of the entire sample under
test instead of a visual image giving an insight into the spatial
distribution. It is necessary to improve the achieved spatial
resolution.”?

In this study, we demonstrated a novel, real-time and label-
free cellular assay based on 2D EIT that can spatially resolve
cell viability for single 3D spheroids. We first carried out finite
element (FE) simulations to figure out the feasibility of EIT for
single spheroid imaging and viability monitoring as well as its
detection limits. Then, cohesive MCF-7 spheroids were cul-
tured and introduced in a miniature sensor for practical
experiments. The lysis buffer Triton X-100, which can cause
cell death in a short time, was added to the sensor to validate
the capability of EIT in real-time monitoring. Finally, the cellu-
lar metabolic viability assay was performed on the spheroids
to verify the correctness of the results.

B Materials and methods
B.1 Electrical impedance tomography

EIT is an imaging technique that can reconstruct the conduc-
tivity distribution of the spheroids based on the boundary
measurements.>* The mathematical theory of EIT is composed
of two parts: the forward problem and the inverse problem.

The forward problem corresponds to the calculation of the
electrical potentials on the electrodes from a known injected
current and the conductivity distribution. It shows how effec-
tively the change in each region contributes to voltage measure-
ments. Solving the forward problem involves the construction of
the Jacobian matrix, which is required in the image reconstruc-
tion in the inverse problem. The relationship between the
boundary voltage v and the magnitude of the complex conduc-
tivity distribution |¢*| inside the sensor can be described by the
nonlinear deterministic observation model as:

v =f(le*|.)) (1)

where j is the excitation current density at the boundary elec-
trodes. The absolute value is used in the equation because
only the magnitude value of the measurement is used in the
image reconstruction in this study. In the context of difference
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EIT imaging,>® eqn (1) can be linearized under the condition
of a small conductivity perturbation A|c*|:

_ du(jo*])

A
v d|o*|

Alo*| = JAlo*| (2)
where A|o*| € R is the perturbation of the conductivity distri-
bution of the sensing area, which is segmented into an n voxel
mesh, Av € R is the boundary voltage difference before and
after the perturbation and J € R™" is the sensitivity matrix cal-
culated based on the Geselowitz sensitivity theorem:*®

dv
Je=-—2 —_ J V(I )- Ve (I ) dxdy (3)
voxel k

dlete
where & is the k™ voxel, Vi(I,) is the electric potential at the
k™ voxels when current I is stimulated by the x™ electrode pair
and V(1) is the electric potential at the k™ voxels when
current I is stimulated by the y™ electrode pair.

The inverse problem corresponds to the calculation of the
conductivity distribution from the known injected current and
related voltage measurements. The usual approach is to find a
stable value of |¢*| so that the difference between the simu-
lated boundary voltages v = f(|¢*|, j) and the measurement
values v is minimised. The objective function is expressed as:

B(Alo*)) = 2 |7Alo*] - &v] 3. @)

Since the inverse problem is “ill-posed” and the solutions
of the inverse problem are not unique, an additional penalty
term should be introduced to the function as a constraint.
Considering the spheroid is spatially sparse in the sensor and
the presence of noise in the measurements, the sparsity con-
straint is relaxed and the iterative Basis Pursuit Denoising
model®” is applied in this study.

minA\o‘*\”A|6*|”1 (5)
2
s.t. [[JA|o*| — Av|[;< 6

where 6 is the parameter associated with the level of the
measurement noise. Eqn (5) can be solved using the spectral
projected gradient for an /1 minimization method.>”

B.2 Effective medium approximation of MCF-7 cell spheroids

Cell are complex heterogeneous entities and thus must be sim-
plified into a model to calculate their electrical properties.'” In
this study, the MCF-7 cancer cell was fitted into the single
shell model®® as shown in Fig. 1(a). Based on this model, the
cytoplasm of the cell was composed of a homogeneous con-
ductive medium. The relationship between the electrical pro-
perties of the spheroids and their physiological characteristics
can be accurately controlled. Here, we define that the effective
complex conductivity * and the complex permittivity ¢* of an
object are calculated from its effective conductivity ¢ and
effective relative permittivity e:

o* = jweoe* = 6 + jwepe (6)

where ¢, is the permittivity of vacuum.

This journal is © The Royal Society of Chemistry 2018
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Fig. 1 Simulation models for (a) a single cell, (b) a tumour spheroid and the EIT sensor in (c) stereo view and (d) top view.

