Enhancement of CO2 binding and mechanical properties upon diamine functionalization of M2(dobpdc) metal–organic frameworks†

Jung-Hoon Lee, Rebecca L. Siegelman, Lorenzo Maserati, Tonatiuh Rangel, Brett A. Helms, Jeffrey R. Long and Jeffrey B. Neaton*abf

The family of diamine-appended metal–organic frameworks exemplified by compounds of the type mmen–M2(dobpdc) (mmen = N,N′-dimethylethylenediamine; M = Mg, Mn, Fe, Co, Zn; dobpdc4− = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) are adsorbents with significant potential for carbon capture, due to their high working capacities and strong selectivity for CO2 that stem from a cooperative adsorption mechanism. Herein, we use first-principles density functional theory (DFT) calculations to quantitatively investigate the role of mmen ligands in dictating the framework properties. Our van der Waals-corrected DFT calculations indicate that electrostatic interactions between ammonium carbamate units significantly enhance the CO2 binding strength relative to the unfunctionalized frameworks. Additionally, our computed energetics show that mmen–M2(dobpdc) materials can selectively adsorb CO2 under humid conditions, in agreement with experimental observations. The calculations further predict an increase of 112% and 124% in the orientationally-averaged Young’s modulus E and shear modulus G, respectively, for mmen–Zn2(dobpdc) compared to Zn2(dobpdc), revealing a dramatic enhancement of mechanical properties associated with diamine functionalization. Taken together, our calculations demonstrate how functionalization with mmen ligands can enhance framework gas adsorption and mechanical properties.

1 Introduction

Metal–organic frameworks (MOFs) consist of metal clusters or ions that are joined by organic linkers to form porous network solids with large surface areas, high crystallinity, and, in some cases, redox-active open metal sites.1–10 MOFs are promising for gas storage and separation applications, particularly in the area of carbon capture,11–19 and accordingly have received significant recent attention in the literature. Carbon dioxide is mainly produced from the combustion of fossil fuels, and in 2011 alone such CO2 emissions exceeded 32 Gt.20 It is well-known that CO2 produced by combustion is a major driver of global warming,21 contributing to rising sea levels and ocean climate change. Therefore, reducing CO2 emissions is among the most urgent problems facing humanity today.

Among numerous MOFs currently under investigation for CO2 capture, frameworks of the type M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn; dobdc4− = 2,5-dioxidobenzene-1,4-dicarboxylate) have been extensively studied due to their high density of open metal sites, which have been shown to engender high selectivity in the separation of various gas molecules.11,19–28 Notably, this value can be tuned by metal substitution,28 although the M2(dobdc) family exhibits poor CO2 selectivity in the presence of H2O.29–34 Recently, Mason et al.32 reported equilibrium adsorption isotherms for mixtures of CO2, N2, and H2O, the three most prevalent components of flue gas,35 and showed that the CO2 capture performance of M2(dobdc) (M = Mg, Ni) is significantly diminished under humid conditions, due to preferential binding of H2O over CO2 at the open metal sites. For Ni2(dobdc), CO2 uptake is almost zero in the presence of water.

Although the M2(dobdc) materials do not selectively adsorb CO2 under humid conditions, functionalization of open metal sites in the expanded framework M2(dobpdc) (dobpdc4− = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) with N,N′-dimethylethlenediamine (mmen) has been shown to enhance both the CO2...
affinity and selectivity under humid conditions. In mmen-M$_2$(dobpdc), diamine molecules are grafted onto the open metal sites and dangle into the pore interiors. Notably, the measured heat of CO$_2$ adsorption in mmen-Mg$_2$(dobpdc) is as high as 71 kJ mol$^{-1}$, almost 30 kJ mol$^{-1}$ greater than in Mg(dobpdc), and mmen-Mg$_2$(dobpdc) is also stable under humid conditions. The impressive CO$_2$ capture performance of mmen-Mg$_2$(dobpdc) and other mmen-M$_2$(dobpdc) frameworks stems from a unique cooperative CO$_2$ capture mechanism, which has been shown to persist even in the presence of H$_2$O, based on infrared spectroscopy measurements. Interestingly, multicomponent adsorption measurements additionally show that the amount of adsorbed CO$_2$ from a mixture of CO$_2$, N$_2$, and H$_2$O in mmen-Mg$_2$(dobpdc) is slightly higher than that from pure CO$_2$ in mmen-Mg$_2$(dobpdc).

