1. Introduction

The C\(^+\) + H\(_2\) ion-molecule reaction has been the research core of extensive experimental and theoretical study owing to its important role in astrophysics and atmospheric chemistry. Particularly, the CH\(_2\)\(^+\) complex formed by the reaction is a crucial intermediate in interstellar matter and combustion process.\(^3\) Hence the reaction C\(^+\) + H\(_2\) has been widely researched.

The cation CH\(_2\)\(^+\) belongs to a class of molecules which are termed “quasilinear”. From the spectroscopic side, the linear and bending problems of CH\(_2\)\(^+\) attracted the researchers’ interest in the 1960s.\(^2\) This issue was first solved theoretically due to the lack of spectral data, Schaefer and Bender\(^4\) predicted a bent equilibrium geometry for the electronic ground state (1\(^2\)A\(^\prime\)) of CH\(_2\)\(^+\) in 1971. Later, the bent equilibrium geometry was confirmed by the Coulomb explosion imaging experiment.\(^4,5\)

Then, extensive research on CH\(_2\)\(^+\) has been carried out theoretically.

Among a series of theoretical studies, Stoceklin and Halvick\(^6\) reported the theoretical research result of the caption reaction for the first time, which fitting a precise 3-D single-valued potential energy surface (PES). Utilizing an extensive multi-configurational wave function with the augmented Dunning correlation consistent basis set (aug-cc-pVQZ) to calculate large

**Accurate global potential energy surface for the ground state of CH\(_2\)\(^+\) by extrapolation to the complete basis set limit†**

Lu Guo,\(^a\) Hongyu Ma,\(^a\) Lulu Zhang,\(^b\) Yuzhi Song\(^*b\) and Yongqing Li \(^*a\)

A full three-dimensional global potential energy surface is reported for the ground state of CH\(_2\)\(^+\) by fitting accurate multireference configuration interaction energies calculated using aug-cc-pVQZ and aug-cc-pV5Z basis sets with extrapolation of the electron correlation energy to the complete basis set limit. The topographical characteristics have been compared in detail with a potential energy surface of the same type recently reported [J. Chem. Phys., 2015, 142, 124302] based on a least-squares fit to accurate high level \(ab\ initio\) MRCl(Q) energies, calculated using AV6Z basis set. The new three-dimensional global potential energy surface is then used in quasiclassical trajectory calculations for H\(^{(2S)}\) + CH\(^{(X\Sigma^+)}\) \(\rightarrow\) C\(^{(2P)}\) + H\(_2\)(X\(^\Sigma^+_g\)) reaction. The integral cross sections, differential cross sections and the rate coefficients have been computed. A comparison shows that our potential energy surface can be applied to any type of dynamic study.

\(^†\)Electronic supplementary information (ESI) available. See DOI: 10.1039/c8ra02228c
cc-pVQZ(AVQZ) basis sets of Dunning\textsuperscript{17,18} have been applied. We all know that in order to get a highly precise PES, it usually requires a large basis sets. But, we did not use such a large basis sets in this work, instead we have extrapolated the total energy to the complete basis set (CBS) limit by using a uniform single-pair and triple-pair (USTE)\textsuperscript{19,20} method. For verifying this PES, the QCT calculations have been performed on H(2S) + CH+(2P) → C+(2P) + H2(X^2Σ\textsuperscript{+}), the differential cross sections (DCSs), integral cross sections (ICSSs), and the rate coefficients will be computed.

The paper is organized as follows. Section 2 introduces the theoretical approaches, such as \textit{ab initio} calculations and the application of extrapolation. Section 3 introduces the analytic expression of CH\textsubscript{2}+(1\textsuperscript{2}A\textsuperscript{'}\) PES. Main topographical features are discussed in section 4. Section 5 describes the QCT calculations. Finally, the conclusion is presented in section 6.