Hence, the equivalent homogeneous complex permittivity
of the whole cell ¢, can be given using the Maxwell Garnett
equation in eqn (7):

R 2(1 —v)er, + (1 + 2v)e, 7)
el 7ML yYel + (1 —v)el,

where ¢, is the complex permittivity of the cytoplasm, e, is the
complex permittivity of the cell membrane and v = (1 — d,/r)°,
in which r is the outer radius of the cell and d,, is the thick-
ness of the membrane.

In the multicellular spheroid model, each MCF-7 cell is
considered as a sphere. The cells were surrounded by an exter-
nal culture medium and evenly distributed within a spheroid
of radius R (Fig. 1(b)). The volume fraction P of the cells over
the spheroid depends on the number of cells x in the spher-
oid, which is given by P = x(r/R)>. To estimate the permittivity
of the whole spheroid, Hanai’s equation®® is preferable in the
EMA, since it takes the high volume fraction into account and
it is suitable for cells in different morphologies:

* * * n
‘is — Ecell <8c_in) —1-pP (8)

*
€em ~ Eeell \ &
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(c)

where ¢, and e, are the complex permittivity of the culture
medium and the whole spheroid, respectively. The morphology
parameter n is set to 1/3 for the spherical MCF-7 cancer cells.
Eqn (6)-(8) are used to determine the FE simulation
parameters in the next section, and in particular the effective
permittivity of the cell spheroid.

B.3 Evaluation of EIT for spheroid imaging

The FE simulations to evaluate the performance of EIT in
spheroid monitoring were performed in the COMSOL
Multiphysics software with an AC/DC module in the frequency
domain study. A cylindrical EIT sensor model was built with
15 mm and 7 mm diameter and height, respectively, to simu-
late the sensor filled with 1.2 ml liquid solution. 16 rectangu-
lar electrodes (dimensions: 1.2 x 0.6 mm?) were evenly distrib-
uted at the boundary of the substrate in the chamber and the
circular ground electrode was designed in the centre of the
well with a diameter of 0.4 mm. A tumour spheroid with the
radius R was placed on the substrate of the sensor (Fig. 1(c)).
The conductivity and the permittivity of the culture medium,
the cell membrane and the cytoplasm of the viable cell were
set as Gem = 1.5 S M ™, €em = 80, 6 = 0S M™%, € = 5, 0c =
1.5 S m™', and &, = 80, respectively. The size of the cells and
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the volume fraction were defined as r = 10 um, d,, = 5nm and
P = 46% based on the characteristics of the MCF-7 breast
cancer cells*® and the tightly packed tumour spheroids.* In
order to reduce the computational cost, the cell spheroid
shown in Fig. 1(b) was considered as a sphere and its effective
permittivity e; was calculated based on eqn (7) and (8).

In the simulation, the adjacent drive method®'** was
adopted for the current stimulation and voltage measure-
ments, which increased the sensitivity to the cellular response
near the electrode. A 10 kHz current with an amplitude of
1 mA was applied to a pair of electrodes and the electrical pro-
perties of the spheroid were measured from the successive
adjacent electrode pair (Fig. 1(d)). By switching the current
stimulation positions, totally 104 independent measurements
were obtained as a data set for image reconstruction.

B4 Impedance measurement system

Impedance measurements were carried out in a cylindrical min-
iature EIT sensor with microelectrode arrays®® at the substrate
(Fig. 2(a and b)). The diameter and the height of the chamber
were 15 mm and 10 mm, respectively, while the number and
sizes of the gold-plated electrodes were the same as the setting
in the FE simulations. The adjacent current stimulations and
voltage measurements were performed with the high-speed EIT
system (Fig. 2(c)) developed at the University of Edinburgh.** In
this study, the frequency of the stimulation current was set to
10 kHz and the frame rate was 30 fps. To test the performance
of the miniature sensor, 1.2 ml culture medium was added to
the sensor and the boundary voltages on the electrodes were
continuously measured through the system for 1 hour. The SNR
of each channel can be calculated using eqn (9):

t
> ()
SNR = 10log—=*

; (v(i) —9)*

9)

where v(7) and v are the voltage measured at the time i and the
mean voltage of this channel, respectively.

B.5 Cell line maintenance

The MCF-7 breast cancer cells were obtained from ATCC
(Middlesex, UK) and were routinely grown in T-25 flasks in a

system

(a)

Pictures of (a) the schematic illustration, (b) the manufactured miniature EIT sensor, and (c) the high-speed EIT system.

(b)

Fig. 2

4192 | Analyst, 2018, 143, 4189-4198

Common ground
Imaging
software

Socket to EIT

View Article Online

Analyst

humidified 5% CO, incubator at 37 °C. The culture medium
was a low glucose Dulbecco’s Modified Eagle Medium (DMEM)
with glutaMAX (Thermo Fisher Scientific, Waltham, MA USA)
supplemented with 10% (v/v) fetal bovine serum (FBS) and 1%
(v/v) penicillin/streptomycin. After the cells attained confluence,
they were subcultured using 0.25% trypsin.

B.6 Tumour spheroid formation

The liquid overlay technique was adopted to form cell spher-
oids on the hydrogel surface.*® 1% (w/v) agarose dissolved in
deionized water was sterilised by heating to 120 °C under 100
kPa for 15 minutes. It was then pipetted to the 24-well plate
with the volume of 400 pl per well, following with 1 ml of
culture medium. To accelerate the cohesion of the spheroid,
the culture medium was optimized to a high glucose DMEM
based culture medium (HG culture medium). The cells cul-
tured in the T-25 flasks were trypsinised and counted on the
haemocytometer. Cell suspensions with 10" cells were seeded
onto each microplate well. The spheroid cultures were main-
tained under horizontal stirring with the Orbi-Shaker BT4000-
E (Benchmark Scientific, New Jersey, USA) at 120 rpm. The size
of the spheroids is controlled by the culture period.

B.7 Chemical insult and the reagent

Triton X-100 is a non-ionic, non-denaturing detergent widely
used in biochemical applications for lysing cells. Triton X-100
can change live cell permeability and morphology at a low con-
centration, while a high concentration of the detergent will
solubilize the cell membrane proteins, which eventually
results in cell death by necrosis.>®?” In this study, the Triton
X-100 solution is used to study cell viability in a time-lapse
fashion. 2% (v/v) Triton X-100 solution is prepared by pre-
mixing 0.2 ml Triton X-100 electrophoresis reagent liquid (Alfa
Aesar, Lancashire, UK) with 9.8 ml HG culture medium. The
conductivities of the Triton X-100 solution and the HG culture
medium at room temperature are 2 S m~' and 2.07 S m™},
respectively.

B.8 Cellular metabolic viability assay

To assess the cellular metabolic viability of the MCF-7 spher-
oids, a PrestoBlue Cell Viability Reagent (Thermo Fisher
Scientific, Waltham, MA, USA) was used in the endpoint study.

Medical power
supply

Multiplexer
array

Main box

Miniature EIT
sensor

(c)

This journal is © The Royal Society of Chemistry 2018
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The reagent was mixed with the HG culture medium in a
1:9 mixing ratio following the product information sheet. The
spheroids were incubated in the mixture for 60 minutes at 37 °C
for the PrestoBlue assay. Fluorescence was measured at 525 nm
(EX)/580 nm (EM) for control and spheroids with and without
treatment. A higher fluorescence value (RLU) means a higher cel-
lular metabolic viability of the MCF-7 spheroid under test.

C Results and discussion
C.1 FE simulations of the measurement range

Prior to monitoring spheroid viability in real-time, it is impor-
tant to examine the theoretical detection limit of EIT for the
cell spheroids. Hence, we performed two simulations to figure
out the spatial sensitivity and viability detection limit of EIT,
which could be used as a reference for parameter setting in
the real-time cellular assay.

C.1.1 Spatial sensitivity. The spatial sensitivity of the EIT
measurement evaluates the performance of EIT in reconstruct-
ing the size and position of the spheroids. The sensor was first
filled with a culture medium as a reference, and then the
spheroids in different sizes were introduced to the substrate of
the sensor as shown in Fig. 1(c and d). Voltage measurements
were taken from the electrodes for EIT image reconstruction.
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Based on the calculation of eqn (9), the average SNR of the
system was 52.63 dB. Hence, Gaussian noise was added to the
boundary voltages to achieve the signal-to-noise ratio (SNR) of
50 dB to simulate the conditions of practical experiments. The
spatial sensitivity of the reconstructed image was evaluated by
the correlation coefficient (CC) between the true image and
the reconstruction:*®

(10)

where |6%| and |o*| denote the reconstructed and true conduc-
tivity distribution in the sensor while [6*| and |o*| are the
mean values of |6*| and |¢*|, respectively. A higher CC means
that the similarity between the actual size and position of the
spheroid is closer to the reconstructed value, which means the
reconstructed image is a better representation of the spheroid
under study. We define the smallest spheroid that can generate
the highest CC values as the spatial sensitivity of the measure-
ment because its signal is strong enough to tolerate the dis-
turbance of the measurement noise.

