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Theoretical advances in understanding and enhancing the 
thermostability of energetic materials 

Runze Liua ,d, Jianyong Liub*, and Panwang Zhouc,d * 

The quest for thermally stable energetic materials is pivotal in advancing the safety of applications ranging from munitions 

to aerospace. This perspective delves into the role of theoretical methodologies in interpreting and advancing the thermal 

stability of energetic materials. Quantum chemical calculations offer an in-depth understanding of the molecular and 

electronic structure properties of energetic compounds related to thermal stability. It is also essential to incorporate the 

surrounding interactions and their impact on molecular stability. Ab initio molecular dynamics (AIMD) simulations provide 

detailed theoretical insights into the reaction pathways and the key intermediates during the thermal decomposition in the 

condensed phase. Analyzing the kinetic barrier of rate-determining steps under various temperature and pressure 

conditions allows for a comprehensive assessment of thermal stability. Recent advances in machine learning have 

demonstrated their utility in constructing potential energy surfaces and predicting thermal stability for newly designed 

energetic materials. The machine learning-assisted high-throughput virtual screening (HTVS) methodology can accelerate 

the discovery of novel energetic materials with improved properties. As a result, the newly identified and synthesized 

energetic molecule ICM-104 revealed excellence in performance and thermostability. Theoretical approaches are pivotal in 

elucidating the mechanisms underlying thermal stability, enabling the prediction and design of enhanced thermal stability 

for emerging EMs. These insights are instrumental in accelerating the development of novel energetic materials that 

optimally balance performance and thermal stability.  

 

1. Introduction,  

Energetic materials, generally encompassing a diverse array of 

explosives, propellants, and pyrotechnics, are extensively 

utilized in both military and industrial domains.1 These 

substances can be thought as controllable storage systems for 

vast amount of chemical energy, which, when harnessed, can 

be directed to achieve high-powered outcomes. In the present 

day, there is a continuing need for new high energy density 

materials (HEDMs) with improved properties, such as superior 

detonation performance, reliably high stability, cost efficiency, 

ease of synthesis, environmentally benign, and safe for handling 

and transportation2. Basically, detonation performance and 

safety are the two most critical indicators in assessing energetic 

materials, directly determining their practical applicability3, 4. A 

new energetic material will be discarded if it has inadequate 

energy or fails to meet the safety standards. Traditional HEDMs 

are typically molecular crystals of organic CHNO-based 

molecules (TNT, TATB, RDX, etc.). However, from TNT to the 

synthesis of ONC5, spanning over a century, the energy density 

per unit mass only increased by a factor of 1.86, 7. The 

advancement of traditional CHNO energetic materials has 

encountered a significant obstacle in further improving their 

energy density8. Nowadays, research trends for novel energetic 

materials have transitioned from the synthesis of relatively 

simple organic molecules, to the creation of more complex 

molecular architectures.9-11 The strategies such as constructing 

cage-like structures (CL-20, ONC, TEX) or using nitrogen-rich 

heterocyclic scaffolds (DDF, DTTO, TKX-50, etc.) are utilized to 

enhance the density and performance.12 In recent years, 

advancements in the development of nitrogen-rich compounds 

have propelled polynitrogen materials to the forefront of 

energetic materials research, which are widely regarded as the 

next-generation HEDMs13. Although these novel HEDMs exceed 

the traditional energetic materials in terms of energy, most of 

them are not adequate for real applications due to high 

sensitivity or low thermal stability. Generally, high performance 

is accompanied by inferior stability14, 15. Thereby, finding a 

proper equilibrium between superior detonation capability and 

good safety for an EM remains a huge challenge. 

For HEDM development, experimental researches are often 

associated with elevated level of risk, costs, and development 

timelines, as there are many unknowns at the molecular and 

electronic levels that are beyond the scope of the experimental 

capabilities. In contrast, computational approaches can provide 
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microscopic insights that are often difficult or impossible to 

achieve experimentally, thereby accelerating the discovery, 

synthesis, and optimization of advanced HEDMs16. Theoretical 

study for detonation performance based on quantum 

mechanical17 and semi-empirical18, 19 methods have 

demonstrated their effectiveness in accurately characterizing 

key factors, including heat of formation (HOF), as well as 

detonation velocity and pressure. Although safety stands out as 

a crucial indicator for EMs, its inherent complexity presents 

significant challenges in theoretical understanding and 

predictive modeling. A multitude of factors can affect the safety 

of energetic materials. An EM can be accidentally triggered 

through mechanical, thermal, or electrical stimuli. Therefore, 

understanding the relationship between molecular structures 

and stability is essential for ensuring their safety. In many cases, 

the action of these stimuli causes internal heating of the EM. 

For example, shock or impact to the energetic material can 

induce the formation of localized hot spots20, 21, which are 

pivotal in initiating decomposition reactions within the crystal 

structures. Thus, sensitivity to ignition is often correlated with 

the thermal decomposition processes, and thermostability is 

commonly used as a key indicator to assess the safety of EMs.22, 

23 Typically, thermal stability (heat resistance) of EMs is vital for 

their safe storage and transportation, ensuring that the 

energetic materials can withstand decomposition, deflagration, 

or detonation induced by thermal stress4. Although many 

thermal analysis techniques24-28 can provide the information of 

decomposition temperatures and thermolysis products of 

energetic materials,29-32 these methods are incapable of directly 

exploring the intricate reaction mechanisms in EMs. In this 

context, theoretical investigation emerges as a compelling 

alternative, enabling systematic exploration of thermostability 

properties at the microscopic scale.  

From a molecular perspective, energetic materials can be 

conceptualized as residing in metastable local minima on their 

potential energy surfaces, with multiple kinetic barriers that 

separate them from the product states. The kinetic stability of 

a given EM is a critical determinant of its thermostability: a 

material with robust kinetic stability typically exhibits enhanced 

thermostability. Over the past decade, significant progress has 

been made in applying quantum mechanical calculations, 

especially density functional theory (DFT) methods as well as 

other post-Hatree-Fock approaches (CCSDT, MPn, CBS, etc.) to 

accurately characterize the thermal decay mechanisms of 

unimolecular and bimolecular reactions in the gas phase33, 34. 

These theoretical studies have yielded profound insights into 

the reaction energies, activation barriers, and reaction rates for 

the thermolysis pathways. At molecular and electronic level, 

conducting ab initio calculations can also explore a host of 

important indicators for thermal stability, including HOF19, bond 

dissociation energy (BDE)35, electrostatic potential (ESP)36, 

Mulliken charge distribution, and HOMO-LUMO gap37, etc. 

Furthermore, theoretical approaches are also essential to offer 

insights into molecular engineering to enhance the thermal 

stability of HEDMs38, 39. Strategic modifications to molecular 

architectures or introducing specific substituents40, 41 can 

potentially elevate bond strengths and alter the overall 

electronic structure of the EM compounds, tailoring energetic 

materials for desired properties with enhanced stability. 

However, energetic compounds with good molecular stability 

often suffer from undesirable detonation performance, which 

stems from the trade-off between thermostability and 

detonation performance. Despite this, there are high-

performing energetic materials that, while exhibiting less 

favorable unimolecular stability, demonstrate commendable 

thermal stability.42-44 This is largely due to the fact that 

unimolecular stability does not necessarily correlate with the 

behavior of EMs in aggregated states.45 Within crystalline 

structures, intricate intermolecular interactions can profoundly 

influence overall stability, diverging from the properties 

obtained in isolated molecular conditions. Zhang et al.46-48 

demonstrated a correlation between crystal packing and impact 

sensitivity. Designing hydrogen bonding49, 50, and energetic 

cocrystals51-53 can also exert influences on the thermal stability 

of the EMs. Therefore, quantitative analysis of intermolecular 

interactions, including Hirshfield surface analysis,17 is essential 

for estimating the stability of EMs. 

On the other hand, gaining mechanistic insight into the initial 

thermal decomposition reactions is pivotal for understanding 

and assessing the thermal stability of a specified EM. A thorough 

knowledge of initial bond ruptures, key intermediates, and 

pivotal exothermal reactions in the thermal decomposition 

process can help to better understand the thermal stability 

properties, and could potentially aid in the development of 

newer and safer EMs. Theoretically, molecular dynamics 

simulation techniques, utilizing ReaxFF, semi-empirical or ab 

initio approaches for potential energy description, are widely 

utilized to explore the thermal decomposition mechanisms of 

EMs at the molecular level.54 These simulations are capable of 

depicting the breaking and formation of chemical bonds in 

complex systems under extreme conditions (high temperature 

or pressure), as well as statistically analyzing intermediates, 

products, and reaction pathways with high temporal and spatial 

resolutions during thermal decompositions.  

In recent years, the application of machine learning (ML) 

techniques in energetic materials has become a captivating 

field.55 ML is utilized to predict the physical and chemical 

properties of energetic materials, such as density, performance, 

and thermal stability.56, 57 By training ML models on datasets 

comprised of known compounds and their properties, 

researchers can predict these properties for new, untested 

compounds. ML models also play an essential role in the design 

and discovery of new energetic materials. By learning from the 

structure-property relationships of known materials, ML 

algorithms can guide the design of new molecules with tailored 

properties58, 59. Thus, machine learning techniques open up new 

avenues for predicting and enhancing the thermostability of 

novel energetic materials.  

Nowadays, the advancements in computational techniques, 

especially high-throughput computing (HTC) and high-

performance computing (HPC), is enabling cutting-edge first-

principles calculations and machine learning approaches to 

theoretically investigate the thermal stability of energetic 

materials. In this perspective, we will highlight the recent 
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theoretical advancements in the study of thermal stability of 

energetic materials, and summarize the theoretical insights and 

strategies for creating novel energetic materials with enhanced 

thermostability. 

2. Theoretical insights for molecular stability  

To comprehensively understand the stability of energetic 

materials, it is imperative to delve into the molecular and 

electronic level theoretically, analyzing the stability of these 

materials. Energetically, traditional EMs are nearing their 

theoretical limit. Recently, nitrogen-rich heterocycles, and even 

all-nitrogen compounds, have been developed at the current 

state of the art. Apart from higher energy density, the use of 

pure nitrogen and simple polynitrogen compounds as HEDMs 

results in the production of clean N2 molecules upon 

decomposition. However, their intrinsic instability presents 

substantial challenges in their synthesis and manipulation. 

Many polynitrogen species are unstable at ambient conditions 

and can only exist in high pressure environments.60, 61 Thus, 

efforts are focused on stabilizing polynitrogens, like the 

promising pentazole, for use as building blocks for energetic 

materials. As the last member of the azole family, pentazole has 

a unique five-membered nitrogen ring structure. The synthesis 

of arylpentazoles (ArN5) in the 1950s marked a milestone in 

pentazole chemistry62-66, yet these compounds can only exist at 

temperatures below -40 °C. This limited thermal stability for is 

primarily attributed to the low kinetic barrier for the N2-leaving 

process, which has impeded their practical use. Thus, 

discovering strategies to sufficiently increase the kinetic 

stability of the N5-ring within ArN5 is crucial for their utility in 

HEDM chemistry.  

 

Fig. 1 (a) Schematic view for arylpentazoles decomposition with 
substituents 0-7; (b) selected geometries of transition state 
structures; (c) Reaction barriers of decomposition of para-
substituted arylpentazoles 0-7. Reproduced with permission from 
ref. 72. Copyright 2019, The Royal Society of Chemistry. 

Though chemists have made numerous attempts to 

strengthen the N5-ring by substituent engineering67, 68, the 

reported stabilization effect for ArN5 remains below 

expectations. From a theoretical perspective, Brinck et al.69 

conducted a DFT investigation into the decomposition barriers 

of various para-substituted ArN5 compounds. Their calculations 

revealed that the decomposition energy barriers for N5-ring is 

less than 22 kcal/mol, and the introduction of electron-

withdrawing substituents lowers the Gibbs free energy barriers. 

Comparable findings were also reported by Burke et al.70 

employing high-level computational methods of CCSDT and DFT 

for RN5 and ArN5. Gong et al.71 conducted an extensive DFT 

study examining the thermal stability of ArN5 in the presence of 

various para- and meta- substituents. A recent theoretical 

investigation for the thermostability of ArN5 in both gas and 

solvents was reported by Liu et al.72 (Fig. 1). These findings 

indicate that substituents that facilitate increased electron 

density on the N5 ring would enhance its stabilization, which 

suggests a potential strategy for stabilizing these molecules.  

 

Fig. 2 (a) Arylpentazoles as the parent models for co-stabilization (CS); 
(b) a schematic view of decomposition processes; (c) rate-
determining energy barrier of ArN5 without and with CS stabilization 
(CS = -nBH2 and -nCH2BH2; n = 1, 2). Reproduced with permission 
from ref. 73. Copyright 2021, The Royal Society of Chemistry. 

From a theoretical standpoint, the limited kinetic stability of 

N5 is attributed to the repulsion between the electron lone pairs 

(LP) of nitrogen atoms. Addressing this issue, Ding et al.73 

modeled the addition of a Lewis acid (LA) group to the ortho 

carbon of the benzene ring within ArN5 compounds. This 

strategic introduction of LA sites is expected to interact with the 

proximate N atoms, effectively reducing LP repulsion and thus 

contributing to a significant co-stabilization effect. For the LA 

substitution, two types of LA moieties, -BH2 and -CH2BH2, were 

employed to modify one or both ortho positions on the benzene 

rings of ten parent arylpentazoles (see Fig. 2(a)). The energy 

barrier for the rate-determining step of ring decomposition was 

calculated with the CBS-QB3 method. As shown in Fig. 2(c), 

incorporating the LA groups into ArN5 molecules significantly 

enhances their thermal stability. Notably, the highest kinetic 

barrier of 40.83 kcal/mol was achieved for ArN5 (06), doubling 

the value of 20.35 kcal/mol for the parent ArN5 molecule (see 

Fig. 2(c)). This theoretical design of novel functionalized ArN5 

compounds is ascribed to an innovative co-stabilization strategy, 

which entails attaching a Lewis acid moiety to the neighbouring 

nitrogen atoms of the N5-ring. While this concept has not yet 

been realized experimentally, the predicted enhancement in 
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thermal stability at the CBS-QB3 level provides a direction for 

the synthesis of more heat-resistant pentazole derivatives. 

Compared to ArN5, pentazolate anion (cyclo-N5
-) is a much 

more prominent pentazole variant. Extensive theoretical 

research indicated that this all-nitrogen anion exhibits greater 

thermal stability than RN5 compounds74-80. Theoretical 

investigations using a highly accurate CCSD(T)/CBS approach 

conducted by Dixon et al.79 demonstrated that ring 

decomposition of gas-phase cyclo-N5
- has an energy barrier of 

27.2 kcal/mol, suggesting that cyclo-N5
- could potentially 

maintain stability in isolation under ambient conditions. 

Motivated by theoretical insights, there have been increased 

experimental efforts towards the synthesis of pentazolate anion 

synthesis over the past two decades.81-84 The breakthrough in 

first synthesizing a stable pentazolate crystal, PHAC 

((N5)6(H3O)3(NH4)4Cl), was achieved by Hu et al.85 in 2017. This 

pentazolate salt was synthesized from a mild acidic solution of 

arylpentazole with m-CPBA and [Fe(Gly)2]. Since then, the 

experimental and computational research on cyclo-N5
- was 

greatly enriched86-88. While Liu et al.89 have theoretically 

clarified the generation mechanism of cyclo-N5
- from ArN5, 

intriguing questions persist regarding its stability: why the N5
- 

anion remains unprotonated in acidic solutions and within the 

PHAC crystalline structure, even when in close proximity to 

ammonium ions.  

 

Fig. 3 (A) Atomic orbital diagram of cyclo-N5
- anion; (B) top and side 

views of the LDOS isosurface at the lowest energy level of the 
aromatic π-system; (C) LDOS isosurface at the lowest energy level of 
the aromatic σ-system Reproduced with permission from ref. 91. 
Copyright 2019, Wiley. 

To address this, Zhang et al.90-93 delved into a series of in-

depth theoretical analyses focused on the stabilization 

mechanism of cyclo-N5
-, and an interesting dual aromatic 

feature was identified within the compound. As shown in Fig. 3, 

the calculated LDOS surface for the minimum energy level of π 

Mos clearly indicates a pronounced π aromaticity. This is 

quantitively confirmed by the very negative nucleus-

independent chemical shifts calculated at 1 Å above the ring 

centre in z-axis (NICS(1)π). Interestingly, unlike typical nitrogen 

lone pairs which tend to be localized, the LDOS for nitrogen LPs 

in cyclo-N5
- are fully delocalized in the equatorial plane, forming 

a flower-like pattern (Fig. 3(c)). This indicates the presence of 

intriguing σ-aromaticity, as supported by the NICS(0)σ value (-

13.6). Thus, both π- and σ-electrons independently contribute 

to the overall aromaticity of cyclo-N5
-. This underscores the 

critical role of the net charge on the N5-ring in establishing its 

dual aromaticity. Upon ionization to a neutral state, the 

redistribution of LP electrons significantly elevates the total 

energy of the system, making the neutral N5 lose its stability. 

 The stability and reactivity of cyclo-N5
- in acidic conditions 

were further explored using theoretical models that examined 

cyclo-N5
- in the presence of hydroniums and within the PHAC 

crystalline structures. As depicted in Fig. 4(A) and (B), cyclo-N5
--

hydronium cluster models with fewer than three binding 

hydronium ions (c = 1, 2) result in protonation of cyclo-N5
-, 

leading to a reduction in dual aromaticity (Fig. 4(D)). For c = 3, 

the protonation of cyclo-N5
- attains a critical threshold. As the 

number of surrounding protons increases to 4 and 5 (simulating 

the PHAC crystalline structure), cyclo-N5
- relinquishes its proton 

affinity to restore the dual aromaticity. This shift renders cyclo-

N5
- resistant to the acid-base neutralization principle, resulting 

in its unprotonated state. Fig. 4 (C) illustrates that an increase 

in the number of adjacent protons weakens the LP repulsion 

within the σ-system, which in turn leads to a shortening of the 

N-N bond length within cyclo-N5
-. It is in consistent with the 

bond strengths showing in Fig. 5, which indicates that the 

clustering of H3O+ enhances the N-N bonds within cyclo-N5
-. 

Notably, the N5
-···4H3O+ cluster, with reduced LP repulsion and 

intact dual aromaticity, offers optimal stability enhancement. 

This configuration strengthens all N-N bonds by approximately 

57.16 kcal/mol, significantly surpassing the stability of its naked 

counterpart.  

 

Fig. 4 (A) Optimized structures of the cyclo-N5
- complex /crystal 

at various acid concentrations; (B) energetic landscape of the 
cyclo-N5

- complex/crystal as a function of the N-H distance; (C) 
LDOS at the antibonding energy level plotted in the equatorial plane 
of cyclo-N5

- under various acidities; (D) NICSzz(0.6) total and 
NICSzz(0.6) σ of the cyclo-N5

- anion under various acidities and 
the corresponding LDOS isosurfaces plotted for the lowest 
energy level (nonbonding) of the aromatic π- and σ- systems. 
Reproduced with permission from ref. 90. Copyright 2019, 
American Chemical Society. 

The theoretical insights demonstrated that only in a sufficiently 

acidic environment can cyclo-N5
- achieve enhanced stability in all of 

its N-N bonds through the formation of the hydrogen-bonded 

complex with surrounding electrophiles. Without this, cyclo-N5
- 

cannot be successfully isolated. To realize a high-yield synthesis of 

the cyclo-N5
-, the proton concentration (H3O+ or NH4

+) should be 

regulated for a high-yield synthesis of cyclo-N5
-. This dual aromaticity, 
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as well as the acid stabilization mechanism discovered in pentazolate 

anion, were also clarified in tetrazole and triazole-based anions 

(N4C1H1
- and N3C2H2

-)92, exemplifying a general characteristic for the 

five-membered pnictogen ring systems. Recently, a theoretical 

exploration of the novel N4
2- compound was also discovered to be 

acid stabilized by hydroniums93, revealing a significant bond strength 

for N-N bonds within N4
2--···4H3O+ complex (Fig. 6). This mechanism 

should be applicable to other all-nitrogen aromatic compounds, 

which sheds light on the efficient isolation and stabilization of these 

compounds. 

  

Fig. 5 N-N bond strengths in the cyclo-N5
- anion at various acid 

concentrations with respect to the C-N bond strength in HPP 
(dashed line). Reproduced with permission from ref. 90. 
Copyright 2019, American Chemical Society.  

 

Fig. 6 (a) bond strength in N4
2- shows that the firmness of N4

2- 
continuously enhances as the acidity increases; (b) Lowest σ orbital 
of nitrogen lone pairs indicates that nitrogen lone pairs are pulled by 
the proton in the N4

2--···4H3O+ complex, which weakens the inter-
lone-pair repulsion along the N4

2- ring and facilitates N-N reinforcing; 
(c) Lowest π orbital indicates that π electrons of N4

2- can delocalized 
in a much broader region when forming into N4

2--···4H3O+ complex, 
facilitating energy reduction. Reproduced with permission from ref. 
93. Copyright 2022, Elsevier.  

In addition to the direct synthesis of pentazole compounds at 

ambient pressures, synthesizing a high-pressure stable pentazole 

compound and recovering it back to ambient conditions is an 

alternative and flexible approach to achieve stabilized pentazolate 

salts.94-97 Theoretically, first-principles crystal structure prediction 

has been proven to be useful in searching for stable crystal 

structures.98-100 This approach involves exploring a wide range of 

stoichiometries, symmetries, orientations, and spatial packings, at 

assumed pressures. Crystal structures are evaluated by calculating 

their total energies under these conditions and analyzing their 

energy landscapes. The most energetically favorable structures are 

then considered stable candidates. These candidates will undergo 

further stability checks through phonon calculations and molecular 

dynamics simulations. Alkali metals are capable of enhancing the 

stability of pentazolate in the solid phase: alkali elements promote 

the electron transfer to cyclo-N5
-, thus enabling both aromaticities in 

the isolated N5
- and ionic bonding between them within the 

crystalline structure. Recent studies have conducted first-principles 

calculations using CALYPSO101 and USPEX102 to extensively explore 

stable alkali metal-cyclo-N5
- crystal structures under various 

pressures. The crystal structures of CsN5 and LiN5 were theoretically 

predicted and synthesized using high-pressure techniques.94, 95, 98 It 

suggests that crystal engineering based on theoretical approaches 

can potentially offer valuable insights prior to the experimental 

synthesis of energetic materials, and accelerate the design and 

synthesis of novel HEDMs with superior performance and stability. 

3. Thermal decomposition mechanisms in the 
condensed phase 

Gaining mechanistic insight into the initial decomposition 

reactions is essential for understanding and assessing the 

thermal stability of a specified EM. The crystalline environment 

is important for the initial decomposition mechanisms of 

energetic molecules, which could render reactions mechanisms 

that are significantly different from those under gas-phase 

conditions. A recent theoretical study by Liu et al.103 have 

investigated the initial decomposition pathways and energy 

barriers of typical energetic materials, FOX-7 and RDX, under 

both gas phase conditions and crystalline environments. By 

constructing QM/MM models to describe decomposition within 

the crystalline environment, it has been shown that effects of 

the crystalline environment lead to higher kinetic barriers, and 

reaction pathways that differ greatly from those of gas-phase 

conditions. Therefore, to correctly interpret the initial reaction 

mechanisms of energetic materials, it is crucial to consider the 

decomposition reactions within the crystalline environment in 

computational simulations. The thermal and kinetic aspects of 

condensed phase decomposition reactions can be extremely 

complex due to a large number of parameters, intermediates, 

and an overlap in thermal decomposition traces. Molecular 

dynamics simulation techniques, utilizing ReaxFF, semi-

empirical or ab initio approaches for potential energy 

description, are capable of revealing thermal decomposition 

mechanisms of EMs in extreme conditions (high temperature or 

pressure). 

Recently, using MD simulations combined with QM 

calculations, thermal decomposition mechanisms for a series of 

novel HEDMs as well as energetic cocrystals have been 

theoretically explored104-107. One such example is TKX-50 (5,5’-

bistetrazole-1,1’-diolat), a recently developed nitrogen-rich 

energetic material with high energy content and 

performance.108 As shown in Fig. 7, TKX-50 is an azole-based 

ionic crystal with high nitrogen content. The detonation 

performance of TKX-50109 (D = 9.7 km/s, pC-J = 42.4 GPa) was 
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calculated to be close to CL-20, and its mechanical and thermal 

sensitivity was found to be lower than currently used explosives, 

such as RDX, HMX, and CL-20. TKX-50 also exhibited low toxicity, 
positioning it as a highly promising alternative to replace the 

more toxic RDX in practical applications.  

 

Fig. 7 Crystal structure of TKX-50. Reproduced with permission from 
ref. 104. Copyright 2014, American Chemical Society. 

  

Fig. 8 Fragment analysis during the cookoff simulation of TKX-50 as 
the temperature is ramped at a uniform rate of 180 K/ps from 300 K 
to 3000 K. Reproduced with permission from ref. 104. Copyright 2014, 
American Chemical Society. 

Goddard et al.104 conducted a theoretical simulation of the 

thermal decomposition dynamics of TKX-50 materials. To 

achieve computation efficiency with good accuracy, the semi-

empirical SCC-DFTB was used to perform a temperature-

programmed cookoff simulation with temperature increasing 

continuously from 300 K to 3000 K through heating. As 

illustrated in Fig. 8, a proton transfer to the anion group occurs 

when temperature is 491 K, leading to the formation of 

conjugated base hydroxylamine (NH2OH) and acid H-diolate (H-

C2O2N8)-. With the temperature reaching 1700 K, N2O appears, 

and at 1900 K, N2 is observed. The presence of these products 

signifies the rupture of the (C(NO)N3) ring. This ring-breaking 

reactions is regarded as pivotal in the initial reactions of TKX-50, 

as they render energy release to promote the subsequent 

decomposition reactions. Above 1900 K, secondary products of 

H2O and NH3 is observed, indicating the decomposition and 

recombination of NH3OH+. 

The MD simulations are limited in their ability to provide 

mechanistic insights such as reaction barriers and transition 

state information. To address this, reaction pathways were 

subsequently elucidated through QM calculations employing 

DFT methods, utilizing cluster models derived from the MD 

simulation results. Based on QM calculations, the protonation 

of the anion group within TKX-50 leads to kinetic barriers of 37.2 

kcal/mol and 59.5 kcal/mol for the production of N2 and N2O, 

respectively. This indicates that the initial reaction 

preferentially cleaves that ring to yield N2 over N2O. Notably, 

these kinetic barriers are significantly lower than those 

associated with the direct decomposition of the anion (45.1 

kcal/mol and 72.2 kcal/mol), indicating that proton transfer 

decreases the reaction barriers for both releases of N2 and N2O 

by approximately 10 kcal/mol. These calculations suggest that 

the strategy to design more stable azole-based HEDMs is to 

prevent the proton transfer between the cation and anion. 

  

Fig. 9 Most stable molecular isomers of DTTO (c1 and c2), and their 
predicted crystal structures predicted from DFT calculations. 
Reproduced with permission from ref. 110. Copyright 2015, The 
Royal Society of Chemistry. 

Di-tetrazine-tetroxide (DTTO) is also a typical nitrogen-rich 

energetic material with high expected density and performance. 

The theoretical predicted molecular structures and crystal 

packing unit cell110 are displayed in Fig. 9. Recent research by 

Goddard et al.111 has explored the condensed phase thermal 

decomposition mechanisms of DTTO using AIMD. Fig. 10 shows 

the dynamics of thermal decomposition for c1- and c2-DTTO 

crystals across a temperature range from 300 K to 3000 K. From 

the simulation results, it shows that no DTTO decomposes 

below 2000 K. For c1-DTTO, the initial decomposition occurs at 

13.2 ps (T = 2100 K) through an unimolecular fragmentation that 

yields two N2O molecules. For c2-DTTO, the first reaction was 

found at 2672 K (17.5 ps), involving an intermolecular reaction 

between two c2 molecules, leading to the formation of a N2 

molecule at 17.9 ps (T = 2700 K) and a N2O molecule shortly 

thereafter. Fig. 11 outlines the rate-determining reaction 

pathways, highlighting the initial bond-breaking and gas 

molecule generation process calculated using the DFT method. 

The results indicate that the initial decomposition reactions are 

influenced by crystal packing, as well as temperature and 

pressure. The thermal decay of c2-DTTO involves a bimolecular 

N2 release with a higher kinetic energy than c1-DTTO, 

suggesting that c2-DTTO has a higher thermal stability. The 

reaction barriers of DTTOs (45.9 and 48.1 kcal/mol for c1- and 

c2-DTTO, respectively) are found to be higher than the NO2 

dissociation barriers of RDX (39.0 kcal/mol), HMX (39.8 
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kcal/mol), and CL-20 (37.6 kcal/mol), that calculated at the 

same computational level. This comparison suggests that DTTO 

possesses superior thermal stability relative to these energetic 

materials.  

  

Fig. 10 Species analyses for the decomposition of (a) c1-DTTO; (b) 30 % 
uniaxial compressed c1-DTTO; and (c) c2-DTTO heated from 300 to 
3000 K over 20 ps. Reproduced with permission from ref. 111. 
Copyright 2015, The Royal Society of Chemistry. 

 

Fig. 11 (a) Mechanism of c1-DTTO unimolecular decomposition 
starting from the reactive intermediate extracted from the AIMD 
trajectory; (b) mechanism from AIMD simulation by which two c2-
DTTO molecules combine to release N2 molecule. Reproduced with 

permission from ref. 111. Copyright 2015, The Royal Society of 
Chemistry. 

Combining AIMD simulations with high-level QM calculations 

offers a detailed, molecular-level understanding of the initial 

decomposition reactions in condensed phases. These 

approaches enable the extraction of intricate chemical 

information, encompassing both unimolecular and 

multimolecular reaction sequences, and facilitate the 

assessment of thermal stability based on these insights. 

However, for the mechanistic investigation of certain energetic 

material systems, such as cocrystals or systems with crystal 

defects, the necessity for large modeling systems renders AIMD 

simulations inefficient. While ReaxFF or semi-empirical 

methods are more computationally efficient, their parameters 

are system-specific and not universally applicable, limiting their 

utility in studying newly designed energetic materials (EMs). 

Machine learning-constructed force fields present a promising 

solution to this challenge, which will be further discussed in the 

subsequent part. 

4. Machine learning methods on the 
thermostability of energetic materials 

In recent years, machine learning (ML) methods in the field of 

energetic materials have been a fascinating and rapidly evolving 

area.112 Machine learning offers a powerful set of tools to 

enhance our understanding and capabilities in this field through 

the analysis of large datasets. One of the key applications of ML 

in this domain is the prediction of physical and chemical 

properties of energetic materials, such as density, performance, 

and thermal stability. By training ML models on datasets 

comprised of known compounds and their properties, 

researchers can predict these properties for new, untested 

compounds. ML models can also be used to design and 

discovery of new energetic materials. By learning from the 

structure-property relationships of known materials, ML 

algorithms can guide the design of new molecules that optimize 

desired properties. Techniques such as kernel ridge regression 

(KRR), support vector machines, neural networks, and genetic 

algorithms have shown potential in predicting and generating 

novel molecular structures with optimized performance 

characteristics.113 It should be noted that the quality and 

quantity of data available for training ML models are critical for 

their accuracy and generalizability. Advances in computational 

technology have enabled the use of high-throughput computing 

(HTC) for QM calculations, allowing the acquisition of extensive 

molecular level and crystal structure properties. These 

properties serve as essential descriptors in model training, and 

substantially facilitate the application of machine learning in the 

field of energetic materials.  
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Fig. 12 Scheme for machine learning methods in thermostability of 
energetic materials.  

The main contributions of machine learning in predicting and 

enhancing the thermal stability of energetic materials are 

briefly summarized (Fig. 12). Through machine learning, 

thermal stability can be predicted based on training datasets of 

chemical structures and the thermostability of known energetic 

materials. By learning the relationships between molecular 

descriptors and thermal stability, ML algorithms can be utilized 

to predict the thermal stability of new compounds. In addition, 

feature selection is a crucial step in building ML models for 

thermal stability. It involves identifying the most relevant 

molecular descriptors that influence thermal stability.  

 

 

Fig. 13 Transformation of molecules into ECFPs and descriptor 
matrices. Reproduced with permission from ref. 114. Copyright 2023, 
KeAi. 

 

Fig. 14 Regression plots of various models evaluated. Reproduced 
with permission from ref. 114. Copyright 2023, KeAi. 

Accurate prediction of thermal decomposition temperature 

(Td) is crucial for assessing the thermal stability of an EM. 

Machine learning technologies have become an area of 

heightened research interest for exploring quantitative 

relationships between molecular structure and Td, transcending 

the complex physical and chemical mechanisms inherent in the 

decomposition process. Qi et al.114 conducted an extensive 

machine learning study to construct a predictive model for Td 

based on a dataset of 1022 selected experimental thermal 

decomposition temperatures. A set of molecular descriptors are 

used to quantitatively represent the properties of molecules as 

well as the transformed extended-connectivity fingerprints 

(ECFPs) (Fig. 13). For regression analyses, elastic net, support 

vector machine (SVM), multi-layered perceptron (MLP), 

gradient boost machine for regression (GBR), and K-nearest 

neighbours (KKN) were employed. The GBR model yielded a 

best prediction for Td, with a mean absolute error (MAE) of 

27.7 °C for the test set (Fig. 14). Further, by analyzing the outlier 

structures, the researchers discovered that integrating features 

related to intermolecular interactions can further improve the 

model prediction accuracy.  

The selection of descriptors is crucial for the precise 

prediction of thermal decomposition temperatures. Different 

descriptors provide distinct insights into the thermostability of 

EMs. Liu et al.115 conducted a comprehensive investigation into 

a wide array of descriptors to evaluate and identify the 

limitations of the currently used descriptors in Td prediction. A 

dataset of onset Td of 1091 EMs was built for machine learning. 

Following the workflow in Fig. 15, the SMILES-generated data 

and wavefunctions calculated by quantum chemical approaches 

were utilized to generate five distinct sets of descriptors, which 

feature topological, geometric, and electronic structure 

properties of energetic materials. The descriptors were pre-

screened and ranked by their relevance to the Td value. These 

descriptors were then utilized to model Td values using various 

algorithms (Fig. 15). 

 

Fig. 15 The workflow of Td prediction. Four sections are involved, 
including descriptor sets establishment, batch construction of 
models, model evaluation, and outlier analysis. Reproduced with 
permission from ref. 115. Copyright 2024, Elsevier. 
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The analysis revealed that the five descriptor sets exhibited 

similar trends in predicting Td. The quantum chemical 

descriptors did not outperform those derived from SMILES 

codes. The best performance in Td prediction is the model 

constructed using RDKit descriptors, with the mean absolute 

error (MAE) of 29.38 K. The current model successfully 

predicted the onset Td for a set of 32 newly reported energetic 

materials, demonstrating consistency with experimental values. 

However, an in-depth analysis of the outlier predictions 

highlighted that descriptor sets emphasizing molecular 

properties were insufficient to enhance prediction accuracy for 

certain compounds. To rectify this, it is crucial to explore 

descriptors at a more advanced level, focusing on crystal-level 

properties. Advances in computational techniques now allow 

for the quantum chemical analysis of periodic crystal structures 

and intermolecular interactions, including aspects like packing 

coefficients and intermolecular hydrogen bonds. Integrating 

crystal-level descriptors into machine learning models will 

enhance the precision and comprehension of thermal stability 

in energetic materials.  

In terms of enhancing thermostability via molecular design, 

Zhang et al. reported a series of ML-assisted molecular designs 

for novel energetic materials with both high performance and 

thermal stability59, 116. Followed by recent advancements where 

researchers design and synthesize new heat-resistant HEDMs 

by materials genome approach16, machine learning methods 

offer a more potent and efficient strategy for designing new 

energetic materials with tailored properties. Employing a high-

throughput molecular generation technique enables a rapid 

and extensive generation of suitable molecular structures 

through heuristic enumeration. These structures were 

processed by machine learning models composed of property 

predictors and a graphite-like structure classifier. Through the 

high-throughput virtual screening approach, the promising 

energetic molecule ICM-104 was identified from a vast array of 

biheterocyclic molecular structures. The synthesis and testing 

of ICM-104 revealed excellent performance and thermal 

stability (onset at 326 °C). This highlights the potential of the 

ML-assisted method for efficiently designing new energetic 

materials with desired properties.  

 

Fig. 16 The workflow to construct the reference dataset. Reproduced 
with permission from ref. 118. Copyright 2022, The Royal Society of 
Chemistry. 

Recently, machine learning-based tools, especially neural 

networks (NNs), have been applied to construct PES models in 

an entirely data-driven manner, where the PES is abstracted 

from a well-selected training dataset using suitable functional 

expressions automatically.117 This enables the development of 

PES models with the efficiency of the empirical potentials and 

the accuracy of the DFT method. The construction of NN-based 

potentials (NNPs) is shown in Fig. 16. The process commenced 

with constructing an initial dataset through a brief ab initio 

molecular dynamics (AIMD) simulation, yielding essential 

structures, energies, and atomic forces. Subsequently, 

concurrent learning was implemented via neural network 

training for four distinct NNPs. A molecular dynamics (MD) 

simulation was then executed using the first NNP, generating 

snapshots that were scrutinized by the other three NNPs. 

Consistent predictions of atomic forces and energies across all 

four NNPs confirmed the accuracy of the training. Conversely, 

discrepancies prompted quantum mechanical (QM) 

recalculations for the respective snapshot, which were then 

integrated into the dataset, initiating another round of training. 

This iterative process persisted until no new data was generated, 

indicating a comprehensive dataset and a well-trained NNP 

force field derived from ab initio results. 

 

Fig. 17 Initial models for supercell of (a) pure CL-20 (288 atoms) and 
(b) CL-20/TNT cocrystal (456 atoms). Reproduced with permission 
from ref. 118. Copyright 2022, The Royal Society of Chemistry. 

  

Fig. 18 Decomposition snapshots CL-20/TNT cocrystal system. 
Reproduced with permission from ref. 118. Copyright 2022, The 
Royal Society of Chemistry. 

Based on the NNP force field, Zhu et al.118 reported a reactive 

molecular dynamics simulation study to elucidate the thermal 

decomposition mechanisms of CL-20 and CL-20/TNT cocrystal 

systems. CL-20, as one of the most powerful synthesized 

explosives, has been hindered in its applications due to its low 

stability. Cocrystallization that combines two or more types of 

compounds in one crystal lattice through non-covalent 
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interactions has proven to be an effective strategy to improve 

the stability of energetic materials. A direct DFT simulation for 

large cocrystal systems is challenging in terms of computational 

cost. By using the DeePMD-kit package119, the NNP for the two 

systems was constructed (Fig. 17). Many important 

intermediate species and their associate reaction paths during 

the decomposition were identified in the simulations. As 

depicted in Fig. 18, from the simulation trajectories, detailed 

insights into the thermal decomposition process can be 

captured and analysed. The results reveal that the dissociation 

of CL-20 in the CL-20/TNT system is much slower compared to 

the pure CL-20 system. In the CL-20/TNT cocrystal, TNT 

molecules are relatively stable and can act as buffer fragments 

to prevent NO2 and other small molecules from colliding with 

CL-20 molecules. Through the dynamical structures, there are 

more intermolecular hydrogen bonds in CL-20/TNT, which 

further stabilize the system.  

From this, it is evident that neural network force fields have 

been successfully applied to simulate the thermal 

decomposition of large-scale energetic material systems, which 

has significant importance for uncovering the thermal 

decomposition mechanisms and the underlying thermal 

stability of energetic materials. Yet the NNPs for energetical 

material systems currently lack generalizability and often 

require retraining from scratch for new systems. Recently, 

Zhang and colleagues have made significant strides in the 

development of a general reactive machine learning 

interatomic potential (MLIP) tailored for condensed-phase 

reactions with CHNO systems.120 Utilizing nanoreactor-based 

active learning technique to build dataset combined with plane-

wave DFT calculations, the reported general MLIP was 

successfully applied for a series of condensed-phase reactions. 

Inspired by these advancements, the development of general 

reactive force fields for energetic material systems has gained 

considerable momentum, which facilitate the researchers to 

analyze the behavior of various energetic compounds under 

different conditions.  
To be brief, the integration of machine learning methods in 

the field of energetic materials represents a significant step 
forward in accelerating the design, discovery, and optimization 
of these critical compounds. By leveraging vast datasets and 
advanced algorithms, researchers can uncover new insights, 
predict material properties with greater accuracy, and design 
safer, more effective materials.  

5. Summary and outlook 

In this perspective, recent theoretical advancements in the 

study of the thermostability of energetic materials are 

extensively explored. Quantum chemical calculations can offer 

an in-depth understanding of the molecular and electronic 

structure properties of energetic compounds related to thermal 

stability. Additionally, it is also important to incorporate the 

surrounding interactions and their impact on molecular stability. 

Gaining insight into the initial decomposition mechanisms of 

energetic materials is vital for understanding and evaluating 

their thermal stability at the atomic level. Ab initio molecular 

dynamics simulations provide detailed theoretical insights into 

the reaction pathways and the key intermediates during 

thermal decomposition. The kinetic barrier of rate-determining 

steps under various temperatures and pressure conditions can 

be theoretically analyzed, to have a comprehensive assessment 

for the thermal stability. Yet implementing AIMD simulations 

for large molecular systems is highly inefficient due to the 

computational resources required. In contrast, machine 

learning techniques, particularly neural networks, offer a 

promising and innovative approach to address this limitation. 

Neural network potentials can be obtained through neural 

network training with datasets derived from first-principles 

calculations. The NNP simulations can achieve the efficiency of 

empirical potentials while maintaining the accuracy of DFT, 

paving the way for studying thermal decomposition reactions in 

large, complex systems like cocrystals and defected crystalline 

structures.  

Leveraging machine learning, thermal decomposition 

temperatures can be predicted based on training datasets of 

molecular properties and Td values of known energetic 

materials. Identifying the most relevant molecular descriptors 

that influence thermal stability is crucial for achieving accurate 

predictions, and incorporating crystal level descriptors, such as 

crystal packing and intermolecular HBs can potentially improve 

the predictive accuracy. The machine learning-assisted high-

throughput virtual screening (HTVS) methodology can 

accelerate the discovery of new energetic materials with 

improved properties. Based on this, the newly identified and 

synthesized energetic molecule ICM-104 revealed excellent 

performance and thermostability. Theoretical approaches for 

energetic materials play a pivotal role in elucidating the 

mechanisms underlying thermal stability, enabling the 

prediction and design of enhanced thermal stability for 

emerging EMs. These insights are essential in expediting the 

development of novel EMs that exhibit the desired balance of 

performance and thermal stability.  

While machine learning excels in exploring quantitative 

relationships between descriptors and properties, the 

underlying intricate physical and chemical mechanisms is 

unveiled. Thus, it is essential to integrate first-principles 

calculations to gain a more comprehensive insight into these 

mechanisms. Further challenges include theoretical exploring 

the role of electronically excited state species in thermal 

decomposition or detonation, as well as the enhancement of 

machine learning models to predict a broader range of 

properties with increased accuracy. With the advancement of 

computational power and methodologies, theoretical research 

will play an increasingly significant role in the field of energetic 

materials. 
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