2. \textit{Ab initio} calculations and extrapolation scheme

The MRCI(Q)\textsuperscript{23} approach is one of the best methods to obtain the precise PESs. All \textit{ab initio} calculations are performed at the MRCI(Q) level with the FVCAS\textsuperscript{24} as reference. MOLPRO 2012 (ref. 21) is a kind of program package about the quantum chemistry, in association with the Dunning et al.\textsuperscript{17,18} correlation-consistent basis sets have been applied during our work. This procedure involves 6 active orbitals (5A\textsuperscript{'} + 1A\textsuperscript{''}), with a total of 443 (166A\textsuperscript{'} + 177A\textsuperscript{''}) configuration state functions at AVSZ and AVQZ basis sets, respectively. In all 3255 \textit{ab initio} grid points have been computed for C\textsuperscript{+} - H\textsubscript{2} channels, the region was defined by 1.2 ≤ R\textsubscript{HH}/a\textsubscript{0} ≤ 4.4, 1.4 ≤ r\textsubscript{C-H}/a\textsubscript{0} ≤ 10 and 0 ≤ γ/deg ≤ 90, while, for H\textsuperscript{−}-CH\textsuperscript{+}, they cover geometries defined by 1.8 ≤ R\textsubscript{CH}/a\textsubscript{0} ≤ 3.6, 1.4 ≤ r\textsubscript{H-CH}/a\textsubscript{0} ≤ 10 and 0 ≤ γ/deg ≤ 180, R, r and γ are atom-diatom Jacobi coordinates for both channels. To get more precise energy points, the USTE\textsuperscript{19,20} method is adopted. During the calculations, the core is frozen and ignoring the relativistic effect.

In order to carry out the extrapolation, electronic energy in the MRCI(Q) calculation is expressed by a sum of two terms\textsuperscript{19}

\begin{equation}
E_x = E_x^{\text{CAS}} + E_x^{\text{dc}},
\end{equation}

where the superscript CAS represents the complete-active space and the superscript dc represents the dynamical correlation energies, in addition the subscript X signifies that the electronic energy computed in the AVXZ basis set. The X = Q, 5 are used during the calculation.

Using a two-point extrapolation program suggested by Karton and Martin(KM),\textsuperscript{23} the CAS energies are extrapolated to the CBS limit

\begin{equation}
E_x^{\text{CAS}} = E_{x0}^{\text{CAS}} + B/X^2,
\end{equation}

where $E_{x0}^{\text{CAS}}$ is the energy when $X \to \infty$ and $\alpha = 5.34$ is an effective decay index.

The USTE protocol\textsuperscript{19,20} has been triumphantly implemented to extrapolate the dynamical correlation energies in MRCI(Q) calculations, which is extrapolated by the formula

\begin{equation}
E_{x}^{\text{dc}} = E_{x0}^{\text{dc}} + \frac{A_1}{(X + \alpha)} + \frac{A_2}{(X + \alpha)^2}.
\end{equation}

where $A_5$ is written as the auxiliary relation

\begin{equation}
A_5 = A_0(0) + cA_3^{5/4}
\end{equation}

With $\alpha = -3/8$, $c = -1.17847713$ and $A_3(0) = 0.003768549$ are "universal-like" parameters.\textsuperscript{19} Eqn (3) could be converted to $(E_x, A_3)$ two-parameter rule, which has access to the actual extrapolation process.

3. Analytical potential energy function of CH\textsubscript{2}+(1\textsuperscript{2}A\textsuperscript{'}\)

The analytical function of CH\textsubscript{2}+(1\textsuperscript{2}A\textsuperscript{'}\) PES can be represented as a MBE\textsuperscript{21,24} form

\begin{equation}
V_{ABC}(R_1, R_2, R_3) = \sum_{A}V_{A}^{(1)} + \sum_{AB}V_{AB}^{(2)}(R_{AB}) + V_{ABC}^{(3)}(R_1, R_2, R_3),
\end{equation}

where $V_{A}^{(1)}$ is the isolated atomic energy, $V_{AB}^{(2)}$ is a two-body energy term and $V_{ABC}^{(3)}$ is the three-body energy term which is zero at all dissociation limits. In this work, the title system obeys the following dissociation scheme:

\begin{equation}
\text{CH}_2^+ (1^2A') \rightarrow \text{C}^+ (P) + \text{H}_2 \left(X^2 \Sigma^+ \right)
\end{equation}

\begin{equation}
\rightarrow \text{CH}^+ \left(X^2 \Sigma^+ \right) + \text{H}^+ (S)
\end{equation}

\begin{equation}
\rightarrow \text{C}^+ (P) + \text{H}^+ (S) + \text{H}^+ (S)
\end{equation}

where $\text{C}^+ (P)$ and $\text{H}^+ (S)$ are all in their ground states. So, the one-body energy term $V_{A}^{(1)}$ in eqn (5) are zero.

A. Two-body energy terms

The analytic energy function of the two-body terms $V_{AB}^{(2)}$ for CH\textsuperscript{+}($X^2\Sigma^+$) and H\textsubscript{2}($X^2\Sigma_g^+$) are imitated employing the Aguado and Paniagua\textsuperscript{25,26} approach, which the function for title diatomic systems can be represented as summation of the short-range and long-range potentials

\begin{equation}
V_{AB}^{(2)} = V_{\text{short}}^{(2)} + V_{\text{long}}^{(2)}
\end{equation}

where

\begin{equation}
V_{\text{short}}^{(2)} = \frac{a_0}{R_{AB}} e^{-\beta_0 R_{AB}}
\end{equation}

which the potential energy of diatomic tends to infinitely great when $R_{AB} \rightarrow 0$. The long-range potential is expressed as

\begin{equation}
V_{\text{long}}^{(2)} = \sum_{i=1}^{8} a_i \left( \frac{R_{AB}}{C_0} \right)^{6/2} R_{AB}^{i}
\end{equation}

which the potential energy of diatomic is equal to zero as $R_{AB} \rightarrow \infty$. The potential function in eqn (9) is truncated up to 8th power ($n = 8$), we can obtain 11 parameters, including 2 nonlinear parameters $\beta_i$ ($i = 1, 2$) and 9 linear parameters $a_i$ ($i = 0, 1, \ldots, 8$) for CH\textsuperscript{+}($X^2\Sigma^+$) and H\textsubscript{2}($X^2\Sigma_g^+$) by fitting the procedure. All the fitted parameters of the CH\textsuperscript{+}($X^2\Sigma^+$) and H\textsubscript{2}($X^2\Sigma_g^+$) are listed in Table 1 of the ESI\textsuperscript{†}.
B. Three-body energy term

For the calculation of three-body term, the method of three-body distributed polynomial is adopted, which was applied to calculate ground and excited states of FH$_2$, NH$_2$ (ref. 30-32) and NH$_3$. ($^{1}$-$^{3}$) being the symmetric coordinates, $\gamma^j$ are determining parameters of the nonlinear range and $R^0$ represents reference geometries. So, there are 150 linear coefficients, 9 reference bond distances and 9 nonlinear ones in all. In this work, a total of 3255 CBS points have been calculated in fitting procedure and fitting result shows that the total root mean square derivation is rmsd = 0.55 kcal mol$^{-1}$. All the fitted parameters of the least square method are listed in Tables 2 and 3 of the ESL.$^{1}$

4. Features of the PES

Table 1 presents the results of $R_e$, $D_e$, $\omega_e$, $\omega_e\chi_e$, $\alpha_e$ and $B_e$ of CH($^1S\Sigma^+$) and H$_2$($^3S\Sigma^+$) together with the other theoretical$^{11,13-17,40-42}$ and experimental$^{38-42}$ data. The equilibrium internuclear $R_e$ of CH($^1S\Sigma^+$) to be 2.135 a$_0$, which is only 0.002 a$_0$ shorter than the experimental result$^{40}$ and 0.001 a$_0$ shorter than the latest result computed by Li et al.$^{41}$ while for the case of H$_2$, all the results are 1.401 a$_0$,$^{38-42}$ it shows a high precision. For the dissociation energies $D_e$, CH($^1S\Sigma^+$) differs from the theoretical and experimental results by less than 0.005 eV.$^{11,19}$ For the H$_2$ ($^3S\Sigma^+$) dissociation energy $D_e$ = 4.749 eV, this compares well with the corresponding theoretical values $D_e = 4.748$ eV (ref. 11) and corresponding experimental values $D_e = 4.478$ eV.$^{42}$ Overall, it can be concluded that the other spectroscopic constants in good agreement with these literature results. Fig. 1 shows the potential energy curves (PECs) of CH($^1S\Sigma^+$) and H$_2$($^3S\Sigma^+$). In order to evaluate the quality of the fitting, we calculate the rmsd. The rmsd of CH($^1S\Sigma^+$) and H$_2$($^3S\Sigma^+$) PECs are 0.05 kcal mol$^{-1}$ and 0.005 kcal mol$^{-1}$, respectively. As a whole, it reveals a high quality fitting process. Shown in Fig. 1, the PECs at the CBS/USTE(Q,5) calculations nicely, showing accurate and smooth behavior both in short and long regions.

Table 2 collects all known stationary points (geometry, energy and vibrational frequencies) of the new PES for ground state of CH$_3^+$. For better comparisons, the results of other theoretical and experimental work reports are also gathered in Table 2. A global minimum (GM) is found to local at $\theta_{HCH} = 138.6^\circ$, $R_1 = 3.859$ a$_0$ and $R_2 = R_3 = 2.063$ a$_0$ with the minimum energy $-0.333$E$_h$ relative to the all dissociation asymptote ($R_1$, the H$_2$ interatomic separation, $R_2$ and $R_3$ represent the two CH$^+$ interatomic separations), its maximum deviation is only 0.004 a$_0$ for the CH$^+$ bond length ($R_2$ and $R_3$) when compared to the data of the MRCI(Q)/AV6Z PES$^{13}$ with the $\theta_{HCH} = 141.0^\circ$, $R_1 = 3.896$ a$_0$ and $R_2 = R_3 = 2.067$ a$_0$. Comparing with the theoretical works of Stoecklin and Halvick,$^{6}$ $R_1 = 3.865$ a$_0$ is 0.006 a$_0$ longer than our results. This compares well with the corresponding experimental values$^{46}$ of $\theta_{HCH} = 139.8^\circ$. For the harmonic frequencies, the PES from this work computes values of 3048 cm$^{-1}$, 3272 cm$^{-1}$ and 921 cm$^{-1}$, there is good consistence with the theoretical results calculated by Brinkmann et al.$^{47}$, which are 3011 cm$^{-1}$, 3260 cm$^{-1}$ and 965 cm$^{-1}$, respectively. Table 2 also collects the attributes of a local minimum (LM) and three transition states: TS1($D_{\alpha\beta}$), TS2($C_{\gamma\delta}$) and TS3($C_{\gamma\gamma\delta}$) barriers.

Fig. 2 and 3 show the main topographical characteristics of the new CH$_3^+$ PES computed in this work. Obviously, there is a correct and smooth behavior in the entire configuration space. The salient features of these contour maps corresponding to several important stationary points for the main reaction. Fig. 2(a) illustrates a contour map for linear [H–C–H$^+$] stretch. The significant characteristic of this map is that there is a TS1($D_{\alpha\beta}$) linear transition state at $R_2 = R_3 = 2.050$ a$_0$ with an energy of 878 cm$^{-1}$ above the GM of CH$_3^+$ but still 33 972 cm$^{-1}$ below the energy of the C+$+$H$_2$ asymptote. This compares well with the MRCI(Q)/AV6Z PES,$^{13}$ where the transition state is computed to local at $R_2 = R_3 = 2.064$ a$_0$ with an energy of 1050 cm$^{-1}$ above the GM and 33 765 cm$^{-1}$ below the reactants asymptote. The corresponding infrared spectrum$^{48}$ result for this linear barrier is 1089 cm$^{-1}$.

Fig. 2(b) plots for the bond stretching in [H–C–H$^+$] which the angle is fixed at 138.6$^\circ$. It can be found from Fig. 2(b) that there is a deep well for CH$_2^+$ PES, which is GM. Fig. 2(c) shows the contour plots to the insertion of C+$+$H reaction. In this figure, the stationary points which are corresponding to TS1($D_{\alpha\beta}$), TS2($C_{\gamma\delta}$), the LM and the GM. As shown in Table 2, the LM is predicted to locate at $R_1 = 1.648$ a$_0$ and $R_2 = R_3 = 2.757$ a$_0$ so agreeing with MRCI(Q)/AV6Z PES.$^{13}$ The main characteristics of the new PES for collinear [H–H–C$^+$] stretch are shown in the contour map of Fig. 2(d). The collinear TS3($C_{\gamma\gamma\delta}$) is found to locate at $R_1 = 1.525$ a$_0$ and $R_2 = 2.660$ a$_0$ with the energy of 15.96 kcal mol$^{-1}$ This compares well with the $R_1 = 1.511$ a$_0$ and $R_2 = 2.645$ a$_0$ and 16.89 kcal mol$^{-1}$ for the MRCI(Q)/AV6Z PES.$^{13}$
Panel (a) of Fig. 3 illustrates the contour plot of C\(^+\) atom moving around H\(_2\)(X\(^2\Sigma^+\)) which the bond length at equilibrium geometry \(R_{\text{H-H}} = 1.401a_0\). Diatoms follow the X-axis centered on the origin. In addition, the corresponding contour plot of H atom moving around a fixed CH\(^+(X^2\Sigma^+)\) is shown in (b) of the same figure, which the bond length is fixed at equilibrium geometry \(R_{\text{CH}} = 2.135a_0\), which is in very good agreement with the MRCI(Q)/AV6Z PES\(^{11}\). The two plots clearly show that there is a smooth behavior both in the long and short range.

All the main topographical characteristics of CH\(_2\)^+ PES can be also viewed in a relaxed triangular plot\(^{46}\) using scaled hyperspherical coordinates \((\gamma^* = \gamma/Q\) and \(\beta^* = \beta/Q\), where the \(Q, \gamma\) and \(\beta\) are written as

\[
\begin{pmatrix}
Q \\
\beta \\
\gamma
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 1 \\
0 & \sqrt{3} & -\sqrt{3} \\
2 & -1 & -1
\end{pmatrix} \begin{pmatrix}
R_1^2 \\
R_2^2 \\
R_3^2
\end{pmatrix}
\]

(11)

Clearly visible in Fig. 4 are all stationary points discussed above, which correspond to a GM, a LM and three transition states: TS1(D\(_{\infty h}\)), TS2(C\(_{2v}\)) and TS3(C\(_{\infty v}\)) barriers.

Fig. 5 shows the minimum energy paths (MEPs) for H\(^{(2S)}\) + CH\(^+\)(X\(^2\Sigma^+)\) \(\rightarrow\) C\(^+(\Pi)\) + H\(_2\)(X\(^2\Sigma^+)\) reaction obtained from both the new PES and MRCI(Q)/AV6Z PES\(^{44}\) for the collinear configuration \(\angle CH+H = 180^\circ\). The MEPs indicate the potential energy of CH\(_2\)^+ as a function for corresponding reaction coordinate of \(R_{\text{CH}}=R_{\text{H-H}}\), \(R_{\text{CH}}\) and \(R_{\text{H-H}}\) as the internuclear distance between C\(^+\) and H\(_2\), respectively. As shown Fig. 5, there is a little barrier connecting a deep well and a shallow well. For the new PES, the relatively deeper well is found to locate at \(R_{\text{CH}} = 2.660a_0\) and \(R_{\text{H-H}} = 1.525a_0\), and the little barrier locates at \(R_{\text{CH}} = 2.210a_0\) and \(R_{\text{H-H}} = 2.972a_0\). The well depth and the barrier height are computed to be 1.184 eV and 0.016 eV. Comparing with the MRCI(Q)/AV6Z PES\(^{44}\) the relatively deeper well locates at \(R_{\text{CH}} = 2.660a_0\) and \(R_{\text{H-H}} = 1.525a_0\) as a GM, a LM and three transition states: TS1(D\(_{\infty h}\)), TS2(C\(_{2v}\)) and TS3(C\(_{\infty v}\)) barriers.

Table 2  Stationary points at the valence region for ground state of CH\(_2\)^+ PES, with the unit of \(R_1, R_2\) and \(R_3\) in \(a_0\), \(\theta_{\text{HCH}}\) in degree, \(\Delta V\) in kcal mol\(^{-1}\), \(\omega_1\), \(\omega_2\) and \(\omega_3\) in cm\(^{-1}\)

<table>
<thead>
<tr>
<th>Feature</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(\theta_{\text{HCH}})</th>
<th>(\Delta V)</th>
<th>(\omega_1)</th>
<th>(\omega_2)</th>
<th>(\omega_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Global minimum</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This work</td>
<td>3.859</td>
<td>2.063</td>
<td>2.063</td>
<td>138.6</td>
<td>–99.64</td>
<td>3048</td>
<td>3272</td>
<td>921</td>
</tr>
<tr>
<td>Theor.(^{47})</td>
<td>3.896</td>
<td>2.067</td>
<td>2.067</td>
<td>141.0</td>
<td>–99.54</td>
<td>2983</td>
<td>3283</td>
<td>957</td>
</tr>
<tr>
<td>Theor.(^{6})</td>
<td>3.890</td>
<td>2.067</td>
<td>2.067</td>
<td>140.39</td>
<td>—</td>
<td>3011</td>
<td>3260</td>
<td>965</td>
</tr>
<tr>
<td>Exp.(^{2,46})</td>
<td>3.865</td>
<td>2.075</td>
<td>2.075</td>
<td>137.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Exp.(^{2,46})</td>
<td>3.922</td>
<td>2.088</td>
<td>2.088</td>
<td>139.8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3133.4</td>
</tr>
<tr>
<td><strong>Local minimum</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM(C(_{\infty v}))</td>
<td>1.648</td>
<td>2.757</td>
<td>2.757</td>
<td>34.8</td>
<td>–29.63</td>
<td>3254</td>
<td>1317</td>
<td>1220</td>
</tr>
<tr>
<td>Theor.(^{11})</td>
<td>1.666</td>
<td>2.645</td>
<td>2.645</td>
<td>36.7</td>
<td>–29.28</td>
<td>2937</td>
<td>1444</td>
<td>1307</td>
</tr>
<tr>
<td><strong>Transition state</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS1(D(_{\infty h}))</td>
<td>4.099</td>
<td>2.050</td>
<td>2.050</td>
<td>180.0</td>
<td>–97.13</td>
<td>3083</td>
<td>5489</td>
<td>10771</td>
</tr>
<tr>
<td>Theor.(^{11})</td>
<td>4.127</td>
<td>2.064</td>
<td>2.064</td>
<td>180.0</td>
<td>–96.54</td>
<td>2939</td>
<td>5431</td>
<td>13191</td>
</tr>
<tr>
<td>TS2(C(_{2v}))</td>
<td>2.106</td>
<td>2.362</td>
<td>2.362</td>
<td>52.9</td>
<td>–21.44</td>
<td>2265i</td>
<td>1766</td>
<td>1493</td>
</tr>
<tr>
<td>Theor.(^{11})</td>
<td>2.170</td>
<td>2.435</td>
<td>2.435</td>
<td>52.9</td>
<td>–23.41</td>
<td>2149i</td>
<td>2179</td>
<td>1745</td>
</tr>
<tr>
<td>TS3(C(_{\infty v}))</td>
<td>1.525</td>
<td>2.660</td>
<td>4.185</td>
<td>0.0</td>
<td>–15.96</td>
<td>3557</td>
<td>664i</td>
<td>1527</td>
</tr>
<tr>
<td>Theor.(^{11})</td>
<td>1.511</td>
<td>2.645</td>
<td>4.156</td>
<td>0.0</td>
<td>–16.89</td>
<td>3676</td>
<td>172i</td>
<td>1769</td>
</tr>
</tbody>
</table>

\(^{4}\) Relative to the C\(^+\) + H\(_2\) asymptote.
2.645\,a_0 and \( R_{\text{CH}^+} = 1.511\,a_0 \) and the little barrier is found to locate at \( R_{\text{CH}^+} = 2.196\,a_0 \) and \( R_{\text{H}2} = 3.044\,a_0 \). The well depth and the barrier height are computed to be 1.223 eV and 0.006 eV. Moreover, the reaction \( \text{H}(2S) + \text{CH}^+ (X^1S^+) / \text{C}^+ (2P) + \text{H}_2 (X^1S_g^+) \) is exoergic by 0.49 eV base on the both PESs. It can be seen from Fig. 5, the results of the two PESs are in good agreement.