Fig. 3 shows the reconstructed images in the presence of
MCF-7 cell spheroids with increasing radius. Based on the
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Fig. 3 Reconstructed images for the spheroids in sizes of (a) 0.16%, (b) 0.64%, (c) 1.44% and (d) 2.56% of the sensor and (e) their correlation coeffi-
cient with the true image based on 20 measurement samples for each size of the spheroid (n = 20).
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electrical characteristics of viable cells as mentioned in section
B.3, the effective conductivity of the viable cell spheroid ‘a;‘ is
equal to 0.595 S m™, which is lower than the conductivity of
the culture medium |o,,|. Hence, the introduction of the
spheroid results in the conductivity drop in the corresponding
area. In the presence of spheroids with a small radius (Fig. 3
(a and b)), the resulting disturbance to the boundary voltage is
weak and the signal level is similar to the noise level. In Fig. 3
(c and d), larger spheroids generate stronger signals to the
boundary voltages, and better image quality is generated. The
correlation coefficient histogram (Fig. 3(e)) indicates that the
minimum radius of the spheroid that can maintain a high
image quality is 0.8 mm, which means that the spatial sensi-
tivity of the measurement is 1.14% of the sensor surface area.
C.1.2 Detection limits of spheroid viability. The purpose of
this simulation is to evaluate the sensitivity of EIT measure-
ment to the conductivity change of the spheroid caused by cell
death. A viable cell spheroid with a radius R of 1.2 mm (area
ratio of 2.56%) was simulated inside the sensor filled with
culture medium and a cytotoxic agent as shown in Fig. 1(c and d).

(@) (b) (c)
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Since the volume of the biochemical agent was far smaller
than that of the culture medium, we assumed that the conduc-
tivity of the background solution was equal to the conductivity
of the culture medium |o,,,|. Then, we simulated the effect of
the cytotoxic agent with a gradual viability loss of the spheroid
down to 0% (cell mortality rate increased from 0 to 100%) by
modifying their dielectric property parameters in the simu-
lation. Since the membrane of dead cells lost resistance to the
low-frequency electric current, its conductivity and permittivity
were increased to 6, = 1.5 S m™* and &,,, = 80. The conductivity
of the spheroid with partial dead cells was updated with eqn
(8) and it increased linearly with the cell mortality rate. EIT
was used to reconstruct the conductivity change of the spher-
oid to deduce the cell mortality under a 50 dB noise level.
A threshold based conductivity mask was applied to the recon-
structed images to locate the spheroid and to calculate the
average conductivity change of the spheroid associated with
cell death.

According to Fig. 4(a-e), the conductivity variation due to
the cell mortality can be detected and reconstructed in the
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Fig. 4 Reconstructed images for spheroids at (a) 10%, (b) 30%, (c) 50%, (d) 70% and (e) 90% mortality rates, and (f) the comparison diagram
between the reconstructed conductivity variation and the cell mortality rate (n = 30).
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correct position when the mortality rate was over 20%. The
variation increases with the cell mortality, as we expected.
Fig. 4(f) shows the relationship between the reconstructed con-
ductivity variation and the cell mortality rate plotted with 30
spheroid samples. A good correlation exists between the recon-
structed conductivity variation and the cell mortality rate at
20% mortality rate and above. Hence, EIT reconstructed con-
ductivity variation can be used as an indicator of cell mortality
in the spheroids.

C.2 Experimental results

C.2.1 Realtime imaging of spheroid viability. In this
section, experiments with MCF-7 spheroids were carried out to
validate the FE simulations and the feasibility of EIT for real-
time imaging. The MCF-7 cells were cultured in the incubator
for 6 days using the optimized liquid overlay method to form
spheroids with a radius of around 1.2 mm (Fig. 5). In order to
monitor the dynamic course of cell death, the spheroids were
introduced to the miniature sensor with 1.2 ml 2% Triton
X-100 solution (experimental group). In the control group, the
spheroids were introduced to the miniature sensor with 1.2 ml
HG culture medium. Reference was taken immediately after
that. Both the experimental group and the control group have
two samples.