In view of its exceptional CO$_2$ capture performance, we seek to understand quantitatively the properties of mmen-M$_2$(dobpdc) using accurate first-principle density functional theory (DFT) calculations. DFT is the most promising method for studying the adsorption (and related) properties of MOFs at the molecular level, owing to its efficiency and accuracy relative to other quantum mechanical methods. In previous theoretical studies, van der Waals (vdW)-corrected DFT in particular has been shown to accurately predict the binding energies and mechanisms of small gas molecules in MOFs, including MOFs having localized metal 3d electrons and non-zero spin moments. Other properties, such as mechanical strength, can be predicted with similar accuracy. For mmen-M$_2$(dobpdc), the CO$_2$ adsorption mechanism and CO$_2$ interactions with open metal sites in the framework of carbamate have also been successfully studied with DFT methods.

Prior DFT-based studies notwithstanding, a complete and detailed understanding of the CO$_2$ adsorption energetics in mmen-M$_2$(dobpdc) is still lacking. In particular, the contributions of vdW dispersion interactions to adsorption enthalpies and related properties of mmen-M$_2$(dobpdc) have yet to be quantified, and thus a predictive approach for adsorption energies in these complex systems does not yet exist. Moreover, the strength of electrostatic interactions between the ammonium carbamate units formed upon CO$_2$ adsorption and the effect of such interactions on key macroscopic observables, such as mechanical properties, have yet to be quantified and understood. Here, we use vdW-corrected DFT calculations to demonstrate a quantitative approach to predict binding and formation energies in this important class of MOFs. We further quantify the significant electrostatic interactions between ammonium carbamate units; compute and understand the effect of adsorption on mechanical properties; and determine the binding site of H$_2$O on the ammonium carbamate chains and evaluate the influence of humidity on the overall CO$_2$ performance.

2 Methodology

2.1 Computational details

In order to elucidate the role of mmen ligands in the CO$_2$ capture properties of mmen-M$_2$(dobpdc), we perform first-principles DFT calculations within the generalized gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE). We use a plane-wave basis and projector augmented-wave (PAW) pseudopotentials with the Vienna ab initio Simulation Package (VASP) code. To include the effect of the vdW dispersive interactions on binding energies and mechanical properties, we perform structural relaxations with vdW dispersion-corrected functionals (vdW-DF2) as implemented in VASP. The initial structures for the MOFs we consider here are obtained from previous studies. For all calculations, we use (i) a k-point sampling of the Brillouin zone and (ii) a 600 eV plane-wave cutoff energy. We explicitly treat two valence electrons for Mg (3s2), seven for Mn (3d54s2), eight for Zn (3d104s2), six for O (2s22p4), five for N (2s22p3), four for C (2s22p2), and one for H (1s1). All structural relaxations are performed with a Gaussian smearing of 0.05 eV and with the structure constrained to the space group P3$_2$1. The computed CO$_2$ binding energies are within 0.4 kJ mol$^{-1}$ when we relax these symmetry constraints. The ions are relaxed until the Hellmann–Feynman forces are less than 0.02 eV Å$^{-1}$. The convergence threshold for self-consistency is 10$^{-5}$ eV. For phonon frequency calculations, we use a more rigorous criterion (10$^{-6}$ eV) (see Table S4†). Hubbard U values of 5.5 eV, 6.5 eV, and 5.3 eV for Mn, Fe, and Co 3d states are chosen following previous studies for M$_2$(dobdc) (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu). Based on the ground state magnetic structure of Fe$_2$(dobdc), we use ferromagnetic ordering along the metal oxide chain direction and antiferromagnetic ordering between the chains for mmen-M$_2$(dobpdc) (M = Mn, Fe, Co). Our computed electronic structure and measured adsorption spectra are given in the ESL†.

To compute CO$_2$ binding energies, we optimize mmen-M$_2$(dobpdc) prior to CO$_2$ adsorption ($E_{\text{mmen-MOF}}$), interacting with CO$_2$ in the gas phase (E_{CO_2}) within a 15 Å × 15 Å × 15 Å cubic supercell, and mmen-M$_2$(dobpdc) with adsorbed CO$_2$ molecules ($E_{\text{CO}_2-\text{mmen-MOF}}$) using vdW-corrected DFT. The binding energies (E_B) are obtained via the difference

$$-E_B = E_{\text{CO}_2-\text{mmen-MOF}} - (E_{\text{mmen-MOF}} + E_{\text{CO}_2}).$$

We also consider zero-point energy (ZPE) and thermal energy (TE) corrections to compute compared binding energies with experimentally determined CO$_2$ heats of adsorption, following a previous DFT study. We calculate vibrational frequencies of bound CO$_2$, H$_2$O, N$_2$, mmen, and CO$_2$–mmen in the framework; we also compute vibrational frequencies of free CO$_2$, H$_2$O, N$_2$, mmen, and CO$_2$–mmen molecules within a 15 Å × 15 Å × 15 Å cubic supercell. In the former case, we assume that changes in the frequency of framework phonon modes are small relative to those of molecular modes. All ZPE and TE corrections are computed at 298 K. All computed Kohn–Sham energies, vibrational frequencies, ZPE, and TE corrections are given in Tables S2, S3, S5, and S6 in the ESL†.

To calculate mechanical properties, we generate the stress tensor with (i) the k-point, (ii) a 1000 eV plane-wave cutoff energy, and (iii) a 0.01 eV Å$^{-1}$ force criterion. The linear elastic properties are then obtained using Hooke’s law, which describes the relationship between stress, σ, and strain, ε:
where the C_{ij} are components of the single crystal elastic stiffness tensor. Here, we adopt the standard Voigt notation, with C_{ij} calculated as follows. First, we fully relax the unit cell, optimizing all internal coordinates; we then apply a series of strains to this optimized hexagonal unit cell. Two different strain types are applied: ε_1 and ε_{34} (see ESI†). For each strain, five different amplitudes of deformation are used: 0%, $\pm 0.5\%$, and $\pm 1\%$. Second, we relax atoms while fixing the deformed lattice parameters. By doing so, we obtain stress tensors σ_{ij} for all applied strains ε_{ij}. Third, C_{ij} are obtained from linear least squares fitting using the stress-strain relationship (the computed C_{ij} are given in the ESI†). Then, we calculate the single crystal elastic compliant constant S_{ij} as:

$$S_{ij} = \frac{C_{ij}}{C_0}^{-1}. \quad (3)$$

After obtaining C_{ij} and S_{ij}, the orientationally-averaged elastic moduli including Young’s modulus E, bulk modulus B, shear modulus G, and Poisson’s ratio ν can be simply estimated using the Voigt–Reuss–Hill (VRH) average. The detailed formulae used for all reported quantities in this work are given in the ESI†

3 Results and discussion

3.1 CO$_2$ binding energies

Fig. 1a depicts the optimized crystal structure of mmen–Zn$_2$-dobpdc, which consists of a periodic arrangement of ZnO$_5$ square pyramidal units, dobpdce$^{2-}$ linkers, and mmen ligands crystallizing in the $P\overline{3}21$ space group. A right panel of Fig. 1a shows that dangling amines interact with neighbors in the ab-plane via dispersive interactions between methyl groups. These interactions are reflected in the experimentally-determined crystal structure of mmen–Zn$_2$(dobpdc). Our calculated lattice parameters for mmen–M$_2$(dobpdc) ($M = Mg, Mn, Fe, Co, Zn$) are given in Table 1. We do not include results for mmen–Ni$_2$(dobpdc) because the CO$_2$ capture mechanism of this framework is still under investigation. We note that our computed lattice parameters are not in perfect agreement with

![Fig. 1](image-url)

(a) The optimized crystal structure of mmen–Zn$_2$(dobpdc). (b) Well-ordered ammonium carbamate chain formed upon CO$_2$ insertion. (c) Depictions of empty, isolated, and chain geometries along the channel direction (c-axis in the $P\overline{3}21$ setting). (d) Potential curves of empty, isolated, and chain geometries compared to the experimental Zn–O$_{CO_2}$ distance indicated by the dotted line.
the experimental values, as expected. As the reparameterized PW86 exchange functional in the vdW-DF2 exchange−correlation functional overestimates repulsive interactions, equilibrium unit cell volumes, and bond distances, the computed lattice parameters and unit cell volumes of M₂(dobpdc), CO₂−mmen−M₂(dobpdc), and CO₂−mmen−Zn₂(dobpdc) are generally larger than the experimental values as shown in Table 1. In addition, our calculations with periodic boundary conditions do not capture any disorder associated with the mmen and CO₂ units shown in Fig. S3.† Any degree of disorder in these mmen and CO₂−mmen units can alter the average structural properties including the lattice parameters, unit cell volumes, and bond lengths. As example of this, our DFT calculations show that a diatomic framework (see Tables 2 and 4).

To understand this increase, we performed calculations using three geometries as presented in Fig. 1c. We use the term “Empty” to indicate unappended M₂(dobpdc) and “Chain” to indicate the structure with well-ordered ammonium carbamate chains along the channel direction (c-axis in the space group P₃₂1). The term “Isolated” refers to an alternative scenario in which CO₂ gas molecules cooperatively and reversibly insert into metal−mmen bonds followed by formation of a well-ordered ammonium carbamate chain structure, as shown in Fig. 1b. Table 2 compares the computed CO₂ binding enthalpies (Hₐ) from this study with those obtained from experiment, revealing that our vdW-DF2 calculations can accurately predict CO₂ binding enthalpies within ~5 kJ mol⁻¹. According to our calculations, in all cases MOFs with mmen exhibit an ~30 kJ mol⁻¹ enhancement in Hₐ compared to the unfunctionalized frameworks (see Tables 2 and 4).

Table 1: Computed lattice parameters, M−N, and M−O distances for M₂(dobpdc), mmen−M₂(dobpdc), and CO₂−mmen−M₂(dobpdc) (M = Mg, Mn, Fe, Co, Zn) compared to experimental values (unit: Å). All structures are characterized in the space group P₃₂1.

<table>
<thead>
<tr>
<th>M</th>
<th>Empty mmen-M</th>
<th>CO₂−mmen-M</th>
<th>Experiment Empty mmen-M</th>
<th>CO₂−mmen-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>22.041</td>
<td>21.074</td>
<td>21.498</td>
<td>21.446</td>
</tr>
<tr>
<td>c</td>
<td>6.939</td>
<td>6.672</td>
<td>7.005</td>
<td>6.824</td>
</tr>
<tr>
<td>Mg−N</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Mg−O</td>
<td>—</td>
<td>—</td>
<td>2.072</td>
<td>—</td>
</tr>
<tr>
<td>Mn</td>
<td>22.253</td>
<td>22.650</td>
<td>21.788</td>
<td>21.629</td>
</tr>
<tr>
<td>c</td>
<td>7.162</td>
<td>6.536</td>
<td>7.072</td>
<td>6.958</td>
</tr>
<tr>
<td>Mn−N</td>
<td>—</td>
<td>2.432</td>
<td>—</td>
<td>2.289</td>
</tr>
<tr>
<td>Mn−O</td>
<td>—</td>
<td>—</td>
<td>2.194</td>
<td>—</td>
</tr>
<tr>
<td>c</td>
<td>6.963</td>
<td>6.622</td>
<td>7.013</td>
<td>6.814</td>
</tr>
<tr>
<td>Fe−N</td>
<td>—</td>
<td>—</td>
<td>2.408</td>
<td>—</td>
</tr>
<tr>
<td>Fe−O</td>
<td>—</td>
<td>—</td>
<td>2.195</td>
<td>—</td>
</tr>
<tr>
<td>c</td>
<td>6.920</td>
<td>6.540</td>
<td>7.005</td>
<td>6.798</td>
</tr>
<tr>
<td>Co−N</td>
<td>—</td>
<td>2.324</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Co−O</td>
<td>—</td>
<td>—</td>
<td>2.147</td>
<td>—</td>
</tr>
<tr>
<td>c</td>
<td>6.973</td>
<td>7.251</td>
<td>6.833</td>
<td>6.775</td>
</tr>
<tr>
<td>Zn−N</td>
<td>—</td>
<td>2.212</td>
<td>—</td>
<td>2.155</td>
</tr>
<tr>
<td>Zn−O</td>
<td>—</td>
<td>—</td>
<td>2.127</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 2: A comparison of computed CO₂ binding energies (Eₐ) and enthalpies (Hₐ) (in kJ mol⁻¹) in mmen−M₂(dobpdc) (M = Mg, Mn, Fe, Co, Zn) with the experimental values at a CO₂ loading of 2 mmol g⁻¹. Zero-point energy (ZPE) and thermal energy (TE) corrections of ammonium carbamate and mmen are considered. All ZPE and TE values are computed at 298 K.

<table>
<thead>
<tr>
<th>M</th>
<th>This work</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eₐ</td>
<td>ZPE</td>
</tr>
<tr>
<td>Mg</td>
<td>74.7</td>
<td>−2.8</td>
</tr>
<tr>
<td>Mn</td>
<td>68.9</td>
<td>−2.2</td>
</tr>
<tr>
<td>Fe</td>
<td>56.2</td>
<td>−1.9</td>
</tr>
<tr>
<td>Co</td>
<td>52.4</td>
<td>−1.3</td>
</tr>
<tr>
<td>Zn</td>
<td>62.4</td>
<td>−1.5</td>
</tr>
</tbody>
</table>
which there is no chain formation, and the calculations consider an ammonium carbamate unit bound at just one of the metal sites in the unit cell, with the other metal sites empty.

