Issue 19, 2017

Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li–O2 batteries

Abstract

Aprotic Li–O2 batteries represent promising alternative devices for electrical energy storage owing to their extremely high energy densities. Upon discharge, insulating solid Li2O2 forms on cathode surfaces, which is usually governed by two growth models, namely the solution model and the surface model. These Li2O2 growth models can largely determine the battery performances such as the discharge capacity, round-trip efficiency and cycling stability. Understanding the Li2O2 formation mechanism and controlling its growth are essential to fully realize the technological potential of Li–O2 batteries. In this review, we overview the recent advances in understanding the electrochemical and chemical processes that occur during the Li2O2 formation. In the beginning, the oxygen reduction mechanisms, the identification of O2/LiO2 intermediates, and their influence on the Li2O2 morphology have been discussed. The effects of the discharge current density and potential on the Li2O2 growth model have been subsequently reviewed. Special focus is then given to the prominent strategies, including the electrolyte-mediated strategy and the cathode-catalyst-tailoring strategy, for controlling the Li2O2 growth pathways. Finally, we conclude by discussing the profound implications of controlling Li2O2 formation for further development in Li–O2 batteries.

Graphical abstract: Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li–O2 batteries

Associated articles

Article information

Article type
Review Article
Submitted
09 Apr 2017
First published
31 Aug 2017

Chem. Soc. Rev., 2017,46, 6046-6072

Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li–O2 batteries

Z. Lyu, Y. Zhou, W. Dai, X. Cui, M. Lai, L. Wang, F. Huo, W. Huang, Z. Hu and W. Chen, Chem. Soc. Rev., 2017, 46, 6046 DOI: 10.1039/C7CS00255F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements