Direct heterobenzylic fluorination, difluorination and trifluoromethylthiolation with dibenzenesulfonamide derivatives†

Michael Meanwell,†a Bharani Shashank Adluri,a Zheliang Yuan,ab Josiah Newton,ad Philippe Prevost,a Matthew B. Nodwell,a Chadron M. Friesen,ad Paul Schaffer,b Rainer E. Martinc and Robert Britton*ad

Functionalization of heterocyclic scaffolds with mono- or difluoroalkyl groups provides unique opportunities to modulate drug pK_a, influence potency and membrane permeability, and attenuate metabolism. While advances in the addition of fluoroalkyl radicals to heterocycles have been made, direct C(sp³)–H heterobenzylic fluorination is comparatively unexplored. Here we demonstrate both mono- and difluorination of a range of alkyl heterocycles using a convenient process that relies on transient sulfonylation by the electrophilic fluorinating agent N-fluorobenzenesulfonimide. We also report heterobenzylic trifluoromethylthiolation and 18F-fluorination, providing a suite of reactions for late-stage C(sp³)–H functionalization of drug leads and radiotracer discovery.

Introduction

In recent years considerable effort has been directed towards the development of new methods to selectively fluorinate C(sp²)–H or C(sp³)–H bonds in structurally complex molecules.¹ These efforts have been stimulated by the profound effect that fluorination can have on biological activity² and strategic advantages manifest by late-stage C–H functionalization in medicinal and agrochemistry.³ For example, fluorination can significantly impact potency, selectivity, lipophilicity and membrane permeability of drug leads,⁴b and modulate the pK_a of proximal heterocycles (e.g., 1,⁴b 2⁵ and 3,⁶ Fig. 1). The characteristically strong C–F bond is also routinely exploited in medicinal chemistry as a replacement for C–H bonds and, in particular, a means to block oxidative metabolism (e.g., 3).² Furthermore, fluorinated alkyl groups can serve as bioisosteres for more polar or less stable functionalities, and the replacement of a hydroxyl group with a fluorine atom is a common tactic.² Likewise, the CF₂H group (H-bond donor) is a lipophilic bioisostere for alcohols or thiols and the CF₂R group can serve as a carbonyl or alkoxy group mimic.² Considering that roughly 60% of FDA approved drugs include a nitrogen-containing heterocycle,⁷ the development of synthetic strategies that

![Fig. 1 Heterobenzylic fluorides in drug discovery and strategies for their synthesis.](image)
Results and discussion

Mono- and difluorination of 4-ethylpyridine and 4-alkylquinolines

While examining the scope of the pyridyl fluorination reaction depicted in Fig. 1 (11 → 12), we found that at elevated temperatures (>65 °C) small amounts of the corresponding difluoroalkyl derivatives were formed and could be identified by a characteristic resonances at δ ~ 95 ppm in 19F NMR spectra recorded on crude reaction mixtures. These observations prompted us to investigate the pyridyl difluorination reaction as a complimentary process. As summarized in Table 1, heating a solution of 4-ethylpyridine in MeCN with an excess of NFSI afforded exclusively the monofluorinated adduct 15 at 60 °C (entry 1). Increasing the reaction temperature above 80 °C (in a microwave) provided a complex mixture of products that included the corresponding acetamide derived from displacement of fluoride by solvent (MeCN). However, when the reaction was repeated at 75 °C with a further increase in equivalents of NFSI, a ∼1:1 mixture of the mono- and difluorinated ethylpyridines 15 and 16 were produced in good yield (74%, entry 2) and were readily separable by flash column chromatography. Notably, for difluorination, sequential activation by sulfonylation consumes 2 equivalents of NFSI and a further 2 equivalents are required for fluorination. The additional excess of NFSI is required to offset its slow decomposition over the course of the reaction (48 h). Several alternative solvents were evaluated and a modest increase in yield was realized in EtOAc (entry 3). The fluorination of 4-ethylquinoline (17) was also examined and we were pleased to find that heterobenzyl fluorination of this alkylquinoline provided the monofluoroethyl product 18 in good yield (entry 4). However, despite considerable effort, this substrate proved reluctant to undergo difluorination. Under more forcing conditions (e.g., >90 °C, microwave) decomposition occurred.

Table 1 Mono- and difluorination of ethylpyridine (14) and alkyl quinolines 17 and 20

<table>
<thead>
<tr>
<th>Entry</th>
<th>Hetero aromatic</th>
<th>Solvent (conc. (M))</th>
<th>NFSI (equiv.)</th>
<th>Temp (°C)</th>
<th>Producta (ratio)</th>
<th>% Yieldb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>MeCN (0.1)</td>
<td>3</td>
<td>60</td>
<td>15 : 16 (>20 : 1)</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>MeCN (0.5)</td>
<td>10</td>
<td>75</td>
<td>15 : 16 (1 : 1)</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>EtOAc (0.5)</td>
<td>10</td>
<td>75</td>
<td>15 : 16 (2 : 3)</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>MeCN (0.1)</td>
<td>3</td>
<td>65</td>
<td>18 : 19 (>20 : 1)</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>EtOAc (0.5)</td>
<td>10</td>
<td>75</td>
<td>18 : 19 (10 : 1)</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>MeCN (0.1)</td>
<td>3</td>
<td>65</td>
<td>21 : 22 (1 : 3)</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>MeCN (0.3)</td>
<td>4</td>
<td>75</td>
<td>21 : 22 (1 : 8)</td>
<td>61</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>MeCN (0.5)</td>
<td>5</td>
<td>75</td>
<td>21 : 22 (1 : 10)</td>
<td>74</td>
</tr>
</tbody>
</table>

a Ratio of mono- and difluorinated products determined by analysis of crude 1H and 19F NMR spectra. b Combined isolated yield of mono- and difluorinated products. 1.1 equiv. of Li2CO3. d 5 equiv. of Li2CO3.
and after 36 h at 75 °C with a large excess of NFSI only ~7% of the difluoroethyl quinoline 19 was produced (entry 5). Considering the importance of both the mono- and difluoromethyl groups as bioisosteres,24 we also investigated the fluorination of 4-methyl quinoline (20) and were surprised to find that difluorination predominated even at low conversion, suggesting that here the second fluorination event is a more facile process (entry 6). Increasing the equivalents of NFSI and reaction temperature (entry 7) as well as concentration (entry 8) ultimately provided the difluoromethyl quinoline 22 in excellent yield while further increases in reaction temperature, time or equivalents of NFSI failed to promote trifluorination on this or any other substrate. In both the mono- and difluorination of alkylquinolines 17 and 20, phenylsulfonyl fluoride was observed as a by-product, suggesting that these reactions rely on activation of quinoline through transient sulfenylation by NFSI.25 It is notable that this approach to heterobenzylic fluorination is complimentary to the Minisci-like radical reactions described by Baran, which favour trifluoromethylation at C7 or difluoromethylation at C2 of quinolines.12

Scope of heterobenzylic mono- and difluorination

Encouraged by the susceptibility of 4-alkylquinolines 17 and 20 to undergo mono- or difluorination, we explored the scope of these reactions with a broader range of heterocycles including pyridines, isoquinolines, pyrimidines, quinazolines and purines. As summarized in Fig. 2, by simply modifying the equivalents of reagent and temperature, in several cases mono- or difluorination could be effected selectively. For example, both mono- and difluoroalkyl pyridines, quinazolines and purines could be produced in good yield following this straightforward procedure (e.g., 23/42, 30/44, 31/43 and 32/45). As noted above, alkylquinolines were reluctant to difluorinate but were monofluorinated in excellent yield providing 24 and 25. Conversely, a series of methylquinolines were transformed directly into the corresponding difluoromethylquinolines 33–39 in good yield. In addition to the obvious compatibility with azaheterocycles, substituted aromatics (e.g., 36–41), esters (e.g., 25) and amides (e.g., 24) were well tolerated. It is notable that both 2,4-dimethylquinoline and 2,4,6-trimethylpyridine failed to undergo fluorination (<5% yield) using our standard reaction conditions. Here, we postulate that steric hindrance from the adjacent alkyl group(s) impedes sulfenylation of the heterocycle by NFSI and thus prevents fluorination. In several cases, complete separation of mono- and difluorinated products by flash column chromatography proved challenging. Thus, while purified product could be isolated this way, yields for these reactions were determined by analysis of NMR spectroscopic data using an internal standard.29

Sulfonyl transfer promotes heterobenzylic trifluoromethylthiolation

Considering that sulfonyl transfer from NFSI is a key feature of this process (e.g., 48, Fig. 3),21 we examined a small

Fig. 2 Mono- and difluorination of pyridines, quinolines, isoquinolines, quinazolines, pyrimidines and purines. Yield determined by analysis of NMR spectroscopic data using an internal standard; Reaction at 125 °C in a microwave reactor; accompanied by 25% of the difluorinated quinazoline 44; reaction at 25 °C; accompanied by ~40% of a monofluorinated product; 10 equiv. of NFSI in EtOAc.

Fig. 3 Trifluoromethylthiolation and chlorination of purine and quinazolines. Conditions: NISCF3Si (2.4 equiv.), Li2CO3 (1.1 equiv.), MeCN, 75 °C, 48 h; NISCF3Si (2.4 equiv.), Li2CO3 (1.1 equiv.), MeCN, 125 °C (microwave), 50 min; yield determined by analysis of NMR spectroscopic data using an internal standard; NCl3Si (1.2 equiv.), Li2CO3 (1.1 equiv.), MeCN, 75 °C, 48 h.
collection of dibenzenesulfonamide derivatives to explore their potential in the direct heterobenzylic functionalization of alkylquinazolines and purines. As depicted in Fig. 3, we found that both trifluoromethylthiolation (e.g., 49–51 and 53–55) and chlorination (e.g., 52) were facile processes. For example, 2- and 4-alkylquinazolines and 6-ethylpurine underwent heterobenzylic trifluoromethylthiolation using N-trifluoromethylthiodibenzenesulfonimide (N(SCF₃)SJ). Surprisingly, we observed no competing heteroaryl trifluoromethylthiolation²³ of quinazolines and purines, and attempts to effect the equivalent transformation using trifluoromethylthiophilalimide, an electrophilic trifluoromethylthiolation reagent,²³ delivered none of the expected trifluoromethylthiolated products. This later result provides support for a mechanism involving activation by transient sulfonfonylation with dibenzenesulfonamide derivatives. Again, 2,4-disubstituted quinazolines failed to provide any trisulfonylation with dibenzenesulfonamide derivatives. Again, support for a mechanism involving activation by transient sulfonfonylation with dibenzenesulfonamide derivatives. Again, support for a mechanism involving activation by transient sulfonfonylation with dibenzenesulfonamide derivatives. Again, support for a mechanism involving activation by transient sulfonfonylation with dibenzenesulfonamide derivatives. Again, support for a mechanism involving activation by transient sulfonfonylation with dibenzenesulfonamide derivatives. Again, support for a mechanism involving activation by transient sulfonfonylation with dibenzenesulfonamide derivatives.

Conclusions

In summary, we demonstrate that transient sulfonfonylation of a range of nitrogen-containing heterocycles enables direct heterobenzylic mono or difluorination using the bench stable electrophilic fluorinating agent NFSI or radiofluorination with [¹⁸F]NFSI. Taking advantage of this heterocycle activation process, both trifluoromethylthiolation and chlorination could also be achieved using the corresponding dibenzenesulfonamide derivatives. This collection of late-stage transformations should enable the rapid tuning of pKa and lipophilicity of heterocycle-containing drug leads and provides a complimentary means to incorporate pharmaceutically relevant bioisosteres (e.g., –CH₂⁻F, –CF₂⁻R and –CH(SF₃)R) as well as a method to rapidly generate [¹⁸F]-labelled imaging agents for PET imaging.

Experimental

General procedure for heterobenzylic monofluorination

To a solution of substrate in CH₃CN (0.1–0.25 M substrate) was added N-fluorobenzenesulfonylimide (NFSI) (3.0 equiv.) and Li₂CO₃ (1.1 equiv.). The resulting reaction mixture was then heated to 65 °C and maintained at this temperature for 18–24 h. The reaction mixture was cooled, diluted with CH₂Cl₂ and...
washed with saturated NaHCO₃ solution. The organic layer was dried (MgSO₄), concentrated and the crude reaction product was purified by column chromatography on silica gel.

General procedure for heterobenzylic difluorination

To a solution of substrate in CH₃CN (0.25–0.50 M substrate) was added N-fluorobenzensulfonylimide (NFSI) (5.0 equiv.) and Li₂CO₃ (1.1 equiv.). The resulting reaction mixture was then either heated to 75 °C and maintained at this temperature for 48 h or heated to 125 °C and maintained at this temperature for 1 h in a microwave reactor. The reaction mixture was cooled, diluted with CH₂Cl₂ and washed with saturated NaHCO₃ solution. The organic layer was dried (MgSO₄), concentrated and the crude reaction product was purified by column chromatography on silica gel.

General procedure for heterobenzylic trifluoromethylthiolation

To a solution of substrate in CH₃CN (0.25–0.50 M substrate) was added N-trifluoromethylthiobenzensulfonylimide (2.4 equiv.) and Li₂CO₃ (1.1 equiv.). The resulting reaction mixture was then either heated to 75 °C and maintained at this temperature for 48 h or heated to 125 °C and maintained at this temperature for 1 h in a microwave reactor. The reaction mixture was cooled, diluted with CH₂Cl₂ and washed with saturated NaHCO₃ solution. The organic layer was dried (MgSO₄), concentrated and the crude reaction product was purified by column chromatography on silica gel.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by an NSERC Discovery Grants to R. B., a MSFHR Career Investigator Award to R. B., a Hoffmann-La Roche Fellowship (RPF) for M. B. N. an NSERC PGS and a SFU MYF for M. M. We would like to thank Pascal Hasenfratz, Laura Martin, Simona Capomolla, Maria Giraldo, Silvio Binkert and Christelle Jablonksi for the preparation of starting materials, Catherine Karrer for LYSAs, Aynur Ekciler for log D and Bjorn Wagner for pKₐ measurements.

References

