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Multifaceted classification and integration of
time-varying complex signals using analog
neuromorphic UV phototransistors†

Mohit Kumar,*ab Suwan Lee,b Hyunmin Dangb and Hyungtak Seo *ab

Human vision encompasses a sophisticated sensory and computa-

tional system capable of analyzing complex attributes such as

color, intensity, duration, and nature (linear or non-linear) of light

exposure, along with storing its termination details. Inspired by this,

neuromorphic vision sensors have been developed to enhance real-

time data processing and decision-making, surpassing conventional

sensors. However, they fall short in accurate multifaceted classifi-

cation, integration of complex and temporal patterns, and secure

storage of outcomes, which are critical for precise monitoring,

security, and forecasting of dynamic natural phenomena. Here,

we present a generic approach to developing a neuromorphic

optical sensor adept at multifaceted classification and integration

of non-linear inputs. Leveraging the heterogeneity in UV response

of two-dimensional electron gas-based thin-film transistors and

robust persistent photoconductivity, our sensor precisely discrimi-

nates between 310, 365, and 395 nm wavelengths, mixed wave-

lengths, while tracking both the duration and termination of

illumination. The sensor offers highly secure, in-sensor multibit

data processing and storage with a high on/off ratio exceeding

107. Furthermore, it adeptly handles real-time dynamic sensing,

integration, and revelation of both linear and non-linear optical

inputs as dictated by differential equations, including logistic maps,

and is capable of monitoring complex dynamic phenomena such as

those caused by water vortices.

1. Introduction

Light illumination, such as ultraviolet (UV) radiation, is funda-
mental to life and pivotal to various technologies.1,2 However,
the effectiveness of these technologies hinges on the accurate

measurement of illumination parameters, like intensity,
duration, and wavelengths (single or mixed).1–3 Even minimal
discrepancies in these parameters during processes can cause
significant changes, influencing outcomes in critical areas of
application; for instance, protecting human health against
harmful UV exposure, catalyzing advancements in water pur-
ification, chemical synthesis, environmental monitoring, and
optical communications.1,2,4–7 Therefore, real-time, and precise
measurement of these crucial parameters is essential for opti-
mizing the performance of these applications.8 Despite the
critical nature of these measurements, however, traditional
UV sensing technologies are often expensive and frequently
fall short, especially when dealing with the variable and non-
linear nature of UV radiation, such as in solar radiation, which
limits their functionality.4,9,10 Furthermore, once UV exposure
is terminated, these devices typically fail to provide essential
data, such as the duration of exposure and the exact timing of
its cessation.4,10 This underscores the necessity for a sophisti-
cated and energy efficient new type of UV photosensor that can
accurately measure these parameters. Developing such a photo-
sensor would significantly enhance the accuracy and effective-
ness of applications reliant on precise UV measurements.

In this scenario, neuromorphic optical sensors could effec-
tively address the multifaceted classification and integration of
time-varying complex dynamic signals by dynamically respond-
ing to illumination conditions such as distinct wavelengths and
intensities, along with detailed data storage.11–15 The term
‘‘multifaceted classification’’ in this study refers to the device’s
ability to differentiate between various input characteristics,
such as wavelength, intensity, and exposure duration, of the UV
signals. This capability allows the sensor to analyze and classify
complex signal patterns across multiple parameters simulta-
neously, which is essential for real-time monitoring in dynamic
environments. Reported neuromorphic systems demonstrate
superior capabilities in processing optical data promptly and
with reduced energy consumption compared to traditional
sensors.16–19 However, for these systems to achieve their full
potential in critical applications, it is imperative not only to
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measure accurately but also to ensure the security of the
collected data. This is particularly crucial in domains where
the integrity of sensitive information is paramount.14,20,21 The
vulnerability of these systems to unauthorized access poses
significant risks. The integration of advanced security features
with precise UV measurement capabilities addresses both the
accuracy and security requirements of critical applications.
This advancement ensures the integrity and confidentiality of
sensitive data while maintaining adaptability to changing con-
ditions. Therefore, the development of such sophisticated UV
photosensors within neuromorphic systems would significantly
enhance the accuracy, effectiveness, and security of applica-
tions reliant on precise UV measurements.

To address these gaps, we developed neuromorphic optical
sensors capable of precise discrimination and real-time inte-
gration of intensity, as well as securely storing the optical
multibit digital and analogue information. By leveraging the
heterogeneity in UV response of two-dimensional electron gas-
based thin-film transistors and robust persistent photoconduc-
tivity, our sensor not only accurately discriminates between
310, 365, and 395 nm wavelengths, including mixed wave-
lengths, but also tracks both the duration and termination of
illumination. Moreover, it supports highly secure, in-sensor
multibit data processing and storage with an exceptional on/
off ratio exceeding 107. The sensor’s ability to integrate both
linear and non-linear optical inputs in real-time, guided by
differential equations such as logistic maps, makes it adept at
monitoring complex dynamic patterns such as dynamic of
water vortexes. This study presents an innovative neuromorphic
optical sensor that integrates multifaceted classification with
secure, dynamic storage of complex UV signals, surpassing the
capabilities of traditional sensors. Leveraging persistent photo-
conductivity within a two-dimensional electron gas-based thin-
film transistor platform, our approach enables real-time, in-
sensor classification and integration of both linear and non-
linear UV inputs. This adaptability supports advanced monitor-
ing and secure data processing, with applications in fields that
demand high sensitivity and secure data handling for analyzing
complex dynamic patterns, such as natural phenomena.

2. Results and discussion

Fig. 1a illustrates the schematic layout of the devices, featuring
four thin-film transistors (TFTs) with the same channel width
(W) of 10 mm but varying channel lengths (L) of 50, 100, 150,
and 200 mm. Fig. 1b presents a complete single chip comprising
sixteen devices with different W (ranging from 50 to 200 mm) and
L from 5 to 40 mm. This intentional variation in W and L
introduces a unique randomness ideal for highly secure optical
data storage and classification tasks. The diverse configurations
of W and L mimic biological variability, making it challenging to
reproduce one set of devices from another, thereby offering
highly secure on-chip sensing and classification.22,23 Each TFT
responds uniquely to specific intensities and/or wavelengths of
optical input, resulting in a unique output pattern for a given

input. This unique pattern allows for accurate prediction and
classification of inputs based on measured responses. Indeed,
our proposed concept leverages this variability in response,
providing a versatile approach to classify not only optical inputs
but potentially other types of inputs as well, such as gases,
thereby broadening the application scope of our approach.

To validate the device fabrication, transmission electron
microscopy (TEM) was employed. Fig. 1c shows the cross-
sectional TEM image of a device, highlighting the ultrathin
(B3 nm) indium oxide (In2O3) layer on top of a 10 nm alumi-
num oxide (Al2O3) layer, with a bottom gate and top source/
drain (S/D) made of gold/titanium (Au/Ti). The magnified view
in Fig. 1d further emphasizes the uniformity and thickness of
the In2O3 layer. Additionally, the composition variation across
these layers was confirmed by energy-dispersive X-ray (EDS)
mapping, as shown in Fig. S1 (ESI†). Furthermore, the growth
and composition of the In2O3 layer were confirmed by X-ray
photoelectron spectroscopy (XPS), as detailed in Fig. S2 (ESI†).

The growth of In2O3 on top of Al2O3 can lead to defect
modulation doping, resulting in the formation of a 2-
dimensional electron gas-like conducting channel. Therefore,
to understand the critical role of oxygen environment, spatially
resolved electron energy loss spectroscopy (EELS) spectra in the
range of 500 to 600 eV were mapped across the yellow dotted
line in Fig. 1e. The spectra from Al2O3 to In2O3, plotted in
Fig. 1f, elucidate the O–K edge transitions across the Al2O3/
In2O3 heterostructure. The EELS map in Fig. 1e highlights three
distinct regions: the Al2O3 layer, the interface, and In2O3.
Variations in energy loss indicate differences in elemental
composition and electronic structure between these regions.
For instance, the interface region exhibits a gradient in energy
loss, indicative of a transition zone with mixed bonding envir-
onments, as marked by the red arrow in Fig. 1e.

The corresponding EELS spectra in Fig. 1f provide detailed
information about electronic transitions at various depths through
the interface, showing a prominent peak around 535 eV
corresponding to the O–K edge.24 This peak, associated with
electronic transitions from the O 1s core level to unoccupied
states above the Fermi level, varies in intensity and position
with depth, reflecting changes in the oxygen bonding environ-
ment. In the Al2O3 region, the O–K edge peak appears at higher
energies (B535.3 eV), indicative of Al–O bonds, while in the
In2O3 region, the peak shifts to lower energies (B533 eV),
characteristic of In–O bonds.25 The interface displays a contin-
uous shift in the O–K edge peak, confirming a mixed Al–O and
In–O bonding environment.24–26 Peak analysis of the O–K edge
position, shown in Fig. 1g, reveals the depth profile across the
interface. The shift from B535 eV in Al2O3 to B533 eV in In2O3

underscores the different electronic structures and bonding
states of these materials.25,26 The gradual change in peak
position within the interface suggests intermixing of Al and
In atoms, leading to an interfacial layer with unique electronic
properties, likely due to the formation of sub-stoichiometric
compounds and defects.25,27 Indeed, the peak value at interface
was close to 532 eV, which is an indicative of 2D metallic layer
imbedded in the interfacial oxides to provide a 2D electron gas.
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These interfacial defect states can significantly impact carrier
density through defect modulation doping, leading to the
formation of quasi-static 2D electron density.27

In line with the EELS spectra, the XPS spectra also confirm
the presence of oxygen defects (see Fig. S2, ESI†). Based on
these spectra and literature, we draw the band alignment at the
In2O3/Al2O3 interface, as illustrated in Fig. 1h.25 This diagram
highlights the presence of a two-dimensional electron gas
(2DEG) at the interface.25 The conduction band (EC) and
valence band (EV) offsets between Al2O3 and In2O3 create a
band alignment such that the conduction band shifts below the
Fermi level (EF), leading to electron accumulation and the
formation of the 2DEG.

Having the characterization, the electrical characterization
of the TFTs was performed, focusing on the source-to-drain
current (Ids) as a function of gate voltage (Vg). Measurements
were taken from 56 randomly selected TFTs with varied channel
widths and lengths from 6 chips on a single platform. The Ids–
Vg curves reveal that the current remains around B10�12 A
under negative gate voltages, escalating to approximately

10�3 A as Vg progresses towards positive biases, as presented
in Fig. 1i. This behavior is indicative of n-type TFTs,28,29

demonstrating a remarkable on/off current ratio of 1010, which
signifies the high performance of these devices. Such a high on/
off ratio can be attributed to the atomic layer deposition
grown In2O3 and Al2O3, which provides a smooth interface
between them.

Furthermore, the threshold voltage (VT)—defined as the gate
voltage at which Ids begins to increase significantly—exhibits a
broad distribution. For deeper insight, VT was determined from
the sqrt(Ids) versus Vg plots (refer to Fig. S3, ESI†), which
elucidates the extensive distribution of VT values ranging from
1.5 to 6.5 V, as illustrated in Fig. 1j. This extensive variation in
VT does not exhibit a straightforward correlation with the
channel dimensions, suggesting that the primary cause is
the intrinsic heterogeneity induced by the fabrication process.
To assess this heterogeneity, Kelvin probe force microscopy
(KPFM) was utilized, and the contact potential difference (Vcpd)
was measured, showing clear variation between different devices
(see Fig. S4, ESI†).30 This indicates the presence of In2O3 channel

Fig. 1 Fabrication and analysis of indium oxide (In2O3) thin film transistors (TFTs). (a) Schematic diagram of the TFT device layout, showing different
channel lengths ranging from 50 to 200 mm with a fixed channel width of 10 mm. (b) Optical microscope image of the fabricated sixteen TFTs on a chip,
having different L and W values. (c) Cross-sectional transmission electron microscopy (TEM) image of the TFT structure, highlighting the layers of Au/Ti
(S/D, source/drain), Al2O3 (gate dielectric), and In2O3 (channel). The scale bar indicates 10 nm. (d) High-resolution TEM image magnifying at the interface
between the Al2O3 and the In2O3 channel. The scale bar indicates 3 nm. (e) Electron energy loss spectroscopy (EELS) map across the interface of Al2O3

and In2O3, providing insight into the oxygen environment change. (f) EELS spectra collected at various points across the Al2O3/In2O3 interface, with a
noticeable peak close to 535 eV indicating the presence of oxygen. (g) Depth profile of the peak value of O–K energy across the Al2O3/In2O3, revealing a
transition region with distinct chemical states of oxygen in both materials. (h) Band diagram representation illustrating the formation of an electron gas at
the Al2O3/In2O3 interface due to band alignment. (i) Transfer characteristics of the TFTs, showing the drain current (Ids) as a function of gate voltage (Vg) at
a drain voltage (Vds) of 0.5 V. The on/off current ratio is approximately 1010, indicating excellent switching performance. (j) Histogram of threshold
voltages (VT) for the TFTs, demonstrating the broad range of variation.
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heterogeneity. Therefore, this broad spectrum of VT not only
highlights the impact of fabrication-induced variability but also
underscores the potential for optimizing device performance

through controlled heterogeneity. It is worth noting that although
the chip shows device-to-device variation, the devices exhibit high
stability over numerous cycles, as depicted in Fig. S5 (ESI†).

Fig. 2 Photoresponse and variability of TFTs. (a) Transfer characteristics of a TFT under dark conditions and after illumination with a single light pulse
(l = 365 nm, intensity = 2 mW cm�2). The inset shows the shape of the light pulse. (b) Transfer characteristics of a TFT under continuous illumination
(0.2 mW cm�2) compared to dark conditions, highlighting the persistent effect of light on the device performance. The gradual change of VT is depicted
by black arrow. (c) Variations in VT with illumination duration for three different TFTs, showing the device-to-device variation. (d) Transient response of a
TFT for three different wavelengths (310 nm, 365 nm, and 395 nm), indicating wavelength-dependent behavior. (e) The Ids behavior for number of cycles
after illuminating the TFT for a short pulse of UV (l = 365 nm, d = 10 s), showing dynamic multilevel current. (f) The contact potential difference (Vcpd)
maps of the TFT before (top image) and after illumination (bottom image) of UV. Black arrows show the change from dark-to-illuminated condition.
(g) Histogram of the Vcpd values measured after hours of illumination, showing a decrease over time, which suggests photo-induced changes in surface
potential. Energy band diagrams of Al2O3/In2O3 interface (h) after UV illumination and (i) after waiting for long time, showing dynamic change of
alignment. (j) (A) Distribution of VT under dark conditions for 25 TFTs, showing the variance across several measurements. Variation of VT after
illumination after illumination with (B) l = 310, (C) 365, and (D) 395 nm for d = 10, 60, and 180 seconds. The corresponding right distribution shows the VT

variation for the same devices after 60 min, displaying the effect of wavelength and exposure time on device performance. The confusion matrix for the
(k) wavelength and (l), illumination duration classification, showing the accuracy of the classification.
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To exploit the inherent heterogeneity for optoelectronic
applications, we examined the photoactive characteristics of
the TFTs. Fig. 2a illustrates the Ids versus Vg behavior of a
specific TFT both in the dark (blue curve) and after exposure to
a short UV optical pulse (l = 365 nm, intensity, PB2 mW cm�2,
duration, d B1 second, green curves, see inset). Under dark
conditions, VT was recorded at �1.4 V; however, post-
illumination, VT shifted significantly to �6.2 V, indicating
enhanced n-type behavior, likely due to a substantial increase
in electron density. Importantly, this notable VT shift under
post-illumination is not transient; VT does not immediately
revert to its pre-illumination value (blue curve) once the light is
removed. Instead, it gradually and slowly returns towards the
dark VT, suggesting that a single optical pulse effectively
modulates the n-type nature of the TFT. As marked by the
black arrow in Fig. 2a, this gradual return to the original VT

indicates persistent photocurrent, highlighting the device’s
potential for optical information storage. Furthermore, the
on/off current ratio below VT (i.e., �2.0 V) found B107, as
depicted by the vertical blue arrow in Fig. 2a. This high on/off
ratio is critical for achieving multilevel photocurrent states
through precise control of conductance states via optical
means, which is useful for optical memory storage devices,
indicating the robustness of the 2DEG to sense the photons.

In the pursuit of achieving multilevel photocurrent states
through precise optical control of electronic states, we analyzed
the Ids versus Vg behavior of a TFT under continuous UV
illumination (l = 365 nm) at a low intensity of 0.2 mW cm�2.
Notably, under these conditions, both the Ids curves and VT

gradually shifted towards more negative biases. For example, as
illustrated in Fig. 2b, the VT for this particular TFT was �3.2 V
under dark conditions (blue curve), and it gradually shifted to
�6.4 V under UV illumination, confirming the presence of
controllable multilevel states by selecting an appropriate dura-
tion of the illumination. The gradual shift in VT demonstrates
the device’s capability to achieve and maintain intermediate
states, which is crucial for advanced data sensing and proces-
sing applications. This behavior underscores the device’s sen-
sitivity to optical stimuli and its suitability for applications
requiring precise control over electronic states, as shown in Fig.
S6 (ESI†). Furthermore, the ability to modulate the electronic
properties of the TFT through continuous light exposure high-
lights its potential for optoelectronic memory devices and other
applications that benefit from light-induced state changes.

It is noteworthy that the VT under dark conditions varies
from device to device, and their photoresponses can also be
distinctly different. To investigate this, we measured the
change in VT under continuous UV illumination (l = 365 nm,
P = 0.2 mW cm�2) for three TFTs, each with the same W of
100 mm and L of 40 mm. As illustrated in Fig. 2c, VT gradually
changes for all three devices, but the variation is markedly
distinct. For example, in Device-1, the magnitude of VT shifts
from 1.7 V to 4.12 V and then saturates. In contrast, Device-3
exhibits a VT change from 3.5 V to 6.2 V without saturation
within the measurement time of 2400 seconds. Similarly, VT for
Device-2 shows distinct behavior compared to Devices 1 and 3.

This outcome is significant because it enables precise predic-
tion of illumination duration and intensity for this specific l of
365 nm. Devices with reproducible responses across different
devices do not offer this advantage; for them, achieving
a specific VT at a given duration under an intensity of
0.2 mW cm�2 might require shorter illumination times with
higher intensities, complicating accurate predictions. There-
fore, the unique, non-reproducible responses observed here
highlight the potential for developing advanced optoelectronic
devices tailored for specific photoresponse characteristics. The
device-to-device variability observed in our neuromorphic opti-
cal sensor primarily arises from intrinsic heterogeneity during
fabrication, resulting in controlled and reproducible variations
within specified tolerance ranges. Notably, these variations do
not compromise critical device functions, such as the high on/
off ratio and persistent photoconductivity, which remain con-
sistent across devices. This controlled variability aligns with
neuromorphic design principles, where slight differences
across devices can enhance multifaceted classification, much
like variability in biological systems.

To further explore the device characteristics, we tested the
transient response of an In2O3-based TFT under three different
UV wavelengths: 310, 365, and 395 nm, as shown in Fig. 2d.
The device exhibited significant photocurrent (Ip) generation,
with the magnitude of Ip depending on the illuminated l. For
instance, the Ip value for l of 310 nm (P = 2 mW cm�2) was
0.46 mA, whereas it was 0.21 mA and 0.04 mA for the l of 365 nm
and 395 nm, respectively. This distinct, wavelength-dependent
response indicates that our devices can be used not only to
detect illumination intensity and duration but also to classify
different UV wavelengths. Additionally, Ids decay gradually after
the illumination is removed, and importantly, this gradual Ids

change is independent of the illumination wavelength. This
can be attributed to intrinsic device properties, such as the
distribution of defects.31 The gradual change in Ids is akin to
the short-term memory (STM) observed in biological synapses,
suggesting potential applications in neuromorphic vision
systems.19,32,33 To further investigate the persistent photocur-
rent, Ids was measured over 600 seconds for multiple cycles, as
shown in Fig. 2e. After removing the illumination, Ids gradually
decay, shifting to lower levels with each cycle. This behavior,
similar to the observed VT shifts, confirms the presence of
persistent photocurrent. The gradual and well-separated cur-
rent levels are crucial for storing dynamic multilevel data.

To understand the persistent Ip nature, KPFM was employed.
The contact potential difference (Vcpd) was measured at the In2O3

layer before and after UV illumination, including the top electro-
des, as shown in Fig. S7 (ESI†). The Vcpd of the top electrodes was
intentionally measured, as being metal (i.e., Au/Ti), Vcpd does not
change from dark to illuminated conditions, providing a stable
reference point to understand the relative dynamic variation in
the In2O3 layer. The Vcpd maps of the device before and after UV
illumination (l = 365 nm, 2 mW cm�2, d = 10 seconds) are shown
in the top and bottom images of Fig. 2f, respectively. Notably, the
Vcpd contrast changes significantly after illumination and gradu-
ally returns to its dark level over time, as illustrated in the
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accompanying image in Fig. S7 (ESI†). Further, the effective
change of the Vcpd after illumination varies from device to device,
indicating that the dynamic photoresponse varies notably
(Fig. S7, ESI†). This shift in Vcpd post-illumination indicates
the presence of trapped electrons, and its gradual decay can be
attributed to electron detrapping.34 To clarify the working
mechanism of our neuromorphic optical sensor, we provide a
schematic diagram (Fig. S7, ESI†) illustrating the underlying
processes. Upon UV illumination, a two-dimensional electron
gas (2DEG) forms at the In2O3/Al2O3 interface, enabling persis-
tent photoconductivity as electrons become trapped at the inter-
face. This trapped charge facilitates a dynamic memory effect,
where the photocurrent gradually decays over time due to
electron detrapping. The device’s capability to store varying
levels of photocurrent based on wavelength and exposure time
underpins its functionality for UV classification and secure, in-
sensor data storage. Indeed, the CPD measurements serve as a
diagnostic tool for analyzing surface potential variability in our
devices, which affects the threshold voltage (VT) and overall
device performance. The observed differences, shown in
Fig. S4 and S7 (ESI†), reflect heterogeneity in the In2O3 layer
due to fabrication variations. Such heterogeneity introduces
controlled device-to-device variability without impeding core
functions (e.g., high on/off ratio, persistent photoconductivity).
Instead, this variability enhances neuromorphic classification
capabilities, as each device exhibits a unique response profile.
This variability also benefits secure key applications by making
each device a unique identifier, thus supporting highly secure
data storage and authentication.

For better clarity, the distribution of Vcpd from the time-
dependent maps is plotted in Fig. 2g, revealing notable
features. For instance, Vcpd exhibits a broad distribution with
a peak value close to 120 mV, which shifts back towards the
original dark value over time, indicating detrapping. These
measurements reveal that UV illumination enhances the effec-
tive electron concentration in the In2O3 layer, leading to n-type
behavior and dynamic variability in Ids and VT. This persistence
and gradual decay of Vcpd highlight the underlying mechan-
isms of charge trapping and detrapping.

The observed persistent Ip behavior can be illustrated sche-
matically in Fig. 2h and i, which show the band alignment and
electron dynamics at the Al2O3/In2O3 interface immediately after
UV illumination and after an extended period, respectively.21,35

Upon UV illumination, as depicted in Fig. 2h, there is a
significant increase in electron density at the interface, enhan-
cing the n-type behavior of the 2DEG. Over time, as shown in
Fig. 2i, the electron density gradually decreases as trapped
electrons are detrapped, leading to a reduction in the n-type
behavior of 2DEG. The persistence and gradual decay of elec-
tron density at the interface, observed through Vcpd measure-
ments and the shifts in VT and Ids, highlights the dynamic
charge trapping and detrapping mechanisms in the device.
Indeed, the presence of 2DEG at the In2O3/Al2O3 interface
provides a unique platform for multilevel dynamic memory
with controllable VT values, depending on the illumination
duration and/or intensity.

Following the important information provided by the device-
to-device variability, we confirmed the ability of our approach
to classify the l, P, and d of illumination. Twenty-five devices
from three chips on a single platform were subjected to
different wavelengths (310, 365, and 395 nm) for varying dura-
tions. Before these measurements, we ensured all devices
returned to their baseline dark levels by keeping them under
dark conditions for one week. The distribution of the VT from
these devices under dark conditions is displayed in panel (A) of
Fig. 2j along with the original magnitude in Fig. S8 (ESI†),
indicating a broad range. Subsequently, the VT maps after
illuminating these devices for 10, 60, and 180 seconds at 310,
365, and 395 nm are depicted from top to bottom in panels (B),
(C), and (D) of Fig. 2j along with their magnitudes in Fig. S9 and
S10 (ESI†). The images on the right in each panel show the VT

distribution 60 minutes post-illumination.
Notably, VT varies significantly across different illumination

conditions; however, discerning these differences solely by
visual inspection of the panels can be challenging, which is
beneficial to store the secure optical data. Quantitatively, the
shift in VT was most pronounced at the 310 nm wavelength,
reflecting the higher energy associated with shorter wave-
lengths. For example, after 180 seconds of illumination at
310 nm, the average VT shifted from its initial dark level by
approximately 2.0 V. In contrast, the 395 nm wavelength
induced a smaller VT shift, around 0.5 V under the same
conditions, highlighting the lower energy impact of longer
wavelengths. Moreover, the persistence of these VT shifts over
time underscores the devices’ capacity to retain optical infor-
mation. The gradual reversion to the dark VT level, as observed
in the 60-minute post-illumination maps, suggests these
devices’ potential to function as dynamic memory elements.
This persistence and distinct response under various condi-
tions facilitate the classification of input UV information based
on observed VT shifts, unlike devices with uniform VT where
similar responses might be induced by different wavelengths
and intensities. These findings highlight the potential of using
these TFTs in applications that require wavelength classifica-
tion and intensity detection, including sophisticated data pro-
cessing and memory storage capabilities.

To discriminate the output from various devices based on
the illumination parameters (l, P, and d), we employed an
optimized neural network approach using MATLAB, as detailed
in the experimental section. This method was designed to
accurately classify the conditions under which these devices
were tested, focusing on the wavelengths and durations of UV
exposure; however, it can be extended to other parameters such
as intensity. The classification results are presented in the
confusion matrices shown in Fig. 2k and l.

The confusion matrix in Fig. 2k illustrates the neural net-
work’s performance in distinguishing between different wave-
lengths (310, 365, and 395 nm) compared to a baseline dark
condition. Remarkably, the neural network achieved an overall
classification accuracy of 96%. Specifically, the network demon-
strated perfect classification accuracy for the 365 nm wave-
length (100%) and high accuracy for the 310 nm and 395 nm
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Fig. 3 Secure optical information encoding and decoding using thin film transistors (TFTs) with multi-wavelength UV light. (a) Schematic of the device
setup showing a thin film transistor (TFT) illuminated by three different wavelengths of light (310 nm, 365 nm, and 395 nm) simultaneously. (b) Graph
showing the photocurrent of the TFT at three different wavelengths as a function of light intensity (from 0.1 to 10 mW cm�2). Each line represents a
distinct wavelength, illustrating the device’s sensitivity and response range. (c) 3D plot of the photocurrent as a function of light intensity and wavelength
for multiple devices. Each point represents a different combination of intensity and wavelength, showing variations in device performance. (d) Transient
response of the device illustrating the dynamic response and memory effect. The graph shows the current decay over time after illumination is turned off,
highlighting the persistent photoconductivity of the device. (e) Data encoding and decoding process: nine binary optical input pulses (dB2 s) in a random
manner were selected and shown from top to bottom. (A) Showing the nine TFTs and illuminated sequence of input. (B) Output reading without the key,
resulting in indecipherable data (‘XX’ represents unreadable or random data). (C) Output reading with the key, showing the correctly deciphered current
levels corresponding to the input data. (D) Regenerated output after 10 minutes with the key, demonstrating data retention and retrieval capabilities. (f)
Diagram illustrating data storage and retrieval in a system of 16 devices, comparing the outputs with and without the cryptographic key, emphasizing
security and data integrity. Out of these only one TFT was selected to store the data, as shown by black circle, while all others are illuminated with random
optical inputs. (g) Logic diagram for secure key generation using the defined wavelength inputs of wavelength of 310 nm, 365 nm, 395 nm, and dual-
wavelength 365/395 nm, which are assigned to 10, 01, 00, and 11, respectively. The combination enables complex encoding schemes. (h) Example of a
generated cryptographic key based on the logic inputs, demonstrating how specific patterns of light can be used to create secure keys. (i) Graph showing
the temporal response of current under coded light exposure, followed by the integrated output signal, which is significant for decoding the transmitted
information.
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wavelengths, with minor misclassifications primarily between
closely related conditions. Additionally, the confusion matrix in
Fig. 2l details the network’s performance in classifying based
on exposure duration (10, 60, and 180 seconds) against the dark
baseline. The neural network achieved an overall accuracy
of 91.9%. It perfectly identified the 180-second exposure sce-
nario (100% accuracy) and showed substantial accuracy for the
60-second exposures (96%). The slightly lower accuracy for the
10-second exposures (84%) is likely due to the minimal changes
in device behavior over such short durations, presenting a more
challenging classification task. Furthermore, if the device is
illuminated with unknown parameters (l, P, and d), the output
response, such as the VT distribution from the devices, can be
used to predict the illumination parameters. This capability
offers unique and valuable information for storing optical data
in a non-volatile manner.

To harness the ability of our devices to differentiate wave-
length and illumination duration, we applied these features in
practical applications. Fig. 3a depicts the interaction of UV
light at three specific wavelengths—310 nm, 365 nm, and
395 nm—with our TFT devices. This setup enables the simul-
taneous or individual illumination at these wavelengths, allow-
ing us to evaluate how different wavelengths variably influence
the TFTs’ response, thereby affecting their performance and
functionality. The intensity-dependent Ip response of the
devices to these UV wavelengths was quantitatively analyzed
and is presented on a logarithmic scale in Fig. 3b. The data
illustrates a pronounced l-dependent Ip response. Notably, at
l = 310 nm, the devices exhibit the highest Ip across all intensity
levels. By contrast, the response at l = 365 nm, though slightly
diminished, remains substantial. At l = 395 nm—approaching
the visible spectrum—the Ip is markedly lower, indicating
decreased sensitivity with increasing wavelength. These find-
ings are pivotal for refining TFT device applications in UV
sensing, photodetection, and optoelectronics, where custo-
mized wavelength sensitivity is essential.

To understand the dynamic behavior of the Ip, we measured
the value of the photocurrent immediately after illumination
and again after 60 minutes with (V 4 VT). The three-
dimensional plot in Fig. 3c provides a comprehensive quanti-
tative analysis of the Ip response in 18 In2O3-based TFT devices,
mapped against time and l on logarithmic scales. At a l of
310 nm, the devices exhibit Ip values of approximately 10�5 A,
which gradually decrease to around 10�6 A over 60 minutes.
This slow decay indicates a strong and sustained response to
UV light. In comparison, at l = 365 nm, the devices show a
significant but less pronounced persistent photocurrent effect,
with initial Ip values around 10�6 A, declining to about 10�7 A
over the same period. At l = 395 nm, the initial Ip is around
10�7 A, with a more rapid decrease to 10�8 A within 60 minutes,
highlighting a faster recovery and reduced sensitivity to this
longer UV wavelength, as shown in Fig. S11 (ESI†).

Driven by the persistent photocurrent, the device exhibits a
dynamic response to an increasing number of light
pulses.33,35,36 Fig. 3d illustrates this dynamic response (i.e.,
Ids at Vds of 0.5 V and Vg of 5 V) and the memory behavior of a

specific In2O3 TFT device under multiple light pulses (l =
365 nm, P = 2 mW cm�2). Initially, with the light off, the
current remains at a low level of B10�10 A, indicating the off
state of the TFT. Upon illumination, the Ids sharply increases,
reaching a peak value around 10�5 A. During the light-off
periods, as indicated by the gray backgrounds in Fig. 3d, the
Ids gradually decay, demonstrating the device’s persistence in
response and STM-like behavior. Notably, the Ids increases with
subsequent optical pulses of the same parameters, although
the increase is not uniform across all pulses. For example, the
Ids stabilizes within the range of 10�6 A for the second and
subsequent pulses. Furthermore, the Ids decays gradually and
slowly over time, which can be attributed to the persistent
photocurrent effect.35,37 Even after the light is turned off, the
current remains at a high level, around 10�6 A, for an extended
period (4600 seconds), demonstrating the device’s dynamic
memory capabilities.

The dynamic response varies among devices, exhibiting
behavior akin to an artificial synapse.19,38 Such pulse-
dependent dynamic responses are crucial for data processing
and secure data storage applications. While conventional PUFs
are known for their robustness and are resistant to cloning,
they typically generate a static key that does not change over
time or in response to different conditions.31 This static nature
can be a limitation in dynamic environments where adaptable
security measures are essential. In contrast, neuromorphic-
based PUFs offer a more dynamic alternative by incorporating
the learning and adaptability features of neuromorphic cir-
cuits. This capability enhances security through unique, non-
reproducible keys tailored to each session and adapts to chan-
ging conditions, providing a robust and versatile security
mechanism for neuromorphic vision technologies. Despite
the potential, the direct implementation of these adaptable
security features into neuromorphic vision sensors remains
largely unexplored and undeveloped.

Therefore, to explore the first potential application of this
device-to-device variability, along with dynamic photoresponse,
we implemented our devices for highly secure data storage.
Nine TFTs were randomly selected from sixteen devices on a
chip, and optical pulses in different sequences were illumi-
nated on these devices, as shown by the input in Fig. 3e. Here,
‘0’ indicates the LED off condition and ‘1’ corresponds to the
LED on condition (l B365 nm, 0.2 mW cm�2, d B2 s). The
applied multibit sequences for these nine TFTs are shown in
panel (A) of Fig. 3e. Due to device-to-device variation and
without knowledge of the key—which includes accurate infor-
mation of the illuminated TFTs and their VT values—it is
almost impossible to reveal the stored information. Indeed,
random, and unpredictable values could be measured without
the accurate key, as indicated by ‘XX’ in panel (B).

However, when the correct key is provided, as shown in
panel (C), the stored current values are revealed. For successful
data retrieval, it is necessary to know not only the distribution
of the VT values but also the illuminated l and intensity.
Following the detailed information of the key and the method
of data storage, the retrieved currents, which range from 0 to
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3.86 mA, can be used to accurately classify the stored bits.
Additionally, it is worth noting that the current from individual
TFTs changes dynamically, and thus, once the data is stored, it
changes over time. For instance, after 10 minutes with the key
(panel D), the current values exhibit slight decay due to
persistent photocurrent characteristics. Therefore, additional
information on the Ip decay behavior of individual TFTs is
essential to regenerate the stored bit information. The ability to
encode, securely store, and accurately retrieve data over time
underscores the suitability of these devices for advanced optoe-
lectronic memory applications.

Additionally, highly secure data can be stored in a selective
device; for instance, a particular device is marked by the black
circle in Fig. 3f. This figure illustrates the secure data storage
and retrieval process using 16 TFT devices on a chip. Optical
data is stored in these devices, and the retrieval process can
yield either random and unpredictable values without the
correct key or the intended output when the correct key is
applied. In this example, the stored output spells ‘AJOU’ when
the key is correctly used. Fig. 3g outlines the secure key
generation process. The key is defined by the input wavelength:
310 nm corresponds to the logic ‘10’, 365 nm to ‘01’, 395 nm to
‘00’, and a combination of 365/395 nm to ‘11’. In our study, we
use two distinct binary encoding schemes. For LED illumina-
tion status in multibit data storage, we use ‘0’ to indicate the
LED off condition and ‘1’ for the LED on condition (lB365 nm,
0.2 mW cm�2, d B2 s). For secure key generation (Fig. 3g), we
assign binary pairs to specific UV wavelengths, such as ‘10’ for
310 nm and ‘01’ for 365 nm. This wavelength-based encoding
allows for unique key generation, separate from the simple on/
off logic used for multibit storage. These defined logics are
crucial for accurately accessing the stored data. A secure key
can be generated by selecting random arrangements of UV
wavelengths. For example, 310, 365, and 395 nm can also be
assigned to ‘11’, ‘10’, and ‘01’, respectively. These bits can then
be rearranged to generate the key for a specific message.

Fig. 3h presents the generated key for the specific example.
The letters ‘A’, ‘J’, ‘O’, and ‘U’ are encoded with the key
sequences ‘10’, ‘01’, ‘01’, and ‘10’, respectively. This key must
be used to retrieve the stored data accurately. For example, the
letters ‘AJOU’ are designed by selecting the bits 1001, 0110,
1000, and 1100, as depicted in the table in Fig. 3h. Fig. 3i shows
the dynamic current response of the devices over time with the
key applied. The current, plotted on a logarithmic scale,
initially shows a low level around 10�12 A. Upon application
of the correct key (indicated by the gray bars), the current
increases significantly, stabilizing around 10�6 A. The LEDs
were illuminated on all sixteen TFTs, and the response was
measured for the specifically selected TFT, as shown in Fig. 3i.
This integrated output confirms the successful retrieval of the
stored data, as indicated by the steady current levels main-
tained over the measurement period. These results demon-
strate the robustness and effectiveness of using In2O3 TFT
devices for secure optical data storage and retrieval. The ability
to generate secure keys based on specific UV wavelengths and
the accurate retrieval of stored data with gradual change over

time highlights the potential for advanced optoelectronic mem-
ory applications. The secure key generation process leverages
specific binary codes assigned to UV wavelengths (e.g., 310 nm
as ‘‘10’’ and 365 nm as ‘‘01’’). These codes are combined into a
unique sequence that serves as an encryption key for multibit
data storage. To retrieve data, the device must be illuminated
with the correct sequence of wavelengths in the designated
order. Only when the precise key sequence is applied will the
device output a readable photocurrent pattern, enabling secure
data retrieval. In Fig. 3i, we illustrate this process: the correct
key sequence, when applied, activates the device, resulting in a
stable photocurrent output that corresponds to the stored data.
Without the correct key, the photocurrent remains inconsistent
or random, preventing unauthorized access to the data. This
method ensures a robust, secure data storage solution within
the device.

Our neuromorphic optical sensor leverages persistent
photoconductivity at the two-dimensional electron gas (2DEG)
interface of In2O3/Al2O3 to achieve multibit data storage. Upon
UV illumination, the sensor’s photocurrent levels are modu-
lated by the wavelength and duration of exposure, resulting in
discrete, persistent current states that represent multibit data.
These current levels are retained within the device even after
illumination stops, due to slow detrapping processes that
maintain charge over extended periods. For secure key applica-
tions, device-to-device variability plays a crucial role by intro-
ducing unique, non-reproducible responses in each device.
This controlled variability allows each sensor to function as a
unique identifier, where only a specific input (or ‘‘key’’) will
generate the correct current output from a designated device.
Key generation relies on assigning specific UV wavelengths to
binary logic states (e.g., 310 nm as ‘10’ and 365 nm as ‘01’),
enabling a sequence that can only be accurately decoded by a
device with matching stored parameters. This variability-driven
encoding process ensures that, without the correct key—
knowledge of precise wavelengths and exposure durations—
unauthorized access produces incorrect or random outputs,
adding a robust layer of security.

The slow response driven by persistent photocurrent in our
phototransistors extends their utility beyond secure data sto-
rage, making them ideal for systems that involve integration
processes. Fig. 4a illustrates the schematic representation of a
phototransistor-based system used for various applications
under analogue illumination, including solar radiation,
chemical reactions, water purification, and biological
systems.9,10 The effective intensity of transmitted UV light
changes due to interactions within the non-linear system,
enabling our phototransistors to capture real-time fluctuations.
This slow response allows our devices to solve complex phe-
nomenon by integrating light exposure over time, thereby
enhancing computational capabilities. Indeed, our approach
offers a new platform for understanding natural phenomena.

As a demonstration, TFT devices were illuminated by varying
the UV (l = 365 nm) intensity in three different ways: linear,
harmonic, and damped harmonic. Fig. 4b–d present the varying
light intensity behavior (top image), measured photoresponse of
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TFT (middle image) and first derivative of the photocurrent
(bottom image) under these different types of illumination
inputs, represented by specific differential equations. Indeed,
these figures illustrate how the devices react to varied light
conditions.

For instance, in Fig. 4b, the TFT device is subjected to a
linear light intensity input, described by the differential equa-

tion
dV

dt
¼ c, where c is a constant and V is the applied voltage to

the LED. The UV intensity increases linearly over time and is

then turned off after 20 seconds (see top image). The Ip follows the
illuminating intensity and increases gradually, demonstrating the
integrating nature of the input optical information. It is worth
noting that the Ip changes non-linearly even with linear illumina-
tion, which can be attributed to the integration nature of our TFT.
In fact, the Ip at time t integrates with the Ip at t + 1 second,
showing a gradual change, as depicted in the bottom panel of
Fig. 4b. Since the rate change, for instance, dIp/dt, depicts the
variation, and thus, first derivative (bottom image) shows the
actual behavior of the Ip change, which varies linearly.

Fig. 4 Dynamic and integrated response of the TFTs and under different illumination as per mathematical models. (a) Schematic representation of the
proposed utilization of the TFTs under analog illumination and its applications in various fields such as solar radiation management, chemical reactions,
water purification, and biological systems. (b) Response of the TFT under liner change of the light intensity. Top: Illustrates the linear increase in
illumination intensity. Middle: Response of the TFT, Bottom: First derivative of photocurrent, representing a linear response over time. (c) Harmonic
oscillator model of illumination: Top: Depicts periodic oscillations of LED typical of a harmonic oscillator. Middle: Time graph showing photocurrent
oscillations. Bottom: First derivative of photocurrent, showing harmonic oscillations, indicating the input pattern. (d) Response of TFT with damped
oscillator model: Top: Shows LED illumination as per dampened oscillations reducing over time. Middle: Time graph displaying a decreasing amplitude in
photocurrent. Bottom: First derivative of photocurrent, indicative of a damped oscillatory response. The corresponding equations are shown in the inset
of middle images. The blue dotted arrows in (b), (c), and (d) indicate the behavior of the first derivative of IP, which matches closely with the inputs. (e)
Graph comparing the photocurrent generation under the illumination of LED for three different ways harmonic oscillator, damped oscillator, and linear.
The STM is for short-term memory. The current decay after a time of 500 s is shown by level-1, 2, and 3. (f) The dynamic photocurrent of the TFT as per
the illumination intensity change as per logistic growth model, showing the integrated light intensity as per logistic growth behavior. (g) First derivative of
photocurrent as a function of time calculated from (f), showing rapid fluctuations, reflecting the dynamic response of the system to changing light
conditions. (h) The experimental setup, in which the transmitted light through disturbed water was illuminated to the TFT. (i) Combined graph showing
photocurrent and its first derivative over time with overlaid experimental data.
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Similarly, in Fig. 4c, the Ip response to the harmonic
oscillator illumination is governed by the differential equation

a
d2V

dt2
þ V ¼ c, where a is a constant. The top image displays the

oscillatory nature of the input UV illumination, while the
middle image shows the corresponding Ip response. The Ip

exhibits periodic peaks corresponding to the oscillations of the
input light, indicating the device’s ability to track non-linear
changes in light intensity. Additionally, the gradual increase in
Ip suggests the integration capability of the TFT for non-linear
illumination. This periodic response reflects the dynamic
adaptability of the TFT device, crucial for applications requiring
precise temporal modulation and integration of light. Indeed,
the harmonic nature of the illumination can be revealed clearly
by the first derivative (see bottom image). It is important to
mention that the first derivative of Ip closely matches the
behavior of the input. Thus, even with the slow and analog
response of our devices, it is capable of revealing the true
nature of the inputs.

Further, Fig. 4d explores the response of our TFT to a
damped harmonic oscillator input, where the light intensity
oscillates with decreasing amplitude over time, according to the

differential equation: a
d2V

dt2
þ b

dV

dt
¼ c, where b is the damping

term (see top image). The measured Ip due to damped oscilla-
tory input illumination is depicted in the middle image of
Fig. 4d. The Ip initially follows the oscillatory pattern but
gradually diminishes as the oscillations are dampened, show-
casing a complex interplay between persistence and damping
effects. This behavior indicates the device’s potential for appli-
cations where damped responses are essential, such as in
adaptive sensing. The nature of damping UV input is clearly
seen from the first derivative (see bottom image). Indeed, our
TFT can sense both linear and non-linear UV information and
integrate it over time. Whereas the first derivative can be used
to sense the real-time variation of the inputs. These observa-
tions of the TFT photoresponses under varied illumination
conditions highlight the devices’ versatility and robustness
for both linear and non-linear illumination. In Fig. 4, panels
(b), (c), and (d) use arbitrary units to emphasize the compara-
tive nature of the response variations, focusing on proportional
changes rather than absolute values. Panel (i), however, pro-
vides an absolute measurement with actual units and a scale
bar, offering precise quantification of the response for applica-
tions requiring specific value references.

The integration of both linear and non-linear input illumi-
nations allows the device to store memory in a distinguishable
manner. Fig. 4e illustrates the dynamic response of the TFT
device when exposed to three types of UV patterns—linear,
harmonic, and damped—each repeated ten times. The Ip

changes gradually for all three types of illuminations, but the
magnitude of the Ip is distinct for each pattern, demonstrating
the device’s ability to differentiate between various types of
analogue light inputs. For linear illumination, the maximum Ip

reaches 24.3 nA, showing a consistent increase with each
illumination. In contrast, harmonic illumination results in a

lower maximum Ip of 13 nA, characterized by periodic peaks
that reflect the oscillatory nature of the input. Damped illumi-
nation produces an even lower maximum Ip of 6.8 nA, with the
photocurrent gradually diminishing over time, highlighting the
device’s response to decreasing amplitude oscillations. Further-
more, the current decay behavior leads to distinct memory
levels at the 500-second mark, identified as Level-1, Level-2, and
Level-3 in Fig. 4e. These levels correspond to the different types
of illumination inputs, with linear illumination showing the
highest persistent current, followed by harmonic and damped
oscillations. These observations indicate that the TFT device
not only integrates varying input illuminations but also retains
memory of the illumination type and intensity.

Beyond integrating simple UV light patterns, the TFT can
also respond to more complex behaviors.39,40 For instance, the
TFT device is illuminated according to a logistic map function,
represented by the equation Vn+1 = rVn(1 � Vn), where r is a
constant and Vn represents the normalized light intensity at
step n. Fig. 4f and g illustrate the Ip response of TFT devices
under a nonlinear logistic map input and its first derivative.
These figures provide insights into the device’s performance
under sophisticated light modulation. As shown in Fig. 4f, the
Ip rises steadily from 30 nA, following the logistic map pattern,
and reaches a peak of approximately 70 nA before the light is
turned off. The first derivative of Ip, depicted in Fig. 4g, shows
complex variations, which can be attributed to the intricate
behavior of the logistic map pattern. The device integrates the
input according to this complex pattern, highlighting dynamic
behaviors and the derivative of the Ip over time. This demon-
strates the device’s ability to sense and integrate complex input
information. Furthermore, after the light is turned off, the
photocurrent exhibits a gradual decay, demonstrating the
device’s memory behavior. This memory retention and ability
to follow complex input patterns underscore the potential of
TFT devices for advanced optoelectronic applications, where
sophisticated light modulation and integration are required.

Moreover, Fig. 4h illustrates the practical application of our
TFT device in capturing the Ip response to UV light modulated
by disturbed water, which was shaken to simulate dynamic
conditions. The measured Ip, starting at B2.8 nA and steadily
increasing to around 4.4 nA over 24 seconds (see blue curve),
indicating the device’s ability to integrate and accumulate light
exposure, as shown in Fig. 4i. The red line shows the first
derivative of Ip, reflecting the rate of change in the photocur-
rent. The oscillatory behavior of the derivative, superimposed
on the steadily increasing Ip, highlights the dynamic variations
in light intensity caused by the water disturbance. The theore-
tical behavior of such behavior can be modeled by the equation
Ip(t) = I0 + A.e�gtcos(ot + j), where the terms describe the linear
growth and damped oscillations in the Ip. However, real natural
systems are more complex, and the feedback from our system
provides valuable insights to understand these complexities.
This practical demonstration showcases the TFT device’s
dual functionality: integrating overall light exposure while
capturing rapid intensity fluctuations due to environmental
disturbances, making it highly suitable for advanced
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optoelectronic applications such as adaptive sensing and envir-
onmental monitoring. It is worth to mention that the device-to-
device variability is crucial here since that can be applied to
classification of l, P, d, using the same concept as in Fig. 2j. In
the turbulent water scenario shown in Fig. 4, scattered and
attenuated UV waves mimic real-world environmental condi-
tions, enabling dynamic inputs for the neuromorphic sensor.
This analog illumination model finds applications in fields
such as solar radiation management, where monitoring scat-
tered solar UV components informs atmospheric and radiation
studies. In chemical reactions, analog UV control optimizes
photochemical processes by fine-tuning reaction conditions.
For water purification, scattered UV illumination helps assess
the efficacy of UV disinfection in varying water conditions,
ensuring adaptability to environmental changes. In biological
systems, analog UV illumination replicates natural light condi-
tions, allowing for controlled studies of UV effects on cellular
processes. Our approach enhances computational capabilities
by facilitating in-sensor data processing, enabling each device
to classify and integrate UV signals in real-time based on
persistent photoconductivity and multibit data storage. This
functionality allows the sensor to independently perform
complex data processing tasks, enhancing efficiency by redu-
cing reliance on external computation. Additionally, while UV
response and signal processing are the main focus, the sensor’s
adaptive capability can extend to dynamic environmental mon-
itoring. For instance, the sensor could monitor complex, time-
varying phenomena like water vortices by responding to fluc-
tuating UV signals. This adaptability highlights the device’s
broader potential in applications that demand real-time, non-
linear data integration.

Our neuromorphic optical sensor offers versatile applica-
tions in fields that demand dynamic and sensitive UV signal
processing. Key examples include environmental monitoring,
where the sensor’s high sensitivity to UV intensity and wave-
length allows for tracking and predicting changes in atmo-
spheric conditions. Additionally, the secure, in-sensor data
storage capability of our device makes it ideal for secure data
storage and retrieval, a valuable asset in cybersecurity applica-
tions. Furthermore, the sensor’s ability to integrate and classify
dynamic UV inputs in real time makes it suitable for adaptive
sensing in optoelectronic systems, supporting efficient mon-
itoring of complex dynamic phenomena, such as water purifi-
cation processes and solar radiation analysis.

3. Conclusion

In conclusion, our research introduces a conceptually new
neuromorphic optical sensor that revolutionizes UV light clas-
sification and dynamic optical event sensing. By leveraging the
unique properties of two-dimensional electron gas-based thin-
film transistors, this sensor achieves unparalleled accuracy and
security in multibit data processing and storage. Its ability to
seamlessly integrate and process both linear and non-linear
optical inputs in real-time, guided by differential equations,

makes it an indispensable tool for monitoring complex
dynamic patterns. The versatility and robustness demonstrated
in handling intricate signals, such as those from disturbed
water, highlight its potential for diverse real-world applications.
This advancement marks a significant leap forward in the fields
of optoelectronics and adaptive sensing technologies, paving
the way for next-generation neuromorphic sensors with broad,
impactful applications in UV dosimetry and beyond.

4. Experimental section
4.1. Device fabrication

The fabrication of the device involves a bottom gate structure,
utilizing a silicon (Si) substrate coated with a thermally grown
300 nm silicon dioxide (SiO2) layer. The substrate underwent a
cleaning process using acetone, isopropyl alcohol (IPA), and
deionized water (DIW), each for 5 minutes, followed by RCA
cleaning to ensure thorough cleanliness. For the gate electrode,
a titanium/gold (Ti/Au) layer with thicknesses of 5 nm and
20 nm respectively was deposited using an electron-beam
evaporator via the lift-off method. The gate oxide consists of a
20 nm layer of aluminum oxide (Al2O3) deposited at 200 1C
through thermal atomic layer deposition (ALD) using trimethy-
laluminum (TMA) as the precursor. The growth per cycle (GPC)
achieved for Al2O3 was 1.25 Å per cycle. After the deposition of
Al2O3, photolithography was performed, followed by wet etching
using a phosphoric acid and DIW dilution solution. Subsequently,
the indium oxide (In2O3) channel layer was deposited using
thermal ALD with dimethylaminoethanol (DADI) as the precursor.
The channel layer was deposited to a thickness of 5 nm at a
processing temperature of 175 1C, achieving a GPC of 0.35 Å per
cycle. Post-deposition, another photolithography process was
executed, and the etching was performed using an oxalic acid
and DIW dilution solution. Finally, the source/drain (S/D) electro-
des, consisting of 10 nm Ti and 40 nm Au, were deposited using
the same electron-beam evaporator and the lift-off method. This
process resulted in the fabrication of a transistor with a bottom
gate structure and a minimum line width of 5 mm.

4.2. Characterization

Transmission electron microscopy (TEM), energy dispersive
X-ray spectroscopy (EDS), and electron energy loss spectroscopy
(EELS): all required TEM, EDS, and EELS measurements were
conducted using a JEOL JEM-2100 F transmission electron
microscope. Cross-section TEM samples were prepared using
focus ion-beam to examine the structural and compositional
characteristics at the nanoscale. EDS was employed to deter-
mine the elemental composition and distribution within the
samples, while EELS provided information on the electronic
structure and chemical bonding of the elements present.

X-ray photoelectron spectroscopy (XPS). The composition
analysis of the samples was carried out using X-ray photoelec-
tron spectroscopy (XPS). A Thermo Fisher Scientific NEXSA
system equipped with an Al Ka (1486.6 eV) source was used

Communication Journal of Materials Chemistry C

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
N

ov
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

/2
2/

20
26

 4
:1

2:
31

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4tc03865g


This journal is © The Royal Society of Chemistry 2024 J. Mater. Chem. C, 2024, 12, 19035–19048 |  19047

for this purpose. The X-ray spot size was set to 400 mm to ensure
adequate spatial resolution and surface sensitivity.

4.3. Electrical characterization

Electrical characterization of the devices was performed using a
Keithley 4200 source meter. To ensure accurate measurements,
the experiments were conducted on a vibration isolation table
to minimize external disturbances. The Keithley 4200 source
meter provided precise control and measurement of current–
voltage (I–V) characteristics, enabling detailed analysis of the
electrical properties of the devices.

LED Illumination. For the illumination experiments, UV
LEDs of different wavelengths were utilized. Specifically, LEDs
with wavelengths of 310 � 10 nm, 365 � 10 nm, and 395 �
10 nm were used. An Arduino microcontroller was programmed
to control the illumination patterns and intensities of the LEDs,
allowing for precise and repeatable experimental conditions.
The influence of different wavelengths on the samples was
systematically studied under controlled illumination condi-
tions. For measurements involving water, DI water was used
to study the effects of turbulence and other dynamic phenom-
ena on the surface potential.

Kelvin probe force microscopy (KPFM). KPFM measurements
were conducted using an Asylum Research system (Oxford
Instruments). KPFM was used to map the surface potential
and work function variations across the sample surface.

4.4. MATLAB for classification

Data classification was performed using MATLAB. The classifi-
cation learner app was utilized to train and optimize a support
vector machine (SVM) model. The kernel function used in the
SVM model was Gaussian, and model hyperparameters were
optimized to achieve the best classification performance. This
analysis helped in identifying patterns and correlations in the
experimental data. To classify wavelength and exposure dura-
tion, we employed an artificial neural network (ANN) architec-
ture. Input features were derived from experimental
photocurrent response data, focusing on photocurrent ampli-
tude, decay rates, and persistent levels following UV illumina-
tion. Each dataset entry corresponds to a unique wavelength
and exposure duration condition, creating a robust classifica-
tion environment. Our dataset included 300 experimental
samples, split into 70 : 30 for training and validation to ensure
model robustness. Regularization techniques were applied to
prevent overfitting, allowing the ANN model to generalize
effectively. As this classification was conducted on experi-
mental data rather than simulated data, the results offer real-
world relevance and reliability for future applications.
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