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alysis of salvage chemotherapy on
refractory acute myeloid leukemia patients†
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Li Hou,c Wenhao Cui,d Fangfang Tou,a Jun Rao *a and Xing Fan*e

Acute myeloid leukemia (AML) is a group of hematological malignancies causing high mortality around the

world. However, the treatment of AML is still one of the most formidable challenges. In this study, we

employed a well-established global metabolic profiling platform, which combined ultra-performance

liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with gas chromatography mass

spectrometry (GC-MS) to investigate the metabolic alterations associated with salvage chemotherapy on

10 refractory acute myeloid leukemia (RAML) patients. A total of 390 metabolites were identified from 20

serum samples obtained from all 10 patients before and post salvage chemotherapy. The metabolomics

profile was found to be very heterogeneous across the RAML patients. The results showed very subtle

metabolic differences upon one-time chemotherapy treatment for an individual patient. Only 9

metabolites including imidazole lactate, glycerol 3-phosphate, three fatty acids, and four lysolipids in the

blood serum were significantly changed before and post chemotherapy, suggesting their important roles

during the development of RAML. This study may not only provide new insight into the metabolomics

features in RAML patients, but also have relevance to improve the treatment and outcome of RAML.
Introduction

Acute myeloid leukemia (AML) is the most common acute
leukemia in adults, which is characterized by the accumulation
of immature myeloid precursors, and escape apoptosis, ulti-
mately resulting in the inhibition of normal hematopoiesis.
Over the past few decades, the outlook for patients with AML
has been improved due to renements in the diagnosis and
therapy.1 However, the prospects for AML patients remains very
dismal, especially for refractory acute myeloid leukemia
(RAML). RAML is a group of hematological malignancies with
high heterogeneity, which could not be simply classied by the
cytogenetic/cytomolecular or immunophenotype. Although,
many new chemotherapeutic and nonchemotherapeutic agents
have been used for treating RAML, patients are less likely to
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respond to any treatment with estimated overall survival (OS) at
no more than 10% at 3 years.2–5

Over the past few years, a great number of genomic studies
have identied a series of genes that are affected by certain
recurrent somatic point mutations in various AML subtypes,
which led to a better understanding on the molecular mecha-
nism of AML development and suggested new therapeutic
strategies for the disease.6 For example, Chen et al. found that
an about 50% reduction in gene dosage in the mixed lineage
leukemia 3 (MLL3) gene (located on 7q36.1) rather than
complete loss, cooperated with other events occurring in -7/
del(7q) AMLs, resulting in the development of leukemogen-
esis.7 The mouse model functionally identied MLL3 as a haplo
insufficient 7q tumor suppressor and meanwhile suggested
a potential therapeutic option for the aggressive disease.
Moreover, the Cancer Genome Atlas Research Network reported
the results of genomes from 200 AML patients and dened 11
genes were mutated in AML with different functional cate-
gories.8 Other genomic studies revealed that gene mutations in
DNMT3A, ASXL1, and TET2 play essential roles in clonal
expansion of pre-leukemic hematopoietic stem cells, and might
be related with the relapse.9–11 These gene mutations are the
primary therapeutic targets for developing new treatment regi-
mens for AML and RAML.

Meanwhile, other innovated high throughput approaches
including transcriptomics and proteomics are developed to
study the mechanisms of AML and the disease clinical features
at molecular levels. For example, Maiga et al. conducted
RSC Adv., 2018, 8, 14445–14453 | 14445
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transcriptome analysis of G protein-coupled receptors in
distinct genetic subgroups of AML, and then identied different
potential therapeutic targets.6 Perna et al. integrated large
transcriptomics and proteomics datasets from both malignant
and normal tissues, and developed an algorithm to identify
potential targets expressed in leukemia stem cells instead of
normal hematopoietic cells. The results nally identied
several target pairings, holding great promise for systematic
combinatorial chimeric antigen receptor therapy of AML.12 In
addition, Visconte et al. performed comprehensive quantitative
proteomic proling of the pharmacodynamic changes induced
by MLN4924 in MV4-11 FLT3 ITD+ acute myeloid leukemia
cells.13 This study evaluated the global impact of inhibiting
NEDDylation with MLN4924 on the AML proteome and estab-
lished rationale for its combination with azacytidine to treat the
tumor in vivo.

Recently, advanced metabolomic proling methods have
been proven to be a powerful tool to comprehensively and semi-
quantitatively determine global metabolites in specic cells,
tissues, or bodily uids.14 More importantly, increasingly
evidences of metabolomics' role in tumor diagnosis and therapy
were appearing including metabolomics investigations on
various cancers such as colorectal cancer (CRC), gastric cancer,
pancreatic cancer, and liver cancer.15–19 The main analytical
platforms for metabolomics analysis include nuclear magnetic
resonance (NMR) spectroscopy andmass spectrometry (MS).20,21

Mass spectrometry-based metabolic methods including liquid
chromatography mass spectrometry (LC-MS) or gas
chromatography-mass spectrometry (GC-MS) are increasingly
favored due to their unique advantages such as high sensitivity
and wide range of molecules.20,21 Among them, UPLC-MS is
especially considered as one of the best analytical techniques in
animal model research and clinical studies including liver,
lung, gastrointestinal, urogenital and other diseases.22–27 For
example, Chen et al. (2017) recently collected 180 chronic
kidney disease (CKD) patients and 120 age-matched healthy
controls, and conducted metabolomic studies by utilizing
UPLC-HDMS (Waters) and the gene proling using quantitative
real-time RT-PCR techniques.25 They showed correlations
between identied metabolites and gene expression of inam-
mation/Wnt/b-catenin signaling cascade, which illuminated the
molecular pathogenesis of patients with advanced CKD.

The metabolomics study on RAML may help to further
explore of the intrinsic disease and expand the arsenal of
effective therapeutically modalities for RAML patients. For
instance, metabolomics study on leukemia cell line treated with
chemotherapeutics in vitro has been reported in the Jurkat cell
line as a model of acute lymphoblastic leukemia, reecting the
metabolomics data might provide the potential therapy
biomarker for RAML patients in the future.28 Accordingly, in
this study, we for the rst time employed an established non-
targeted metabolomic proling platform that combined
UPLC/MS/MS with GC/MS to measure the metabolic proles in
10 RAML patients before and aer salvage chemotherapy
treatment. The results from this study may shed new light on
RAML pathogenesis and treatment.
14446 | RSC Adv., 2018, 8, 14445–14453
Experimental
Patients

From to January 2016 to December 2016, a total of 10 RAML
patients from Jiangxi Cancer Hospital were included in this
retrospective study. Informed consent was obtained from all
patients, in accordance with the regulations of the Jiangxi
Cancer Hospital Institutional Review Boards. Patients were
numbered from 1 to 10.

Diagnosis

Diseases diagnosis was established according to World Health
Organization (WHO) classication.29 RAML was dened: primary
induction failure (PIF) aer 2 cycles of chemotherapy, rst early
relapse aer a remission duration less than 6 months, relapse
disease refractory to salvage chemotherapy containing high-dose
Ara-C.30 Patients enrollment eligibility criteria listed below: ①

meet the diagnostic criteria for RAML;② no chemotherapy used at
least for onemonth. The exclusion criteria were:① combined with
severe heart, brain, liver, kidney disease; ② mental illness; ③
glaucoma; ④ pregnancy, lactating women; ⑤ known to the drug
allergy; ⑥ age less than 10 years old or elder than 80 years old.

Samples collection and metabolomics analysis

About 5 mL serums from each RAML patient before (baseline)
and post chemotherapy were collected for sample preparation.
Before the baseline serum samples collection, the RAML
patients were off chemotherapy for at least one month, and the
post-chemotherapy serum was collected at 30 days aer
chemotherapy. Global serum metabolic proles were then
determined by a global unbiased platform which is a combina-
tion of three independent analytical platforms: UPLC/MS/MS
optimized for basic species, UHLC/MS/MS optimized for
acidic species, and GC/MS optimized for small, volatile, and
thermally stable molecules.31 In this study, both the GC-MS
platform (Thermo Ultra GC-ISQ, Waltham, MA, USA) and LC-
MS platform (Waters ACQUITY UPLC Milford, MA, USA-
Thermo LTQ XL, Milford, Waltham, MA, USA) were adopted,
which has been widely applied to metabolomic studies.32–36

For GC/MS analysis, the samples were derivatized using
bistrimethyl-silyl-triouroacetamide (BSTFA, Sigma-Aldrich, St.
Louis, MO, USA) prior to injection.31 For UPLC/MS/MS analysis,
each sample was analyzed using two separate dedicated columns:
one for negative ions and one optimized for positive ions. The
mobile phase for negative ion analysis consisted of 6.5 mM
ammonium bicarbonate (Sigma-Aldrich, St. Louis, MO, USA), pH
8.0 (solvent A) and 6.5 mM ammonium bicarbonate in methanol
(Sigma-Aldrich, St. Louis, MO, US) (solvent B), while in positive ion
mode, 0.1% formic acid (Sigma-Aldrich, St. Louis, MO, USA) in
H2O (solvent A) and 0.1% formic acid in methanol (solvent B) were
used. Furthermore, gradient was directly eluted into the mass
spectrometer from 0% solvent B to 98% solvent B at a ow rate of
350 mL min�1 over 11 min. Additionally, the retention time,
molecular weight (m/z), and tandem mass spectrometry (MS/MS2)
spectra of all detectable ions for each sample weremeasured inMS
analysis, which alternated between MS (99–1000 m/z) and data-
This journal is © The Royal Society of Chemistry 2018
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dependent MS2 scans using dynamic exclusion. The type and
content of all metabolites before (day 0, baseline) and aer treat-
ment (day 30, post-chemotherapy) in RAML patients were identi-
ed by automated comparison to Metabolon's reference library
entries.31 The library has already been established using approxi-
mately 1500 authentic standards, which were analyzed in multiple
concentrations and under the same conditions as the experi-
mental samples. In total, 390 of metabolites were detected and
analyzed from all the blood serum samples of the 10 RAML
subjects. The differences of metabolomics between baseline
samples and post-treatment samples were analyzed, especially the
changes of amino acidmetabolic pathway, carbohydratemetabolic
pathway and lipid metabolism pathway.
Statistical analysis

To normalize the metabolites for data analyses, a data
normalization step was performed by registering the median
level of each compound to equal to one (1.00). And meanwhile,
the missing values (if any) were assumed to be below the limits
of detection and were imputed with the observed minimum
values. Log transformation of normalized data, ANOVA
contrasts, Welch's two-sample t-test and paired t-test were used
to identify biochemical which were signicantly different
between before and post chemotherapy in RAML patients.31 P
values less than 0.05 was dened as statistical signicance.
SPSS 17.0 (IBM, New York, US) and MultiExperiment Viewer 4.8
soware packages were used for data analysis.37 The metabolic
data was visualized by K-Medians clustering method and stoi-
chiometry including principal component analysis (PCA) and
partial least squares discriminant analysis (PLS-DA), and SPSS
scatter dot plots. SIMCA-P soware (v13.0, Umetrics, Malmö,
Sweden) was used in this study.
Results and discussion
Clinical characteristics of RAML patients

The clinical characteristics of the 10 enrolled patients were
summarized in Table 1. The median age of the patients was 58.5
Table 1 Clinical features of the patientsa

Patient
Sex, age
(years) Diagnosis

% blast
in BM Cytogenetics Mole

1 F, 65 De novo AML 47 Normal CEBP
2 M, 67 Secondary AML 28 Normal WT1

PRAM
3 F, 56 Secondary AML 34 20q- WT1
4 M, 55 De novo AML 55 Complex NPM
5 M, 66 De novo AML 90 NA NPM
6 M, 51 Secondary AML 34 Normal WT1

PRAM
7 M, 55 De novo AML 30 Normal Non
8 M, 56 De novo AML 42 Normal Non
9 F, 61 De novo AML 64 NA Non
10 M, 62 De novo AML 38 Normal Non

a F: female; M: male; R1: relapse 1; NR: no remission; CR: complete remiss
cytarabine; CAG: cytarabine + aclarubicin + G-CSF; 2-CDA: Cladribine; HA

This journal is © The Royal Society of Chemistry 2018
year-old (range, 51–67 years), and 7 out of 10 patients were male.
All patients had good performance status with the Eastern
Cooperative Oncology Group (ECOG) less than 3 and the
average of Karnofsky Performance Score (KPS) more than 70.7
of the 10 patients were diagnosed with de novo AML and 3
patients were secondary AML. 6 of 10 patients appeared normal
karyotypes, however, the patient 4 had complex karyotype,
patient 3 was 46, XY, 20q-, and the onset cytogenetic results of
patient 5 and 9 are not available. 6 out of 10 patients have
molecular alterations as shown in Table 1. At the baseline time
point, 3 patients acquired complete remission (CR), patient 8
was partial remission (PR), 4 patients had no response (NR) to
previous treatments, and patients 1 and 3 were at the rst
relapse (R1). The chemotherapy regimens applied to each
patient were shown in the Table 1, include HD-Ara-c (high dose
cytarabine, 1.5 g m�2 or 2.0 g m�2 q 12 h for over 3 days), CAG
(cytarabine, aclarubicin, G-CSF), 2-CDA with CAG (Cladribine,
cytarabine, aclarubicin, G-CSF) and HA (homoharringtonine
and cytarabine). 30 days aer these chemotherapy treatments,
serum samples were collected for metabolomics analysis. Aer
this chemotherapy, the 3 CR patients were still remaining CR,
patient 8 showed progressive disease (PD), the previous 4 NR
patients remained NR and the two patients at R1 showed NR for
this chemotherapy. These results indicated that the one time
chemotherapy did not change the disease status.
Clinical outcome revealed by peripheral leukocyte, erythrocyte
and platelet count post the chemotherapy

We have monitored the hematological clinical outcomes before
and aer the chemotherapy along with the metabolomics
analyses. As shown in ESI Table 1,† the white blood cells (WBC)
count of the 10 RAML patients aer chemotherapy on day 15
was signicantly lower compared to the WBC count on day 0 at
the baseline (4.119 � 2.657 � 109 L�1 vs. 10.198 � 9.836 � 109

L�1, p ¼ 0.048), indicating acute chemotherapy cytotoxicity
effect on WBC. However, WBC number on day 30 had no
signicant difference compared to day 0 (5.467 � 4.392 � 109

L�1 vs. 10.198 � 9.836 � 109 L�1, p ¼ 0.076). The hemoglobin
cular alterations
Disease status
before

Chemotherapy
regimens

Disease status
aer

A Insertion R1 HD-Ara-c NR
, MLL-PTD,
E, JAK2

NR HD-Ara-c NR

, PRAME, R1 CAG NR
1 NR CAG NR
1 NR 2-CDA + CAG NR
, MLL-PTD,
E, JAK2

NR HD-Ara-c NR

e CR HD-Ara-c CR
e PR HD-Ara-c PD
e CR HA CR
e CR HD-Ara-c CR

ion; PR: partial remission; PD: progressive disease; HD-Ara-c: high dose
: Homoharringtonine and cytarabine.

RSC Adv., 2018, 8, 14445–14453 | 14447
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level was also decreased obviously on day 15 (71.0 � 13.3g L�1

vs. 80.8 � 16.8 g L�1, p ¼ 0.002) and recovered on day 30 (76.7�
17.6 g L�1 vs. 80.8 � 16.8 g L�1, p ¼ 0.172). Similar occurred on
the platelet count (day 15 vs. day 0: 60.0� 53.8� 109 L�1 vs. 93.2
� 88.3 � 109 L�1, p ¼ 0.042; day 30 vs. day 0: 87.1 � 85.3 � 109

L�1 vs. 93.2 � 88.3 � 109 L�1, p ¼ 0.234). The results indicated
that the chemotherapy on the RAML patients resulted in
signicant cell cytotoxicity on hematopoietic cells.

Treatment outcome revealed by biochemical examination

We did the biochemical examination on the 10 RAML patients
before and post the chemotherapy (ESI Table 1†). The results
showed no signicant changes in serum biochemical indicators
for liver function. The alanine aminotransferase (ALT) levels on
day 15 and day 30 compared to day 0 were 21.5 � 13.0 U L�1 vs.
20.2 � 8.9 U L�1, p ¼ 0.577 and 23.6 � 9.5 U L�1 vs. 20.2 � 8.9 U
L�1, p ¼ 0.222, while the aspartate transaminase (AST) levels
were also had no signicant changes (day 0 vs. day 15: 22.5 �
11.7 U L�1 vs. 20.1� 5.4 U L�1, p¼ 0.480; day 0 vs. day 30: 24.6�
9.9 U L�1 vs. 20.2 � 8.9 U L�1, p ¼ 0.154). We did not observe
signicant changes of serum urea nitrogen (BUN) and creati-
nine (Ccr) on day 15 and day 30 of the RAML patients post
chemotherapy (BUN day 15 vs. day 0: 7.81 � 7.65 mg dL�1 vs.
8.53 � 9.01 mg dL�1, p ¼ 0.809; BUN day 30 vs. day 0: 6.75 �
4.36 mg dL�1 vs. 8.5 3 � 9.01 mg dL�1, p ¼ 0.515; Ccr day 15 vs.
day 0: 70.46 � 38.89 mmol L�1 vs. 79.82 � 60.50 mmol L�1, p ¼
0.392; Ccr day 30 vs. day 0: 68.73 � 37.65 mmol L�1 vs. 79.82 �
60.50 mmol L�1, p ¼ 0.259) (ESI Table 1†). These results indi-
cated that the liver and renal functions of these RAML patients
were stable during this one-time chemotherapy.

Metabolomics analysis of serum from RAML patients before
and post chemotherapy

We have noticed this one-time chemotherapy had minimal or
no effect on the renal function and liver function, therefore
these organ functions should have limited affection to metab-
olomics in vivo in patients. We have performed the metab-
olomics analysis on the blood serum from the RAML patients
that could potentially reveal the effect of the chemotherapy on
metabolomics. In total, 390 metabolites (ESI Table 2†) of
chemical structure were identied from all 10 subjects. These
metabolites included 94 amino acids, 29 carbohydrates, 154
lipids, 17 nucleotides, 22 vitamins cofactors and vitamins, 16
peptides, 10 energy-related compounds, and 48 exogenous
compounds. The 390 metabolites specically involved in the 8
major metabolic pathways and 71 sub-metabolic pathways.

We rstly used the unsupervised hierarchical cluster analysis
to analyze the 390 metabolites detected in the serum samples
from the 10 RAML patients before and post chemotherapy. As
shown in Fig. 1A, the samples were clustered based on the
metabolites Pearson correlation between samples. Obviously,
the metabolomics prole is very heterogenetic in RAML
patients, with no common signature among patients.
Contrarily, the metabolites in the serum before and post
chemotherapy displayed almost identical in each RAML patient
except the samples before and post chemotherapy from patients
14448 | RSC Adv., 2018, 8, 14445–14453
6 and 10 that did not cluster together. We further analyzed the
metabolites in each patient before and post chemotherapy
(Fig. 1B), which revealed that the Pearson correlation r-values
between before and post chemotherapy samples are high in
almost all the patients (r¼ 0.728� 0.360), except patients 6 (r¼
0.107) and 10 (r ¼ 0.074). Taken together, the RAML patients
may have very diverse metabolomics prole. RAML is hemato-
logical malignancies with high heterogeneity, and patients were
undergoing different chemotherapy regimens. The different
chemotherapy regimens may have inuence on the metabolites
since we found the metabolomics prole was very heteroge-
neous across the RAML patients, however we cannot exclude the
inuence of RAML disease heterogeneous onmetabolomics. On
the other hand, for individual patient, the salvage chemo-
therapy did not signicantly change the metabolomics prole
before and the post the chemotherapy, which indicated the
different chemotherapy regimens had very limited inuence on
metabolomics prole for each individual RAML patients.
Noteworthily these chemotherapy regimens were all based on
cytarabine and served as salvage chemotherapy, and the
patients underwent multi-chemotherapies and didn't show
response to the last salvage chemotherapy as the disease status
did not change upon this one-time chemotherapy. This could be
a reason that the last salvage chemotherapy had minimal
impact on the metabolomics for individual patient.

We further employed partial least squares-discriminant
analysis (PLS-DA), which is a supervised approach that ranks
variables' predictive capacities within a multivariate context, in
this case, to identify individual metabolites that are responsible
for distinguishing sample differences (Fig. 2A and B). According
to the analysis, we identied 9 metabolites from patients'
samples before and aer chemotherapy as listed in Table 2 and
shown in Fig. 2B as red triangles. These 9 metabolites existed in
all the 20 samples. The 9metabolites included 1 amino acid and
8 lipids (Table 2), and it was worth noticing that all these 9
compounds were mostly signicantly down regulated aer
chemotherapy as shown in Fig. 2C. The results indicated that
these 9 compounds might be associated with the treatment of
refractory leukemia, or play roles in response to the treatments.

Metabolomics is progressively being used for diagnosing
cancer, predicting its recurrence, and determining prognosis
which aims to comprehensively assessing endogenous metab-
olites including amino acids, carbohydrates, lipids, peptides,
nucleic acids, and vitamins in specic cells, tissues, or bodily
uids at a given time.23 So far, a great number of metabolomic
studies focusing on various cancers including AML, CRC,
gastric cancer, pancreatic cancer, and liver cancer have been
performed for identifying novel cancer biomarkers and devel-
oping cancer therapeutics.15–19 Generally, there are main
analytical platforms for metabolomics analysis: gas chroma-
tography (GC), liquid chromatography (LC), capillary electro-
phoresis (CE) coupled to MS and NMR spectroscopy. Each has
its own unique advantages and disadvantages; for example,
NMR is highly selective and non-destructive but with relatively
low sensitivity. Musharraf et al. recently employed 1H NMR
spectroscopy to investigate the serum of ALL and AML patients
and compared with two controls (healthy and aplastic
This journal is © The Royal Society of Chemistry 2018
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Fig. 1 The overall metabolomics profile of RAML patients before and post chemotherapy. (A) Heat map representation of 390 metabolites
between patients before chemotherapy (patient 1-1 to patient 10-1) and post treatment (patient 1-2 to patient 10-2) in hierarchical cluster
analysis. Each column represents a patient's sample, each row represents a metabolite. The color scale shows the metabolite level in serum, the
brighter red color indicates the higher levels; similarly, the brighter green color means the lower content t of the metabolite. (B) The metabolites
correlation scatter diagram of the 10 patients before and after chemotherapy. In the plots, each dot is a metabolite, the y-axis shows the
metabolite level in the blood serum before the chemotherapy, the x-axis shows the metabolite level in the blood serum post the chemotherapy.
Correlation r values are shown on the plots.
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anemia).38 Only thirty-seven putative metabolites were identi-
ed using Carr–Purcell–Meiboom–Gill (CPMG) sequence. MS-
based metabolomic proling is sensitive and robust, requiring
certain process of sample preparation. Evidences have already
demonstrated their (especially GC-MS and LC-MS) potential as
powerful analytical method for broad-spectrum identication
and quantication of metabolites in cells, tissues, or bodily
uids in human health and disease state.31,39,40 In the present
study, we took advantage of an established non-targeted
metabolomic proling platform that combined UPLC/MS/MS
with GC/MS, a total of 390 named metabolites were identied
in the tested 20 samples, which uncovered so far the broadest
serum metabolome for acute leukemia patients as compared
with previous studies.38,41–47 Moreover, those 390 metabolites
were mapped to 8 super-pathways and 71 sub-pathways. Obvi-
ously, most of the central metabolic pathways were included
This journal is © The Royal Society of Chemistry 2018
among the identied metabolites and we believed this non-
targeted metabolomic proling platform successfully eluci-
dated the serum metabolome for RAML patients.

Cancer cells usually exhibits unique metabolic patterns to
supports their growth and proliferation.48 The most well char-
acterized Warburg effect is observed in many types of cancers,
which generally exhibits disturbance in glycolysis. It is charac-
terized by an increase in glucose uptake and lactate production,
as well as a decrease in oxidative phosphorylation.49 Moreover,
increased glutamine metabolism is another commonly
observed metabolic alteration, which plays important roles in
balancing cellular redox homeostasis and supports the growth
and proliferation of cancer cells.50 AML is a life threatening
hematological disease with diverse genetic abnormalities.
Previous metabolomic studies linked AML with perturbation of
metabolic pathways included glucose metabolism, fatty acid
RSC Adv., 2018, 8, 14445–14453 | 14449
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Fig. 2 Significantly changed metabolites in blood serum between samples before and post chemotherapy. (A) Score plot from OPLS-DA model
showing the discrimination of samples from before and post chemotherapy in 3 dimensions. Square shapes represent samples from patients
before treatment, and round shapes represent patient samples after treatment. Samples from each patient were labeled with different colors. (B)
S-plot derived from OPLS-DA model. Metabolites playing key roles for separation are marked with red triangle. (C) The relative levels of
significantly changed 9 metabolites between patient samples before and post chemotherapy, which were all the metabolites levels were
normalized to the median level of each compound at the normalization step.
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metabolism, glycerophospholipid metabolism and so on. For
example by using 1H-NMR spectroscopy in combination with
multivariate data analysis, Wang et al. analyzed the phenotypic
characteristics of serum metabolite composition in a cohort of
183 patients with de novo acute myeloid leukemia together with
Table 2 List of the 9 significantly different metabolites before and after

Super pathway Sub pathway Bioch

Amino acid Histidine metabolism Imida
Lipid Glycerolipid metabolism Glycer

Long chain fatty acid Nervo
Lysolipid 1-Arac

1-Lino
1-Oleo
1-Palm

Medium chain fatty acid Capro
Hepta

a The biochemical name is identied but has not been conrmed based o

14450 | RSC Adv., 2018, 8, 14445–14453
232 age- and gender-matched healthy controls.42 The results
showed signicant serum metabolomic differences involved in
multiple metabolic pathways including glycolysis/
gluconeogenesis, tricarboxylic acid (TCA) cycle, biosynthesis of
proteins and lipoproteins, metabolisms of fatty acids and cell
chemotherapy

emical name Fold change p-value

zole lactate 0.72 0.0071
ol 3-phosphate 0.84 0.0495
nate (24:1n9) 0.68 0.0161
hidonoyl-GPC (20:4n6)a 0.72 0.0076
leoyl-GPC (18:2) 0.74 0.0113
yl-GPC (18:1) 0.79 0.0249
itoyl-GPC (16:0) 0.84 0.0203
ate (6:0) 0.78 0.0142
noate (7:0) 0.82 0.0288

n a standard.

This journal is © The Royal Society of Chemistry 2018
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membrane components especially choline and its phosphory-
lated derivatives.42 Meanwhile, Chen et al. identied an altered
glucose metabolism signature in AML patients, and more
importantly, a panel of 6 metabolite biomarkers involved in
glucose metabolism is identied with prognostic value for
cytogenetically normal AML.44 Additionally, aberrant metabo-
lism pathways including glycolysis, TCA cycle, lipoprotein
changes, choline and fatty acid metabolisms were reported in
ALL and AML patients by Musharraf et al.41 In the present study,
very subtle metabolic differences including only 9 metabolites
were changed in RAML patients with salvage chemotherapy,
such as imidazole lactate, glycerol 3-phosphate, three fatty
acids, and four lysolipids. Interestingly, levels of all these nine
metabolites involved in amino acids and lipids metabolism
were low which were mostly in agreement with the observations
in the previous study.38 It should be pointed out that very few
benecial or even bad effects of the treatment in RAML patients
were observed in our study, which to some extent mean that the
disease here was on the progress and even worsened. These
ndings suggested that during the development of AML
including the initial and advanced stages of disease, both the
metabolism of amino acids and lipids played important roles as
energy production.38
Conclusions and prospects

In conclusion, here we employed a non-targeted metabolomics
proling platform that combined UPLC/MS/MS with GC/MS
together and for the rst time disclosed the feature of metab-
olomics in 10 RAML patients pre and post chemotherapy. A
total of 390 metabolites mapped to 8 super-pathways and 71
sub-pathways were identied. 9 metabolites in the blood serum
were found to be changed signicantly upon one-time chemo-
therapy, which might be related to the disease status and
development and treatment, and may provide potential
biomarkers in the future for RAML. However, there were still
several deciencies in this study: the samples number was
small and the therapeutic effects of chemotherapy on these
enrolled patients were minimal. In the next steps, these nd-
ings on metabolic changes need further investigation, in
combination with the genomics, proteomics data for the
verication.
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