Correction: Synthesis and structural characterization of metal complexes with macrocyclic tetracarbene ligands

Fan Fei, Taotao Lu, Xue-Tai Chen* and Zi-Ling Xue

The authors regret that the excitation wavelengths λ_{ex} for complexes 1, 4 and 5 are incorrect in the published article. They should be 340 nm for 1, 345 nm for 4 and 340 nm for 5. Thus, the sentences on p. 13447, left column, line 12 should read:

The emission spectra in acetonitrile solution (1.0 μM) show a band at 402 nm ($\lambda_{ex} = 340$ nm) for 1 and two bands at 405 nm and 532 nm for 4 ($\lambda_{ex} = 345$ nm) (Fig. 5), corresponding to the blue-violet and yellow-green emissions, respectively. Compared to 1 and 4, the emission spectrum of 5 shows two weak bands at 389 nm and 520 nm ($\lambda_{ex} = 340$ nm) (Fig. 5). The emission quantum yield (Φ) of 4 was determined to be 0.28 ($\lambda_{ex} = 345$ nm) relative to quinine sulfate, while that of 5 was very low, below 0.05 ($\lambda_{ex} = 340$ nm).

In addition, the caption of Fig. 5 should read:

Fig. 5 (upper) Absorption spectra of (H₄L₁)(PF₆)₄ (black), 1 (red), 4 (green) and 5 (blue). (bottom) Emission spectra of 1 (red, $\lambda_{ex} = 340$ nm), 4 (green, $\lambda_{ex} = 345$ nm) and 5 (blue, $\lambda_{ex} = 340$ nm). All the samples were 1 μM in acetonitrile.

In the ESI, page 12, the excitation wavelength used to measure the emission quantum yield of 4 should be 345 nm. The ESI was corrected on 25th April 2018.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

* State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. E-mail: xtchen@nju.edu.cn

Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA