

Advance your career in science

with professional recognition that showcases your **experience**, **expertise and dedication**

Stand out from the crowd

Prove your commitment to attaining excellence in your field

Gain the recognition you deserve

Achieve a professional qualification that inspires confidence and trust

Unlock your career potential

Apply for our professional registers (RSci, RSciTech) or chartered status (CChem, CSci, CEnv)

Apply now

rsc.li/professional-development

A research study focusing on the development of $Ni_{12}P_5$ nanoparticles anchored on porous $g-C_3N_4$ nanosheets for noble-metal-free photocatalytic H_2 evolution is showcased by Dr Wee-Jun Ong and Dr Ming-Yong Han at the Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR) Singapore, and also Prof. Dong-Liang Peng at Xiamen University China.

 $Ni_{12}P_5$ nanoparticles embedded into porous $g-C_3N_4$ nanosheets as a noble-metal-free hetero-structure photocatalyst for efficient H_2 production under visible light

 $Ni_{12}P_5/g-C_3N_4$ heterojunction systems composed of colloidally synthesized $Ni_{12}P_5$ nanoparticles and $g-C_3N_4$ nanosheets were engineered. The nanocomposites demonstrated remarkable H_2 production and excellent photostability due to the intimate interfacial contact for effective charge separation to suppress the electron-hole recombination.