5. Dynamics of \( \text{H} + \text{CH}^+ \) reaction

On the new PES, QCT\textsuperscript{20,23} calculation was performed for the \( \text{H}(2S) + \text{CH}^+ (X^1S^+) \rightarrow \text{C}^+ (2P) + \text{H}_2 (X^1S_g^+) \) reaction. In this work, we computed the ICSs, DCSs and rate constants. A total of 10 000 trajectories have been run for each of the collision energy. The time integration step is chosen to be 0.1 fs of classical motion equations, with H atom and the center of mass of the \( \text{CH}^+ \) initially separated by 15.0 \( \AA \). The ICS is then written as

\[
\sigma = \pi b_{\text{max}}^2 \frac{N_i}{N_t}
\]  

(12)

where \( b_{\text{max}} \) is the maximum impact parameter, \( N_i \) is the number of trajectories that go into a certain reaction channel and \( N_t \) is the total number of trajectories.

As shown Fig. 6, the ICSs are expressed as a collision energy function. For comparison our results with the quantum wave packet calculations\textsuperscript{11} and a modified version of the ABC\textsuperscript{52} quantum scattering code method have also been performed for the same reaction. We can find that the ICS based on our surface smaller than the results based on MRCI(Q)/AV6Z PES\textsuperscript{11} when the collision energy is less than about 40 meV. But when the collision energy is larger than about 40 meV, our results are consistency with quantum wave packet results. Overall, our results are reasonably good consistency with previous results.\textsuperscript{11,52}
DCS is mainly used to study product and reagent relative velocity $k-k'$, which is the most common vector correlation. The global angular distributions of $H(^2S) + CH^+(X^1Σ^+) \rightarrow C^+(^2P) + H_2(X^1Σ^+_g)$ reaction at collision energies of 10, 20, 30 and 40 kcal mol$^{-1}$ based on the new PES are shown in Fig. 7. We can find that with the collision energies increase, the backward scattering phenomenon becomes more and more obvious. The enhanced phenomenon of backward scattering may be caused by an insertion reaction mechanism proposed by Pino et al.$^{53}$

Finally, rate constants for the reaction $H(^2S) + CH^+(X^1Σ^+) \rightarrow C^+(^2P) + H_2(X^1Σ^+_g)$ are computed over the temperature range 10–1000 K by running QCT on the new PES of this work. By supposing a Maxwell–Boltzmann distribution on the collision energies, the rate constant is written as$^{54}$

$$k(T) = g_e(T) \left( \frac{2}{k_B T} \right)^{3/2} \left( \frac{1}{\pi \mu} \right)^{1/2} \int_{E_{tr}}^{\infty} E_{tr} \sigma_R(E_{tr}) \exp \left( - \frac{E_{tr}}{k_B T} \right) dE_{tr}$$

(13)
where $g_e$ is the electronic degeneracy factor, we adopt $g_e = 1$ in the present work. By comparing with the results of various theoretical\textsuperscript{6,7,9,11} and experimental\textsuperscript{55,56} studies, the results are shown in the Fig. 8. It can be seen from Fig. 8 that our result (QCT) is less than other works for the whole collision energy range. The QCT calculation is defect, the error will be larger when the collision energy is low, so the error of rate constant is also very large when the temperature is very low. However, as the temperature increases, the error will be smaller and closer to the other results, especially at high temperatures it agrees well with Li et al.\textsuperscript{11} and Federer et al.\textsuperscript{56} So, it turns out that our new PES can be applied to any type of dynamic study.

6. Conclusions

In our research process, we have constructed a high quality global PES for the ground state of CH$_2$$(^1\Sigma^+)$ from MRCI \textit{ab initio} energies based on the reference FVCAS wave function, both AVQZ and AV5Z basis sets subsequently extrapolated to the CBS limit. All known stationary points including geometries, energies and vibrational frequencies can be obtained, and all the results are consistency with the corresponding theoretical and experimental values. The consistency and accuracy of the CBS method have also been affirmed by comparing the MRCI(Q)/AV6Z PES.\textsuperscript{11} Finally, QCT calculation has been performed on H$(^2S)$ + CH$(^4\Sigma^+)$ + H$_2$(X$^2\Sigma^+\text{g}^+$), the ICS, DCS and the rate coefficients are computed in detail and compared to the MRCI(Q)/AV6Z and other PESs, as well as experimental values in the literature. In summary, the new PES built here can be used for any type of dynamic study.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11474141), the Natural Science Foundation of Liaoning Province (Grant No. 20170540408) and the Science and Technology Plan Project of Shenyang City (Grant No. 17-231-1-06).

References