Fig. 6(a) shows the reconstructed images for the response
of the MCF-7 spheroids in the 2% Triton X-100 solution
(experimental group) and the HG culture medium (control
group). These images show the difference in conductivity
between the reference and the conductivity at the selected
time points. 300 images in total were reconstructed for each
sample and the processing time for each image was less than
0.3 seconds. As expected, the conductivity of the spheroids in
the Triton X-100 solution has a significant increase while the
conductivity of the spheroids in the HG culture medium
remains unchanged. In the experimental group, the conduc-
tivity of the spheroids starts to increase at about 2 minutes
until it reaches a plateau between 0.04 and 0.05 at 22 minutes.
The increase is caused by the destruction of the insulating
cell membranes after cell death. This result is consistent
with the previous MCF-7 chemical response data in 2D,***'
but a longer response time was observed, likely due to the 3D

(b)

Fig. 5 An MCF-7 spheroid sample cultured in a 24-well plate, (a) a
digital camera image and (b) an optical contrast microscopy image;
scale bar corresponds to 300 pm.

This journal is © The Royal Society of Chemistry 2018
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structure of the spheroids. The standard deviation around the
mean could be explained by the individual differences
between two spheroids in morphological characteristics, cell
concentrations and initial cell viabilities. In Fig. 6(b), the
chemical insult over time is reconstructed in real-time with a
small fluctuation. One reason for the fluctuation is that the
reconstruction parameter § in eqn (5) in this experiment is
fixed in order to compare the conductivity changes in different
groups, so it is not optimized for each group to obtain the best
image quality. Comparing the RLU in the control group and
the experimental group shows that the viabilities of the MCF-7
spheroids almost drop to zero after a 30 minute treatment in
the 2% Triton X-100 solution (Fig. 6(c)). These data showed
that EIT can monitor and analyse the cell viability on 3D cell
spheroids in real time.

C.3 Discussions

In this study, a 2D EIT image reconstruction model is applied
to reconstruct the conductivity distribution images. This
setting projects the change in the sensor into 2D space. This
method was chosen because it significantly reduces the com-
putational time required to reconstruct an image when com-
pared to 3D EIT reconstruction,*® and is therefore more suit-
able for a new technology to monitor in real-time and label-
free cellular viability. Since the conductivity of the background
medium is invariable during the measurement, the conduc-
tivity variation in the sensor is mainly attributed to the change
of the cells. Therefore, the 2D conductivity distribution in the
images can directly reflect the conductivity variation of the 3D
cell spheroids.

Spheroid position in this study is selected to optimize the
signal intensity of the EIT measurements and to improve the
image reconstruction with the adjacent drive method. To
measure samples located at the centre of the sensor, the polar-
offset current drive”® or opposite current drive®® should be
applied to maintain high sensitivity in the central area. In future
studies, optimization will be performed to automatically detect
the position of the samples and choose the best current stimu-
lation pattern to increase the sensitivity of the measurements.

Taken together, the results show that the viability and integ-
rity of the 3D cell spheroids can be monitored in real time and
in their cell culture environments with EIT. This method is
sensitive to the physiological variation of the cell spheroids. It
allows the continuous monitoring of the spheroid integrity
and size, which is a parameter of interest alongside cell viabi-
lity.? Cell mortality caused by a chemical insult can be recon-
structed in real time through its correlated conductivity vari-
ations in the spheroid. Being able to monitor the response of
MCF-7 spheroids to the Triton X-100 solution confirmed the
ability of EIT to perform a real-time and label-free cellular
assay. Although its spatial resolution is not as high as other
imaging techniques such as confocal and fluorescence micro-
scopies, it does have several distinct advantages over the exist-
ing techniques including cost, non-destruction, portability,
high temporal resolution and potential for multiplexing and
long-term high throughput screening. Overall, it maintains the
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advantages of other impedimetric measurement techniques
while overcoming the lack of spatial resolution.

D Conclusions

In this study, we have developed an EIT sensor and associated
methodologies to monitor in real time and non-destructively
cell viability in 3D cell spheroids. This technique is demon-
strated in a single-well format, but it could be easily multi-
plexed to a multi-well plate format. We first analysed the
relationship between cell viability and spheroid conductivity
through the EMA theory, and evaluated the feasibility of EIT
for spheroid imaging in FE modelling simulation. Then,
experiments were performed that validated our approach and
established the potential and suitability of EIT to monitor real-
time and label-free transient changes in cell viability induced
by a chemical insult within large 3D spheroids. To the best of
our knowledge, this is the first study to perform FE simu-
lations with tightly packed tumour spheroids, and to demon-
strate the real-time and label-free monitoring of conductivity
variation of 3D cell spheroids following a chemical insult. This
takes a step forward towards the miniaturisation of impedance
imaging to enable the on-line monitoring of cellular activities
in a 3D environment, and the integration of the EIT technique
to drug-screening platforms and tissue engineering.
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