We then compute the potential interatomic distance curves for the three geometries, varying the separation between CO$_2$ and its binding site, by adopting a $a \times b \times 2c$ supercell for the isolated and chain geometries. Fig. 1d shows the calculated energy as a function of Zn–O$_{CO_2}$ distance, relative to the experimental Zn–O$_{CO_2}$ distance of 2.087(4) Å for the chain geometry. Similar curves are given for M = Mg, Mn, Fe, Co in Fig. S7 in the ESI.† To calculate these curves, we systematically displace a CO$_2$ molecule and ammonium carbamate along the direction of the ground state Zn–O bond to CO$_2$.

In our DFT calculations, the vdW-DF2 functional slightly overestimates (by ~2%) the Zn–O distance (2.127 Å) compared with experiment (2.087(4) Å), as reported in previous DFT studies. In Fig. 1d, the isolated and chain geometries have much deeper binding curves with higher curvature when compared to the empty geometry, reflecting the fact that the binding strength of ammonium carbamate to the MOF interior is much stronger than that of CO$_2$ alone. The binding enthalpy of CO$_2$ in the empty geometry is 29.3 kJ mol$^{-1}$, which is comparable to the values of the isolated and chain geometries at 259.0 kJ mol$^{-1}$ for Zn$_2$(dobdc) (30.2 kJ mol$^{-1}$ and 26.8 ± 0.1 kJ mol$^{-1}$, respectively). On the other hand, the binding enthalpy of an ammonium carbamate (H_{iso}) in the isolated geometry is 259.0 kJ mol$^{-1}$, approximately nine times that of the CO$_2$ binding enthalpy. More interestingly, the ammonium carbamate binding enthalpy (H_{chain}) in the chain geometry is 562.1 kJ mol$^{-1}$, which is two times larger than that of the isolated geometry. The other MOFs also show similar behavior (see Fig. S7, ESI†). Thus the magnitude of the electrostatic interaction between two ammonium carbamate units in the chain geometry is equal to 151.5 kJ mol$^{-1}$ ([$H_{\text{chain}} - H_{\text{iso}}$]/2) (because ammonium carbamate unit interacts with two neighboring CO$_2$–mmen sites along the pore axis, we divide by two). This large interaction energy is dominated by the ion pairing and hydrogen bonding interactions of the ammonium group to the unbound oxygen atom of the neighboring carbamate. In magnitude, these interactions are comparable to the heat of formation for ammonium carbamate (~152 kJ mol$^{-1}$). The results of these calculations show that cooperative CO$_2$ insertion is a very favorable spontaneous process, that the carbamate chain geometry is quite stable, and that electrostatic interactions play a key role in the stability of CO$_2$–mmen–M$_2$(dobpdc) (chain geometry).

The apparent enhancement of CO$_2$ binding strength by the presence of mmen can be qualitatively understood by considering how charges rearrange at the metal sites upon CO$_2$ binding. Fig. 2 shows the charge density difference curves for CO$_2$–mmen binding sites in the isolated and chain geometries. The Δρ value calculated for the empty geometry is negligible compared to the values of the isolated and chain geometries at the same isosurface level (see Fig. S8, ESI†). In the isolated geometry, two sites are visible with prominent charge redistribution. One is the Zn–O (carbamate) bond formed upon CO$_2$ insertion into the Zn–mmen bond, and the other is N–H···O, which corresponds to hydrogen bonding between the ammonium group of ammonium carbamate and the non-bridging carboxylate oxygen atom on the dobpdc$^{4-}$ linker (Fig. 2a).

More interestingly, in the case of the chain geometry there are two additional sites in which ammonium carbamate units interact with their neighbors along the channel direction, as shown in the inset of Fig. 2b. These additional attractive interactions deepen the potential curve compared to the isolated structure (Fig. 1d). Our calculations therefore suggest that strong electrostatic interactions between ammonium carbamate units primarily drive the cooperative CO$_2$ insertion in mmen–M$_2$(dobpdc) and significantly enhance the CO$_2$ binding strength over non-amine-functionalized MOFs.

3.2 Mechanical properties

Having quantified the CO$_2$ binding enhancement afforded by mmen, we now address the mechanical properties of empty and CO$_2$-loaded MOFs, which can be calculated via the elastic modulus C and the curvature of the binding curves \(\left(\frac{\partial^2 E_{\text{tot}}}{\partial r^2} \right) \) in the linear elastic regime, where E_{tot} is the total energy and r is reaction coordinate. From the binding energy curves shown in Fig. 1d and S7,† we expect that elastic moduli of mmen–M$_2$(dobpdc) and CO$_2$–mmen–M$_2$(dobpdc) will be much larger than that of M$_2$(dobpdc), and that CO$_2$ adsorption and functionalization can strongly and reversibly alter these quantities. This is because the elastic modulus C is directly proportional to the curvature of the binding curves \(C \sim \frac{\partial^2 E_{\text{tot}}}{\partial r^2} \). Our calculations of the Young’s modulus E, bulk modulus B, shear...
modulus \(G \), and Poisson's ratio \(\nu \) for \(M_2(\text{dobpdc}) \), mmen–\(M_2 \)-\((\text{dobpdc}) \), and \(\text{CO}_2 \)--mmen–\(M_2 \)-\((\text{dobpdc}) \) are summarized in Table 3. In Fig. 3, we illustrate three-dimensional contours of directionally-dependent values of \(E \) for all the frameworks considered. In general, mmen and ammonium carbonate units greatly enhance \(E \) along all directions. The most prominent enhancement occurs along the channel direction, along which the ammonium carbamate chains run.

We now examine more quantitatively the effect of mmen and ammonium carbonate units on \(E \), \(B \), \(G \), and \(\nu \). The orientationally-averaged \(E \), \(B \), \(G \), and \(\nu \) values obtained from eqn (1)-(8) in the ESI† are summarized in Table 3. Averaged over all directions, these values can be considered as elastic moduli of polycrystalline samples with randomly-oriented grains of equal volume fraction. As shown in Fig. 4, \(E \), \(B \), and \(G \) are generally larger for mmen–\(M_2 \)-\((\text{dobpdc}) \) and \(\text{CO}_2 \)--mmen–\(M_2 \)-\((\text{dobpdc}) \) than for \(M_2 \)-\((\text{dobpdc}) \), an enhancement that can be attributed to mmen and ammonium carbonate units, and this is most pronounced for \(E \) and \(G \). For example, the magnitude of \(E \) for mmen–\(\text{Zn}_2 \)-\((\text{dobpdc}) \) increases by 112\% compared to that of \(\text{Zn}_2 \)-\((\text{dobpdc}) \). More remarkably, the magnitude of \(E \) for \(\text{CO}_2 \)--mmen–\(M_2 \)-\((\text{dobpdc}) \) increases by 141\% compared to that of \(M_2 \)-\((\text{dobpdc}) \) (see Table 3). All \(E \) values for mmen–\(M_2 \)-\((\text{dobpdc}) \) and \(\text{CO}_2 \)--mmen–\(M_2 \)-\((\text{dobpdc}) \) (10.7–16.7 GPa) are higher than the experimental values of conventional frameworks such as MOF-5 (2–8 GPa), HKUST-1 (6 GPa), and ZIFs (2–9 GPa), and lower than that of the hybrid MOF MOPF-1 (23–27 GPa). For \(G \), the enhancement is even larger than that of \(E \), for instance the \(G \) values for mmen–\(\text{Zn}_2 \)-\((\text{dobpdc}) \) and \(\text{CO}_2 \)--mmen–\(\text{Mn}_2 \)-\((\text{dobpdc}) \) increase by 124\% and 159\% compared to \(\text{Zn}_2 \)-\((\text{dobpdc}) \) and \(\text{Mn}_2 \)-\((\text{dobpdc}) \). All \(G \) values (4.0–6.4 GPa) are comparable to those of \(\text{Zr}_2 \)-\(\text{UO}_2 \)-\((6.59 \text{ GPa}) \) and \(\text{Zr}_2 \)-\(\text{UO}_2 \)-\((4.18 \text{ GPa}) \).

Our calculations thus show that mmen and \(\text{CO}_2 \) binding play a key role in the enhancement of the mechanical properties of the \(M_2 \)-\((\text{dobpdc}) \) framework materials. Moreover, these results demonstrate that the mechanical properties of MOFs can be tuned by functionalization with ligands such as mmen.

Table 3

<table>
<thead>
<tr>
<th></th>
<th>(E)</th>
<th>(B)</th>
<th>(G)</th>
<th>(\nu)</th>
<th>Enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Mg})</td>
<td>8.97</td>
<td>10.05</td>
<td>3.32</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>mmen–(\text{Mg})</td>
<td>14.10</td>
<td>10.49</td>
<td>5.53</td>
<td>0.28</td>
<td>57% 67%</td>
</tr>
<tr>
<td>(\text{CO}_2)--mmen–(\text{Mg})</td>
<td>16.66</td>
<td>14.52</td>
<td>6.37</td>
<td>0.31</td>
<td>86% 92%</td>
</tr>
<tr>
<td>(\text{Mn})</td>
<td>6.42</td>
<td>11.98</td>
<td>2.28</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>mmen–(\text{Mn})</td>
<td>10.72</td>
<td>10.36</td>
<td>4.04</td>
<td>0.33</td>
<td>67% 77%</td>
</tr>
<tr>
<td>(\text{CO}_2)--mmen–(\text{Mn})</td>
<td>15.48</td>
<td>13.66</td>
<td>5.90</td>
<td>0.31</td>
<td>141% 159%</td>
</tr>
<tr>
<td>(\text{Fe})</td>
<td>8.63</td>
<td>9.69</td>
<td>3.19</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>mmen–(\text{Fe})</td>
<td>13.56</td>
<td>9.55</td>
<td>5.37</td>
<td>0.26</td>
<td>57% 68%</td>
</tr>
<tr>
<td>(\text{CO}_2)--mmen–(\text{Fe})</td>
<td>13.64</td>
<td>14.22</td>
<td>5.09</td>
<td>0.34</td>
<td>58% 59%</td>
</tr>
<tr>
<td>(\text{Co})</td>
<td>6.95</td>
<td>8.51</td>
<td>2.55</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>mmen–(\text{Co})</td>
<td>10.66</td>
<td>8.24</td>
<td>4.15</td>
<td>0.28</td>
<td>53% 63%</td>
</tr>
<tr>
<td>(\text{CO}_2)--mmen–(\text{Co})</td>
<td>15.05</td>
<td>13.51</td>
<td>5.73</td>
<td>0.31</td>
<td>117% 125%</td>
</tr>
<tr>
<td>(\text{Zn})</td>
<td>6.89</td>
<td>10.28</td>
<td>2.48</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>mmen–(\text{Zn})</td>
<td>14.58</td>
<td>13.03</td>
<td>5.55</td>
<td>0.31</td>
<td>112% 124%</td>
</tr>
<tr>
<td>(\text{CO}_2)--mmen–(\text{Zn})</td>
<td>14.02</td>
<td>15.28</td>
<td>5.21</td>
<td>0.35</td>
<td>103% 110%</td>
</tr>
</tbody>
</table>

Importantly, this bears direct relevance to \(\text{CO}_2 \) capture applications, since carbon capture materials must be mechanically robust and should not exhibit mechanical fatigue during \(\text{CO}_2 \) uptake and release cycling. Relatedly, it has been shown that functionalization with ligands such as mmen can significantly reduce plasticization and enhance selectivity in membrane-type devices.

3.3 \(\text{CO}_2 \) selectivity

In previous multicomponent adsorption measurements incorporating humidity, mmen–\(M_2 \)-\((\text{dobpdc}) \) and mmen–\(\text{Ni}_3 \)-\((\text{dobpdc}) \) maintained high \(\text{CO}_2 \) selectivity, while \(\text{Mg}_4 \)-\((\text{dobdc}) \) and \(\text{Ni}_4 \)-\((\text{dobdc}) \) exhibited poor \(\text{CO}_2 \) capture performance under humid conditions. Mason et al. demonstrated that \(\text{H}_2 \text{O} \) does not alter the cooperative \(\text{CO}_2 \) capture mechanism in mmen–

![Fig. 3 Three-dimensional contour of directionally-dependent Young's modulus \(E \) for (a) \(\text{Mg} \)--MOFs, (b) \(\text{Mn} \)--MOFs, (c) \(\text{Fe} \)--MOFs, (d) \(\text{Co} \)--MOFs, and (e) \(\text{Zn} \)--MOFs. Left, center, and right panels correspond to \(M_2(\text{dobpdc}) \), mmen–\(M_2 \)-\((\text{dobpdc}) \), and \(\text{CO}_2 \)--mmen–\(M_2 \)-\((\text{dobpdc}) \), respectively. The \(z \)-axis or [001] direction is the channel direction.](image-url)
Mg2(dobpdc), showing that instead mmen–Mg2(dobpdc) maintains a significant CO2 capacity under multicomponent equilibrium conditions. However, the structural and energetic influence of H2O on CO2 adsorption in mmen–M2(dobpdc) remains unknown.

To address this question, we computed H_B for CO2, H2O, and N2 in the M2(dobpdc) and mmen–M2(dobpdc) frameworks. Table 4 shows the computed enthalpies of first and second guest molecules (CO2, H2O, and N2) in the frameworks with and without mmen functionalization. In the bare frameworks, water has the highest H_B among all three guest molecules at open metal sites. Furthermore, H2O also has the highest H_B at secondary binding sites when it has occupied the open metal sites.

Fig. 5a shows the most stable computed configuration of Zn2(dobpdc) in the presence of H2O without mmen. Here, the secondary H2O interacts with the first Zn-bound H2O via hydrogen bonding. Previous multicomponent measurements22-27 on the smaller pore MOFs Mg2(dobdc), Co2(dobdc), and Ni2(dobdc) are consistent with this configuration. In ref. 32, in the case of Mg2(dobdc), the amount of CO2 adsorbed was 0.5 mmol g⁻¹, while adsorbed H2O reached over 15 mmol g⁻¹ (1.8 mmol H2O per mmol Mg). Moreover, the amount of CO2 adsorbed in Ni2(dobdc) is almost zero while that of H2O is over 20 mmol g⁻¹ (3.1 mmol H2O per mmol Ni). Therefore, water molecules significantly degrade CO2 selectivity in M2(dobdc) frameworks, and our calculations show that the larger-pore M2(dobpdc) frameworks will exhibit the same behavior (see Table 4).

In contrast, our calculations indicate that CO2 insertion to form an O-bound carbamate for mmen–M2(dobpdc) frameworks is much more favorable than binding H2O at the open metal site of the corresponding bare M2(dobpdc) frameworks. As shown in Table 4, the ammonium carbamate binding enthalpies, H_{chain} including ZPE and TE corrections, are about ten times higher than those for H2O for all M2(dobpdc) frameworks. Thus, the mmen–M2(dobpdc) frameworks are predicted
to maintain their unique CO₂ capture mechanism even under humid conditions. Interestingly, our energetics suggest that H₂O molecules bind near the negatively charged end of the carbamate via hydrogen bonding interactions (Fig. 5b). This configuration also explains the large amount of H₂O adsorbed from the mixture of CO₂, H₂O, and N₂ in CO₂–mmen–Mg2(dobpdc). In previous multicomponent measurements with mmen–Mg2(dobpdc), the amount of H₂O adsorbed from the mixture was about 7 mmol g⁻¹ (1.7 H₂O per mmen–Mg), while CO₂ adsorbed from the mixture was about 4.2 mmol g⁻¹ (1.0 CO₂ per mmen–Mg). In fact, we find that accumulated H₂O increases the CO₂ H₂ by an amount equal to the H₂O binding strength. For example for mmen–Mg2(dobpdc), the binding energy of the second adsorbed H₂O molecule hydrogen-bonded to non-bonded O ion on the carbamate via hydrogen bonding (Fig. 5b) is as high as 43.3 kJ mol⁻¹. Thus, the additional hydrogen bonding in the presence of H₂O can further stabilize the CO₂ H₂ by the same amount (≈43.3 kJ mol⁻¹). We speculate that this may be related to an increase of the amount of CO₂ adsorbed in the presence of H₂O. As a result, our computed energetics demonstrate that instead of hampering the CO₂ capture process, H₂O plays a crucial role in affording stability to CO₂–mmen–M₂(dobpdc).

4 Conclusions

We have examined the effect of mmen on the binding enthalpies and mechanical properties of mmen–M₂(dobpdc) (M = Mg, Mn, Fe, Co, Zn), finding that mmen ligands enhance the CO₂ H₂ and selectivity under humid conditions, and that mmen and CO₂–mmen ligands significantly enhance framework mechanical properties. These results elucidate the energetics of individual interactions underlying the cooperative CO₂ insertion mechanism in mmen–M₂(dobpdc) under dry and humid conditions. Furthermore, our results demonstrate the remarkable increase in mechanical properties afforded by functionalization of M₂(dobpdc) with diamines. Overall, our work highlights the unique advantages in CO₂ capture performance and physical properties accessible with diamine-appended frameworks.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001015. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC02-05CH11231, and computational resources were provided by DOE (LBNL Lawrence and NERSC).

Notes and references

