Issue 41, 2021

A novel approach to bis(1,3-azol-2-yl)acetonitriles and bis(1,3-azol-2-yl)methanes via the [3 + 2]-dipolar cycloaddition of imidazole N-oxides and 2-heteroaryl-3,3-dimethylacrylonitriles

Abstract

A new synthetic approach for obtaining previously unknown bis(1,3-azol-2-yl)acetonitriles and bis(1,3-azol-2-yl)methanes has been developed. It is based on 1,3-dipolar cycloaddition between 2-unsubstituted imidazole N-oxides and 2-(1,3-azol-2-yl)-3,3-dimethylacrylonitriles, which are easily available through the condensation of (1,3-azol-2-yl)acetonitriles with acetone. The method allows for the construction of various unsymmetric derivatives based on imidazole, oxazole, thiazole, and 1,3,4-thiadiazole cyclic molecules. Its potential has been demonstrated via the synthesis of 24 diverse derivatives with yields of 29–92%. Bis(1,3-azol-2-yl)acetonitriles can be converted to the corresponding bis(1,3-azol-2-yl)methanes via simple acid hydrolysis followed by subsequent spontaneous decarboxylation at nearly quantitative yields.

Graphical abstract: A novel approach to bis(1,3-azol-2-yl)acetonitriles and bis(1,3-azol-2-yl)methanes via the [3 + 2]-dipolar cycloaddition of imidazole N-oxides and 2-heteroaryl-3,3-dimethylacrylonitriles

Supplementary files

Article information

Article type
Paper
Submitted
23 Jul 2021
Accepted
23 Sep 2021
First published
23 Sep 2021

Org. Biomol. Chem., 2021,19, 8988-8998

A novel approach to bis(1,3-azol-2-yl)acetonitriles and bis(1,3-azol-2-yl)methanes via the [3 + 2]-dipolar cycloaddition of imidazole N-oxides and 2-heteroaryl-3,3-dimethylacrylonitriles

A. V. Kutasevich, A. S. Niktarov, E. S. Uvarova, V. A. Karnoukhova and V. S. Mityanov, Org. Biomol. Chem., 2021, 19, 8988 DOI: 10.1039/D1OB01441B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements