Correction: High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite α-Ag$_2$S and argentite β-Ag$_2$S

S. I. Sadovnikov, a A. I. Gusev,*a A. V. Chukinb and A. A. Rempela

Correction for 'High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite α-Ag$_2$S and argentite β-Ag$_2$S' by S. I. Sadovnikov et al., Phys. Chem. Chem. Phys., 2016, 18, 4617–4626.

The authors wish to draw the readers’ attention to their previous related study, published in Physics of the Solid State, 1 which should have been cited in this Physical Chemistry Chemical Physics paper.

The study published in this Physical Chemistry Chemical Physics paper contains new experimental X-ray diffraction data, differential thermal and thermogravimetric analysis (DTA-DTG) results and data on the acanthite–argentite phase transformation enthalpy. This Physical Chemistry Chemical Physics paper was accepted before the publication of ref. 1 but published after ref. 1. Therefore ref. 1 should have been cited in this Physical Chemistry Chemical Physics paper.

The authors regret not giving the correct attribution for Fig. 4, 6, 7, 8 and 9 in the paper, which were reproduced for the readers’ information. The figures are reproduced below with the correct copyright permission text.

1 Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990, Russia. E-mail: gusev@ihim.uran.ru
2 Ural Federal University named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620062, Russia
Fig. 4 The effect of temperature T on the unit cell parameters a, b, c, β, and volume V, and on the volumetric thermal expansion coefficient β_V of coarse- and nanocrystalline acanthite. The approximation of the experimental data by the solid line and the closed symbols (●), (▲), (▼), (●), (■), and (▲) corresponds to coarse-crystalline acanthite and the approximation by the dotted line and the open symbols (○), (▲), (▼), (●), (■), and (▲) corresponds to nanocrystalline acanthite. Reproduced from ref. 1 with permission from Springer.
Fig. 6 Evolution of XRD patterns of coarse-crystalline argentite β-Ag_2S in the temperature range of 446–623 K. The inset shows a systematic displacement of the (200) diffraction reflection of bcc argentite with increase of measuring temperature. Reproduced from ref. 1 with permission from Springer.

Fig. 7 Dependence of the lattice constant a_{arg} of argentite β-Ag_2S on the temperature T: (1) data of present work; (2), (3), and (4) data 22,24,27 respectively. The approximations of measured lattice constant a_{arg} by the function (10) in the temperature range of 440–660 K is shown by solid lines. Reproduced with some changes from ref. 1 with permission from Springer.
The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

References