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Microbial fuel cells (MFCs) exploit the ability of microorganisms to generate electrical power during
metabolism of substrates. However, the low efficiency of extracellular electron transfer from cells to the
anode and the use of expensive rare metals as catalysts, such as platinum, limit their application and
scalability. In this study we investigate the use of pristine graphene based electrodes at both the anode
and the cathode of a MFC for efficient electrical energy production from the metabolically versatile
bacterium Rhodopseudomonas palustris CGA009. We achieve a volumetric peak power output (P) of
up to 3.51 &+ 0.50 W m~> using graphene based aerogel anodes with a surface area of 8.2 m? g~. We
demonstrate that enhanced MFC output arises from the interplay of the improved surface area,
enhanced conductivity, and catalytic surface groups of the graphene based electrode. In addition, we
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Accepted 30th October 2017 show a 500-fold increase in Py, to 1.3 + 0.23 W m™> when using a graphene coated stainless steel (SS)
air cathode, compared to an uncoated SS cathode, demonstrating the feasibility of a platinum-free,

DOI: 10.1039/c7ta06895f graphene catalysed MFCs. Finally, we show a direct application for microwatt-consuming electronics by
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Introduction

Global population expansion and economic development result
in increasing demand for energy and clean water, leading to
a pressing need for innovative renewable energy sources and
more efficient and sustainable waste treatment technologies.
Microbial fuel cell (MFC) technology may satisfy both require-
ments by tapping into the significant chemical energy in
wastewater, exploiting the electrogenic nature of various
microorganisms that oxidize organic substrates and donate
electrons to an external electron acceptor. Although examples of
carbon-based anodes and platinum (Pt) cathodes exist, there
remains major scope for improving the performance of elec-
trodes for MFCs. Enhanced understanding of the parameters
determining electrode performance will help in the develop-
ment of environmentally-friendly, abundant catalytic cathode
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connecting several of these coin sized devices in series to power a digital clock.

materials, and highly electron-accepting anode materials. Here
we identify key parameters of a range of MFC electrodes and
characterise the performance of a set of novel, environmentally-
friendly low-cost graphene-based anodes and cathodes.

Power output from a single chamber MFC is primarily
limited by the efficiency of extracellular electron transfer (EET)
from the cell to the anode,"™* mass transport of protons to the
cathode,*® and the catalytic efficiency of the oxygen reduction
reaction (ORR) at the air cathode.”® Therefore, ideal anode
materials for a single chamber MFC should maximize conduc-
tivity* and surface area® to facilitate current generation via direct
extracellular electron transfer (DEET) from anodic biofilms*
and efficiently catalyse H,O formation and evaporation via ORR
at the air exposed cathode."

Cost-effective carbon-based materials such as carbon felt,?
carbon fibre,"” carbon paper,® and graphite'* have been used
extensively as anode materials due to their chemical stability
(i.e. their resistance to corrosion in an aqueous environment),
surface area (~0.5 m> g~ ') and electrical conductivity.! Pt is
often incorporated with materials such as carbon paper as an
optimal air cathode catalyst for laboratory scale MFCs.
However, high costs prohibit scale up using Pt-based catalysts.*
Given the need to develop low-cost, environmentally-friendly
applications in MFCs there is a growing interest in graphene-
based electrodes. Carbon nanotubes' and graphene are at the
forefront of research in electronics,'® energy'” and photonics.*®
Graphene has a theoretical surface area of 2630 m* g~ " (~5000
times higher than traditional anode materials)," potential for

This journal is © The Royal Society of Chemistry 2017
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cost-effective mass production,” unique electrical conduc-
tivity,>* catalytic activity,” and mechanical strength.*® These
properties, combined with the ease of functionalization® and
biocompatibility,” promise to widen the potential range of
applications of graphene based MFCs including incorporation
in wastewater treatment plants for pathogen reduction,”® bio-
logical oxygen demand biosensors® and powering implantable
medical devices.*® Additionally, oxygen and nitrogen-containing
functional groups (present in graphene oxide - GO-produced by
the modified Hummers method* and chemical vapour depo-
sition??) have been reported to impart a catalytic effect to gra-
phene oxide, improving EET efficiency via an electron shuttling
processes, and potentially providing an alternative and cheaper
cathodic catalyst to commonly used Pt**** (cost ~ £26 g~ ). MFC
anodes using chemically modified GO have been shown to
enhance power densities to 2.67 W m ™ > (~18-fold) for stainless
steel mesh,* to 0.0525 W m™? (~3-fold) from carbon cloth,®
and to 661 W m~* (~19-fold) for nickel oxide foams.* Recently,
an MFC operated with a modified GO-based aerogel anode
achieved the highest volumetric power density reported to
date,** 750 W m~* (normalised to anode volume). Their low
density and high surface area, together with high conductivity,
establish aerogels based on GO as high performance MFC
anodes.**?*?¢ However, GO suffers from defects induced into
graphene’s basal plane from chemical oxidation, significantly
impairing its mechanical and electrical properties. Chemical or
thermal reduction to reduced GO (RGO)***” only partially
recovers the mechanical and electrical properties of graphene.
Pristine graphene with an unaltered basal plane has been grown
by chemical vapour deposition (CVD) on a nickel mesh template
to create conductive and porous (~850 m”> g~') structures.*®
However, the mesh template, usually copper or nickel, often
requires intensive procedures including an acid etching step for
removal (which can create chemical residuals), and gas
precursors (e.g. methane) for CVD,* substantially increasing
costs of electrode fabrication. Pristine graphene flake based
aerogels created by freeze gelation of solvent/graphene solu-
tions offer a simple alternative, with superior electrical prop-
erties to GO/RGO aerogels.*” Despite being labelled as
electrochemically inert*' and lacking the density of functional
groups present on GO/RGO, pristine graphene can catalyse the
reduction of oxygen.** Molecular oxygen (i) binds ionically to
graphene followed by (ii) endothermic formation of two cova-
lent bonds in an intermediate metastable configuration, ener-
getically favourable (iii) separation of the oxygen atoms to
form two epoxy groups on the graphene lattice, and (iv)
formation of hydroxyl groups and release of H,0.** Additionally,
the incorporation of conductive polymers into the
backbone scaffold of the aerogel may help bridge the graphene
flakes and help to maintain mechanical integrity. Poly(3,4-
ethylenedioxythiophene)-poly(styrenesulfonate) (PD) is an
interesting MFC electrode material thanks to its high conduc-
tivity (~5 x 10* S m™'), and positively charged backbone that
may interact electrostatically with negatively charged cells to
facilitate cell-anode interactions and biofilm formation.**
Pristine graphene can be produced sustainably by liquid
phase exfoliation (LPE) or cracking of methane biogas (derived
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from food waste and other renewable sources) both of which we
used to produce low-cost, scalable, and environmentally
friendly electrodes for MFCs. In the anodic chamber we use the
metabolically diverse, purple non-sulphur a-proteobacterium,
Rhodopseudomonas palustris (R. palustris) CGA009 (ref. 45, 46
and 47). R. palustris has been shown to express electrically
conductive type IV pili, or ‘nanowires’® that facilitate DEET and
allow long range charge transfer through an established biofilm
of cells attached to a surface. Our work describes the role of
surface area, conductivity, and catalytic effect in MFC anodes.
Volumetric power density (Py) from MFCs using carbon foam
anodes was doubled to 265 + 12.1 mW m > by coating with
a pristine graphene/PD (Gr-PD) based ink, and the enhanced
surface from composite Gr-PD aerogel anodes increased Py 13-
fold to 3.51 + 0.50 W m ", closer to our benchmark provided by
carbon fibre as an anode material (5.37 + 1.16 W m™°). As
a practical application, we show that a circuit of 10 single
chamber MFC devices operated with Gr-PD aerogel anodes with
a total volume of 1.32 cm® generated 4.19 uW of power, suffi-
cient to run a digital clock. In addition, we show that a Gr-PD
ink coating is able to impart catalytic activity onto a standard
marine grade stainless steel mesh (SS), showing feasibility as
a cost-effective Pt-free air cathode. Finally, we demonstrate
a fully pristine graphene-enabled MFC by integrating our pris-
tine graphene-based anode aerogel and air cathode in a single
chamber MFC, paving the way to a cost-effective, environmen-
tally friendly energy source.

Fabrication and characterisation of aerogel anodes

We prepared low density, highly porous aerogel anodes using
a biocompatible and biodegradable non-conductive polymer,
carboxymethylcellulose sodium salt (CMC) as a scaffold mate-
rial.* To establish the effect of conductivity and catalysis on
MFC performance we created four aerogels by freeze drying (see
Experimental for more details): a control CMC aerogel (A-CMC),
a CMC-graphene aerogel (A-CMC-Gr), a CMC-PD aerogel
(A-CMC-PD), and a CMC-Gr-PD aerogel (A-CMC-Gr-PD). For
A-CMC, a CMC-water precursor solution was prepared, to which
graphene flakes (Gr flakes, Cambridge Nanosystems, thickness
~5 nm and lateral size ~1 um, ESI Fig. 1at) were added to make
A-CMC-Gr. PD (10% v/v) was added to make A-CMC-PD, and
both Gr flakes and PD were added to make A-CMC-Gr-PD. The
aerogels were then characterised by Raman spectroscopy, elec-
trochemical impedance spectroscopy (EIS), mercury porosim-
etry and scanning electron microscopy (SEM).

Fig. 1a plots the Raman spectrum of the Gr powder (green
curve), A-CMC-Gr-PD (blue curve), A-CMC-Gr (red curve), and
A-CMC-PD (black curve). The Raman spectrum, taken at
514 nm of the A-CMC-PD (black curve) aerogel exhibits several
peaks which are typically assigned to PD's carbon stretching
vibrations.**** The two more prominent peaks, found at
~1435 cm™ ' (PD1) and ~1508 cm ™" (PD2), are assigned to the
asymmetric C, = Cp stretching and symmetric C, = Cg (-O)
stretching vibrations respectively.”®** The red, blue and green
curves present a G peak which corresponds to the E,, phonon at
the Brillouin zone centre in graphene, while the D peak (red,
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blue and green curves) is due to the breathing modes of carbon
sp” atoms and requires a defect for its activation.®>** The 2D
peak (red, blue and green curves) is the D peak overtone and is
usually composed of a single Lorentzian in single layer gra-
phene.* A single Lorentzian fit of the 2D peak indicated that the
graphene in our aerogels was comprised of electronically
decoupled graphene layers. The analysis of the dispersion of the
G peak (Disp(G)) (see Experimental) allows one to distinguish
between in-plane defects and edge defects in graphene. The
Disp(G) (0.07 £ 0.03 cm™" nm™") for each of the aerogels with
graphene flakes (red, blue and green curves) indicates that the D
peak originated from defects in the basal plane of the graphene
in addition to defects along the flake edges.*»*® The PD1 and
PD2 peaks were also found alongside the G and D peaks in the
spectrum of the A-CMC-Gr-PD aerogel indicating the presence
of both PD and graphene.

The Nyquist plots of the electrochemical impedance spectra
(EIS) before the addition of R. palustris cells were used to
determine the charge transfer resistance (R..) of each aerogel.
Nyquist plots are generated by plotting the imaginary imped-
ance Im(Z) versus the real impedance Re(Z) for each aerogel, and
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show a semicircle at high frequencies, where the system is
under kinetic control (i.e. when the electrochemical reaction is
slow and local concentration gradients of electroactive species,
such as ions and molecules, are negligible), followed by
a straight line at low frequencies, where the system is under
a diffusive controlled regime (i.e. when the electrochemical
reaction is limited by the mass transport of the electroactive
species that enter or leave the electrode surface).” This can be
described by an equivalent circuit model (ECM) (see ESI Fig. 27).
The series resistance (Rs) combines the ionic resistance of the
electrolyte, the intrinsic substrate resistance and the contact
resistance, and it is defined as the value where the semicircle
intercepts the real impedance (Re(Z2)) axis.”” The high frequency
semicircle can be described by the double layer capacitance
(Cq), and the charge transfer resistance (R). The diffusive
regime is modelled by the Warburg resistance (Zw), which
describes the frequency dependence of the ion transport to the
electrode. In cases where the R is sufficiently high and the
diffusive regime is not reached, Zyy is set to zero*® (ESI Table 17).
Fig. 1b shows the Nyquist plots for each aerogel sample. In the
case of A-CMC (orange curve) and A-CMC-PD (black curve) the
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(a) Raman spectra of Gr flakes (green), A-CMC-PD aerogel (black), A-CMC-Gr aerogel (red), and A-CMC-Gr-PD aerogel (blue). (b)

Nyquist curves of the electrochemical impedance spectra for each aerogel anode material. (c) Pore size distribution for A-CMC (orange),
A-CMC-Gr (red), A-CMC-PD (black) and A-CMC-Gr-PD (blue). (d) SEM showing micrometre sized pores in the A-CMC, (e) A-CMC-Cir, (f)

A-CMC-PD and (g) A-CMC-Gr-PD aerogels.
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Re is ~101 kQ and ~176 kQ respectively, with the single
semicircle indicating that the electrochemical reaction is
kinetically controlled, hindering the process of electron transfer
and indicating a resistive behaviour of the materials.*® The
lower R for A-CMC-Gr (~46.2 Q) (red curve) and A-CMC-Gr-PD
(~21.0 Q) (blue curve) suggests that the addition of Gr flakes is
primarily responsible for decrease in R, while PD likely helps
to bridge between the conductive graphene flakes, improving
R further. On the other hand, we noticed the absence of
a diffusion element in the A-CMC-PD electrode, which indicates
a slower ion transfer process. Therefore we can conclude that
the addition of graphene flakes can improve electron transfer in
the anode aerogels.

The pore size distribution of the aerogels was estimated by
mercury porosimetry (see Experimental for more details). Fig. 1c
shows the differential intrusion as a function of the pore size
diameter for all the aerogels. In the case of A-CMC aerogel
(orange line) we noticed a predominant peak in pore size at
~17 pm, while the A-CMC-PD aerogel (red line) showed
a broader pore size distribution between ~10 to 90 um. In the
case of the A-CMC-Gr (red line) and A-CMC-Gr-PD (blue line)
aerogels, the pore distribution shifted down to a 0.1-1 um
range, which might be attributed to graphene flakes blocking
the pores which are >10 pm and thus creating smaller cavities
throughout the aerogel which increases the resulting
surface area. The corresponding calculated surface area (S,) was
3.9m? g for the A-CMC-PD aerogel and 7.1 m* g~ " for A-CMC,
while S, increased to 20.2 m* g~ ' and 8.2 m* g~ ! for A-CMC-Gr
and A-CMC-Gr-PD respectively, with the addition of graphene
flakes. We suspect that the surface areas are indeed much
higher (i.e. 50-100 m® g~ ') than those calculated. However,
a collapse of the aerogels due to increasingly high mercury
pressure (~400 psi) is known to affect soft foams analysed with
mercury porosimetry*® by altering the statistics of the smallest
pores (~10 nm)***° due to their collapse. Thus their surface area
contribution is masked. Scanning electron microscopy (SEM) of
the aerogels was used to corroborate the results on the pore size
distribution of the aerogels. Arrays of pores >1 pm in diameter
were visible in the SEM images of the A-CMC (Fig. 1d), while in
A-CMC-Gr (Fig. 1e) graphene flakes were entwined in fine
porous structures with <1 pm in diameter. SEM images of A-
CMC-PD (Fig. 1f) showed a smooth structure, with larger pores
~20 pm in size comparable to the pore distribution (~10 to
90 pm) determined by mercury porosimetry. Fig. 1g shows the
graphene flakes blocking the majority of macropores (>1 pm in
diameter) in A-CMC-Gr-PD, while pores <1 pm in diameter are
still observable, thus confirming the role of the large flakes
(~1 pm) of graphene as a bridging material across the porous
CMC scaffold.

Fabrication and characterization of stainless steel cathodes
and carbon foam anodes

In order to establish the effect of enhancing anode conductivity
and surface area on MFC performance, we compared the aero-
gel anodes with a conductive graphene coated carbon foam (CF-
Gr-PD) (see Experimental). This was prepared using a low

This journal is © The Royal Society of Chemistry 2017
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surface area (~3 m” g ') carbon foam (CF) coated with a gra-
phene-PD ink (Gr-PD-IPA) formulated by liquid phase exfoli-
ation (LPE) (see Experimental). Isopropyl alcohol (IPA) was used
as the solvent for this ink as the low surface tension (~29 mN
m ") helps to transport the graphene flakes by capillary action
around the porous structure. Additionally, to investigate the
catalytic activity of a graphene-PD coating as a Pt-free air
cathode we coated a standard SS mesh with a graphene-PD ink
(Gr-PD-W), by vacuum filtration (see Experimental), to make
a graphene coated stainless steel (SS-Gr-PD) cathode. Water
was chosen as the solvent for this ink as organic solvents such
as IPA will dissolve the nitrocellulose membrane used in the
vacuum filtration. The optical absorption spectra of the Gr-PD-
W and Gr-PD-IPA inks (ESI Fig. 31) were used to estimate the
flake concentration®® ¢, obtaining ¢grpp-w ~ 0.18 mg ml™"
and ¢gr-pp-ipa ~ 0.08 mg ml™*. Atomic force microscopy (AFM)
statistics showed a thickness of ~6 nm (ESI Fig. 1at) and lateral
size ~135 nm (ESI Fig. 1bt}) for the Gr-PD flakes. Rheological
measurements determining viscosity (n), surface tension (),
and density (p) for the two inks showed that 7ng,_pp-w ~
0.89 mPa s, Ygrpp-w ~ 70 MmN m ™', pgrppw ~ 1.02 g cm ™ >;
Nr-pp-1pA ~ 2.5 MPA S, YGr-pp-1pa ~ 27 MN mil, PGr-PD-TPA ™
0.785 g cm >, consistent with previous reports.®>

Raman spectroscopy was also used to characterize the
quality of the cathode and anodes. Fig. 2a shows the Raman
spectra (acquired at 514 nm) of the Gr-PD flakes (green curve)
(which show the Raman fingerprint of the Gr-PD-W flakes as
discussed in ESI Fig. 47), the PD (pink curve), the SS-Gr-PD
(blue curve), the CF-Gr-PD anode (red curve) and the CF anode
(black curve). Besides the PD1 and PD2 peaks at 1435 cm™ " and
1508 cm ™, the SS-Gr-PD cathode (blue curve) and CF-Gr-PD
anode (red curve) have the typical D, G and 2D peaks of gra-
phene as described in the previous section which are in line
with the spectra of Gr-PD-IPA flakes (green curve). The blue
curve showed a combination of both Gr-PD and PD spectra,
while the red curve brings additional features to the CF anode
(black curve) where the absence of a distinct 2D peak and the G
peak position Pos(G) ~ 1600 cm ™" indicated the more defective
nature of the CF.*>*>% For disordered carbons Pos(G) increases
linearly as the excitation wavelength decreases from infrared to
ultraviolet, therefore Disp(G) increases with disorder.*” For
carbon systems which have a large number of structural defects
Disp(G) > 0.1 cm ™" nm™'.>® We attribute the D peak intensity
predominantly to the edges of our submicrometer flakes, rather
than to structural defects within the flake, given a Disp(G)
(0.011 £ 0.003 cm™ " nm™ ") lower than that expected for disor-
dered carbon.”**® Therefore, there was a lack of large structural
disorder within our flakes and scattering only occurred at the
edges of the flakes in an otherwise defect-free sample.*

Nyquist plots of EIS (Fig. 2b) showed that the R, of CF-Gr-PD
anode decreased with respect to that of the CF anode from 41.4
kQ to 0.930 kQ. (ECM, ESI Fig. 21), indicating that addition of
the Gr-PD-IPA flakes results in a decrease in R... The pore size
distribution and specific surface area of the CF-Gr-PD and CF
anodes were determined using mercury porosimetry. Fig. 2c
shows a broad pore size distribution for the CF and CF-Gr-PD
anodes between ~1 and 100 pm. The specific surface area was

J. Mater. Chem. A, 2017, 5, 23872-23886 | 23875
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(@) Raman spectra of Gr—PD-IPA flakes (green), PD (pink), CF (black), CF-Gr—PD (red), and SS—Gr-PD (blue). (b) Nyquist curves of the

electrochemical impedance spectra for the CF and CF-Gr-PD anodes. (c) Pore size distribution for the CF (0.0140 g) (black) and CF-Gr-PD
(0.0120 g) (red) anodes. SEM images of the (d) CF, (e) CF-Gr—PD, and (f) SS anode, (g) bright field optical microscopy image of the SS—Gr—PD.

calculated (see Experimental) and was similar for both CF
(3.7 m* g') and CF-Gr-PD (2 m” g~ ') anodes. SEM of the CF
and CF-Gr-PD anodes showed average pore sizes of ~2 pum
(Fig. 2d) and ~5 pm (Fig. 2e) in diameter respectively, matching
with the porosimetry results. Fig. 2f, acquired by SEM, shows
the microstructure of the SS mesh, and Fig. 2g shows the SS-Gr-
PD cathode, by optical microscopy, confirms the presence of
a Gr-PD continuous film in between the SS mesh wires.

Bioelectrochemical characterization of aerogel anodes

To compare the bioelectrochemical performance of the aerogel
and CF based anodes we designed a single chamber MFC
(Fig. 3a) for repeated and reliable experimental use. The MFC
electrode components were assembled in a stack made in
descending order of the anodic aerogel (Fig. 3b-e), an SS anode
connector, a dielectric dialysis membrane layer with pore size
sufficient to block bacterial cells, a Nafion® proton exchange
membrane (PEM), with the lower side coated with a conductive
and catalytic carbon-Pt surface, and an SS cathode connector.
The electrode materials stack was clamped between two

23876 | J. Mater. Chem. A, 2017, 5, 23872-23886

Teflon® blocks each with 4 ml cylindrical chambers drilled
through them (see Experimental for dimensions), and a rubber
gasket seal. The upper chamber was inoculated with R. palustris
at an optical density (measured at 600 nm) ODggo = 3.0 without
stirring, to encourage cells to form an electroactive biofilm on
the anode surface (as shown by the SEM image in Fig. 3f). Fig. 3g
shows a basic schematic of MFC function.

We used linear sweep voltammetry (LSV) to calculate polar-
ization and power curves of the aerogel anodes by applying
a linear sweep potential from the open circuit voltage (OCV) to
0 V. The OCV (Fig. 4a), surface resistance (calculated by the
gradient of the I-V polarization curve) R, (Fig. 4b), maximum
current density, Ip (Fig. 4c) (normalized to projected cathode
surface area®), and maximum volumetric power output, Py
(Fig. 4d) (normalised to anode volume®® and calculated via
Ohm's law®*’) for the A-CMC, A-CMC-PD, A-CMC-Gr, and
A-CMC-Gr-PD aerogels were determined and compared with
the benchmark anode material, carbon fibre (CFi). After inoc-
ulation for 12 hours with R. palustris, the stable OCV of A-CMC,
A-CMC-PD, A-CMC-Gr and A-CMC-Gr-PD reached 522 =+
47.7 mV, 476 + 35.0 mV, 391 + 38.9 mV, and 456 =+ 38.0 mV

This journal is © The Royal Society of Chemistry 2017


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7ta06895f

Open Access Article. Published on 02 November 2017. Downloaded on 10/28/2025 10:14:02 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Journal of Materials Chemistry A

Paper
(a)
Anodic chamber — o
(@: 1cm, 3.5ml)
Top chamber (Teflon) ——=o
Anode connector ’
(stainless steel mesh) e — - - - - - - - - - ———— (’
Y
‘l‘ S
Anode ! \
Dialysis membrane
Gasket (rubber)
PEM/Cathode Yo
\ \\
Cathode connector ,
(stainless steel mesh) \
Lower chamber (Teflon) ;? -
e 5 i 5
Potentiostat | == == == == = == ===
" Cathode
0,
Fig. 3

(a) Diagram of the MFC chamber components. Photographs of the aerogel disks: (b) a A-CMC, (c) PD A-CMC-PD, (d) A-CMC-Gr and (e)

A-CMC-Gr-PD. (f) SEM micrograph of R. palustris biofilm on the anode. (g) A simplified diagram illustrating the oxidation of substrate
metabolites to provide reducing power that is transferred to the anode through a circuit to the cathode via a potentiostat. To balance charges,
mass transport of protons also generated from metabolism occurs through a proton exchange membrane to the air exposed catalytic side of the
cathode membrane, where they combine with electrons and atmospheric oxygen to form water.

respectively. The MFC using A-CMC aerogel gave I, and Py of
4.04 + 0.618 A m 2 and 0.648 £ 0.178 W m * respectively
(Fig. 4c and d). Considering that CMC is an electrical insulating
polymer which gives A-CMC a Ry, of 146 + 17.3 Q m > (the
highest of the aerogel anodes, Fig. 4b), A-CMC may favour the
formation of a conductive biofilm in contact with the SS anode
connector which could result in giving the A-CMC some
conductive properties. Using A-CMC-PD as an anode reduced
Rgyr to 63.5 £ 5.09 Q m™2, while I, and Py were marginally
increased over A-CMC to 7.91 + 0.923 Am > and 1.01 + 0.178 W
m > respectively (Fig. 4c and d). Using A-CMC-Gr further
reduced Rg,, to 26.3 £ 3.24 Q m 2 and increased I, and Py to
17.9 + 3.09 A m 2 and 2.59 + 0.514 W m >, which is a 4-fold
increase over the A-CMC and A-CMC-PD aerogels. We noticed
that Ry, was lowest in A-CMC-Gr-PD at 16.7 & 2.86 Q m 2, and
I and Py increased to 34.61 + 5.84 A m 2 and 3.51 &+ 0.504 W
m 2. These results are consistent with the trend of R., shown
previously by EIS indicating once more that the addition of
graphene flakes helps to improve electron transfer between the
anode and biofilm, resulting in improved Py and I, in our MFC.
Notably, whilst Py, increased by 36% using the A-CMC-Gr-PD
over the A-CMC-Gr aerogel, inclusion of PD doubled Ip; this is
likely to be due to the highly conductive nature of the PD which

This journal is © The Royal Society of Chemistry 2017

allows current to flow easily though the aerogel matrix to the SS
anode connector. This may provide conductive bridges between
the graphene flakes,” thereby reducing Ry, and improving
charge transfer. Moreover, while it was observed that the fragile
A-CMC-Gr aerogels partially disintegrated in the aqueous cell
culture medium, the presence of PD in A-CMC-Gr-PD improved
the structural robustness of the aerogels. A-CMC-Gr-PD comes
closer to the CFi, in terms of power output (5.37 & 1.16 W m™?),
and has similar surface resistance (15.3 + 1.21 Q m™ ), however
the higher OCV of CFi (605 + 70.3 mV) may have facilitated
higher current (39.7 + 4.86 A m %) due to the unbroken
conductive CFi connection, as opposed to discontinuous pris-
tine graphene flakes.

Cyclic voltammetry (CV) can be used to gain a qualitative
insight into the redox mechanisms used to transfer electrons
between the cell and the anode and thus give information on
pristine graphene's catalytic properties (i.e. efficiency of EET or
charge transfer).”” Fig. 4e-h shows representative cyclic vol-
tammograms of MFC devices operated with each aerogel colo-
nized by R. palustris taken at 1 mV s~ ' between —900 mV and
900 mV after 72 hours in the devices. A broad oxidation-
reduction peak pair at ~360 mV and ~—200 mV from A-CMC
are most likely a result of the interaction between cells and
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outputs from stainless steel mesh anodes mounting A-CMC, A-CMC-PD, A-CMC-Gr, A-CMC-Gr-PD aerogels, and carbon fibre (CFi),
respectively. Error bars show the standard error, for the aerogels of n = 10, and for CFi n = 3. Cyclic voltammograms of the stainless steel anode
with (e) A-CMC, (f) A-CMC-PD, (g) A-CMC—-Gr, and (h) A-CMC-Gr-PD aerogels on top of stainless steel mesh. Scan speed was 1 mV s~ !
between —0.9 and +0.9 V. Each CV trace is a single representative sample, arrows show discernible oxidation and reduction peaks. Sem images
of the aerogel anodes show R. palustris cells embedded in the (i) A-CMC, (j) A-CMC-PD, (k) A-CMC-Gr, and (l) A-CMC-Gr-PD aerogels.

the stainless steel anode connector,”” and confirm the estab-
lishment of an electroactive biofilm on the anode.” The addi-
tion of PD to CMC (A-CMC-PD) did not change the CV profile
significantly (Fig. 4f), other than the emergence of a small
reduction peak at —640 mvV. The addition of Gr flakes to
A-CMC-Gr (Fig. 4g) increased the current range in response to
the voltage scan, and revealed two pairs of oxidation-reduction
peaks at —230 mV and —420 mV, and —100 mV and —160 mV.
These peaks are similar to those reported for R. palustris on
carbon paper,*® and are in accordance with previous studies
that suggest graphene has a more significant effect on EET to
enhance MFC current generation rather than via interaction
with excreted mediators.>>”* The emergence of these peaks
indicates a favourable interaction between at least two extra-
cellular redox mechanisms with graphene, with a low degree of
separation between oxidation and reduction peaks being char-
acteristic of an easily reversible reaction with enhanced charge

23878 | J. Mater. Chem. A, 2017, 5, 23872-23886

transfer.”” When both graphene and PD were incorporated into
the A-CMC-PD-Gr aerogel anode (Fig. 4h), the oxidative peak at
—230 mV was more prominent, and the neighbouring oxidation
peak at —100 mV was no longer visible, suggesting that one
redox mechanism with a lower activation energy for charge
transfer is being favoured. Our results show similar profiles to
other organisms with more extensively characterized metal
reducing outer membrane cytochromes (Omc) such as OmcA
and the Mtr pathway from Shewanella oneidensis.”” However
R. palustris homologs to OmcA have low genetic and structural
similarity*® and R. palustris is known to have other important
mechanisms of both oxidising and reducing its surroundings
such as the phototrophic iron oxidation (Pio) pathway.” CV data
show that graphene enhances DEET from R. palustris in a MFC.
However, further work is required to elucidate the molecular
basis of the precise redox active mechanisms acting in synergy
with graphene.

This journal is © The Royal Society of Chemistry 2017


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7ta06895f

Open Access Article. Published on 02 November 2017. Downloaded on 10/28/2025 10:14:02 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

SEM of colonized aerogel anodes

SEM imaging of the aerogel anodes after their use in the MFC
(Fig. 4i-1) showed cells embedded in the aerogel material with
an extremely high level of cell to anode contact. SEM of the
A-CMC and A-CMC-PD showed networks of anode aerogel
material surrounding and in contact with cells (Fig. 4i and j).
SEM of the A-CMC-Gr and A-CMC-Gr-PD aerogels (Fig. 4k and
1) also showed an interconnected structure of graphene and
polymer matrix. We noticed that unlike some silica based aer-
ogels that maintain their structure after re-hydration,” our
CMC based aerogels visibly contract upon contact with cell
media. Capillary action and contraction of the super-
dehydrated material may help incorporate and immobilize
cells within the microstructure of the aerogel and maximize
anode to cell contact, which could potentially improve EET.

View Article Online
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Bioelectrochemical characterization of graphene coated
carbon foam anodes

We assessed the influence of surface area on the MFC anodes by
acquiring the polarisation and power curves from linear sweep
voltammetry from MFC devices equipped with CF anodes and
the SS anode connector alone (used as control), as done for the
aerogels. The I, and Py can be identified from the polarization
curves (Fig. 5a) and power curves (Fig. 5b) of the CF (inset red),
CF-Gr-PD anodes (inset black) and SS (inset blue), with the A-
CMC-Gr-PD curves shown to illustrate the order of magnitude
difference in power output most likely due to surface area. OCV
for the CF-Gr-PD anode was measured as 669 + 6.92 mV,
compared to 480 + 30.9 mV with CF and 392 + 21.4 mV with
just SS at the anode. We also obtained similar values of Ry, for
CF and CF-Gr-PD at 30.8 + 5.30 Q m™ > and 23.7 + 3.48 Qm >
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Fig. 5

(a) Polarization curves and (b) power curves for MFC devices operated with SS (blue), CF (red), CF-Gr-PD (black), and A-CMC-Gr-PD

(purple) anodes respectively. Inset to (b) are the power curves of SS, CF, and CF-Gr—PD for clarity. Platinum coated carbon paper (CP-Pt) was used
as open air cathode. The volumetric current and power output is expressed based on the geometrical size of the anode chamber. For SSn = 6, for
CF and CF-Gr-PD n =9, and for A-CMC-Gr-PD n = 10. SEM images of (c) SS with R. palustris cells and (d) SS with a graphene coating and cells.
SEM images of (e) CF with R. palustris cells and (f) CF with R. palustris cells with graphene, inset: further magnification showing graphene flakes.
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respectively, and lower than SS at 86.4 4+ 25.5 Q m 2. The SS
alone at the anode yielded I, and Py of 4.47 4+ 1.06 mA m™> and
43.6 + 10.1 mW m > respectively. I, and Py of CF-Gr-PD were
25.7 + 1.113 mA m~ > and 265 + 12.1 mW m ™, both nearly
2-fold higher than I, and Py of CF at 15.9 + 2.80 mA m >
(p = 0.020) and 138 + 28.2 mW m > (p = 0.007) respectively (ESI
Table 27). Since the CF and CF-Gr-PD have similar surface area,
these results indicate that the conductive graphene coating
improves the MFC performance resulting in higher Py, Iy, and
lower Rg,,. Furthermore the positive effect of the anode surface
area on MFC performance can be inferred as Py increased
13-fold from 0.265 + 0.0121 W m > from the low surface area
(~3 m* g ') CF-Gr-PD anodes to 3.51 & 0.504 W m > from the
A-CMC-Gr-PD aerogel anodes with a surface area of ~10 to
20 m* g~ . This clearly indicates that increasing anodic surface
area is a key factor to improve MFC performances.

SEM of biofilms on carbon foam and steel anodes after use in
MFC

In order to visualize the distribution of the R. palustris biofilms
on the SS, CF, and CF-Gr-PD anodes after operations, the anodes
were removed from the MFC and prepared for SEM imaging after
performing the bioelectrochemical measurements. The SS anode
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connector (Fig. 5c and d) showed a very sparse presence of
microbial cells, suggesting that these were more weakly attached
to the smooth, convex surface than to the rougher surface of CF
(Fig. 5e) and CF-Gr-PD anodes (Fig. 5f). Graphene flakes were
visible on the surface of CF-Gr-PD (Fig. 5f inset). Whereas mainly
single cells were visible attached to the smooth surface the SS
wires, more extensive networks of cells with many cell to cell
interactions were visible in the CF biofilm (Fig. 5f). Conductive
type IV pili are thought to be an essential element of electrogenic
and conductive bacterial biofilms,'*** and R. palustris has previ-
ously been shown to produce conductive filamentous structures
such as pili or ‘nanowires’.*® Here at least some of the filamen-
tous structures visibly connecting cells to each other and to the
surface of the anode were likely to be conductive pili that may
play an important role in DEET.

Graphene ink modified stainless steel cathode

To establish the effect of PD and graphene flakes as a cathode
we compared the MFC performance of devices configured with
plain SS, SS-Gr-PD, and an industry standard platinum coated
carbon paper (CP-Pt) at the cathode.'* A carbon fibre anode was
used to verify the catalytic function (i.e. in this case to facilitate
ORR) of pristine graphene with the SS-Gr-PD electrode. Fig. 6a
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graphene at both electrodes, with A-CMC-Gr-PD in the anodic chamber and SS-Gr—-PD as an air cathode, n = 3 and error bars show the
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and b show the polarization and power curves for each of the
cathodes (see Experimental). SS-Gr-PD (blue curve) as
a cathode yielded I, and Py of 0.172 4 0.0378 Am™ > and 1.04 +
0.252 W m > respectively, which are 500-fold greater than those
achieved with SS (black curve) at the cathode (0.000373 =+
0.000103 A m ™2 and 0.00228 + 0.000552 W m*) (Fig. 6a and b,
insert, p = 0.011) and is only slightly lower than what was
achieved when using a CP-Pt cathode (red curve) (Ip ~ 0.672 +
0.152 A m~? and Py ~ 5.01 + 0.302 W m™?). We attribute the
improved performance of the SS-Gr-PD to the catalytic prop-
erties of pristine graphene flakes on the SS mesh facilitating the
ORR.”?* Finally, the combination of a A-CMC-Gr-PD aerogel
anode with a SS-Gr-PD cathode yielded an I, of 0.0753 £ 0.739
A m~? (Fig. 6¢) and Py of 0.390 W m~* (Fig. 6d), demonstrating
the feasibility of Pt-free all-graphene catalysed MFCs.

A digital clock powered by graphene based MFCs

We tested the feasibility of graphene based MFCs to power
small electrical devices, such as a digital clock. A circuit of 10
MFC chambers using A-CMC-Gr-PD anodes and Nafion®
carbon-Pt cathodes was connected, with two series of five MFCs
in parallel (Fig. 7a). This configuration was chosen to reach
sufficient voltage for the digital clock to operate correctly. The
MFCs produced 4.19 pW at 1.29 V and were able to power
a clock successfully. Chronovoltammetry (Fig. 7b) showed

This journal is © The Royal Society of Chemistry 2017

a steady potential drop from 1.38 to 1.10 V in the circuit when
the clock was connected. This was potentially due to an effective
internal anode-cathode short circuit caused by faster oxida-
tion-reduction kinetics at the anode than the cathode.”®”
Polarization (Fig. 7c) and power curves (Fig. 7d) from data
before (red) and after (blue) the clock was connected indicate I,
and Py decreasing from 8.3 to 6.5 nA and from 4.19 to 2.76 uW,
respectively. This application demonstrates how graphene
based MFCs are able to produce sufficient power to run
commercial electronic devices such as those that may be found
in wearable technology or low powered sensors.”® Our results
demonstrate the viability of graphene based electrodes as effi-
cient, cost-effective, biocompatible, environmentally-friendly
and platinum-free anodes and cathodes for MFCs. This repre-
sents a disruptive step change in the manufacturing, cost,
accessibility and sustainability of MFCs, paving the way, for
example, to more accessible energy sources enabling demo-
cratisation of energy supply with important impacts in many
aspect of our society from medicine to energy and consumer
electronics.

Conclusions

In this study we demonstrated the three-fold advantage of gra-
phene based aerogels towards enhancing the efficiency of MFC
electrodes. First, we demonstrated the effectiveness of
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unmodified, pristine graphene composite aerogels. Second, we
showed that a pristine graphene coating can enhance EET
compared to standard carbon anodes. Third, we reveal that
pristine graphene can catalyse the cathodic ORR as well as
anodic EET. We provide a direct demonstration of graphene
enabled MFCs powering a commercial digital clock, illustrating
the possibility of MFC in power demanding applications such as
micro-electronics, beyond the already existing application
ranges of sustainable electricity production, treatment of
municipal waste water streams and biosensors.”**® Finally, we
demonstrate for the first time an entirely graphene catalysed
MFC.

Experimental
Ink production

An isopropanol (IPA) based ink (Gr-PD-IPA) was prepared by
ultrasonication (Fisherbrand FB15069, Max power 800 W) of
graphite flakes (Sigma Aldrich) for 9 hours in IPA with PD (1% v/
v). Additionally, a water based graphene ink (Gr-PD-W) was
prepared by ultrasonication of graphite flakes for 9 hours in
deionized water with PD (1% v/v) (Sigma 739316) to produce
graphene flakes. In both ink preparations, the small amount of
PD acts as a stabilisation agent and conductivity enhancer. The
stabilization mechanism is due firstly to the -7 interaction
between the graphene sheets and the backbone of the PEDOT
and secondly the electrostatic repulsion between the negatively
charged PSS.** Both dispersions were then centrifuged (Beck-
man Coulter Proteomelab XL-A, with a SW 32 Ti swinging
bucket rotor) at 5 k rpm for 1 hour to remove thick (>10 nm)
flakes. After centrifugation, the top 70% of each dispersion was
collected.

Optical absorption spectroscopy

The graphene flakes concentration was estimated using optical
absorption spectroscopy®*>** via the Beer-Lambert law
expressed in the formula A = acl, where « [L g ' m™ '] is the
absorption coefficient, ¢ [g L] is the concentration and / [m] is
with the beam path length. The Gr-PD-W and Gr-PD-IPA inks
were diluted 1:10 with water-PD and IPA-PD respectively.
Assuming a ~ 1390 Lg " m ' (ref. 61)and @ ~ 2460 Lg ' m "
(ref. 82) at 660 nm for Gr-PD-W and Gr-PD-IPA, respectively.

Ink characterisation

The surface tension of the inks was measured using the pendent
drop method (FTA1000B). The shape of the drop results from
the relationship between the surface tension and gravity. The
surface tension is then calculated from the shadow image of
a pendent drop using drop shape analysis. A parallel plate
rotational rheometer (DHR rheometer TA instruments) was
used to evaluate the viscosity as a function of shear rate and the
infinite-rate viscosities were determined for the Gr-PD-W and
Gr-PD-IPA inks. Ink density was evaluated from a (Sartorius
MES5) microbalance where the density is the mass per unit
volume (p = m/V).

23882 | J. Mater. Chem. A, 2017, 5, 23872-23886
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Graphene anodes fabrication

A graphene coated carbon foam CF-Gr-PD anode was created by
drop casting 3 ml of Gr-PD-IPA ink onto a conductive carbon
foam anode (Conductive Foam Pad 40 x 40 mm, Maplin, UK).
The low surface tension (29 mN m™ ') of the Gr-PD-IPA ink
transported the graphene flakes by capillary action around the
porous structure. For the aerogel anode fabrication a CMC/
water precursor for each aerogel was created by adding 5 mg
ml™" CMC (weight average molecular weight, MW ~ 700.000,
Sigma Aldrich 419338) to deionised water. Graphene powder
(10 g L") (Cambridge Nanosystems) produced by cracking
methane and carbon dioxide in a plasma torch was then added
to the CMC/water solution for the A-CMC-Gr-PD and A-CMC-
Gr aerogels while PD (10% v/v) (Sigma 739316) was added to the
CMC/water solution for the A-CMC-Gr-PD and A-CMC-PD
aerogels. Each sample solution (1 ml) was pipetted into an
aluminium container and frozen at —10 °C allowing the growth
of ice crystals to shapes the pore geometry of each structure. The
samples were then placed into a freeze dryer (Telstar LyoQuest)
to remove the ice crystals by sublimation under vacuum.

Cell culture

Wild type R. palustris CGA009 was grown in minimal medium®
with 40 mM glycerol as the carbon source and 5 mM urea as
nitrogen source in 0.5 litre sealed Schott bottles in a shaker
incubator at 120 rpm and 30 °C under fluorescent lights. Cells
in 50 ml of culture were collected by centrifugation at 4000 rpm
and adjusted to ODgso = 3.0 for inoculation into the MFC
devices, 4 ml per device.

Graphene cathode construction

The cathodes were prepared by vacuum filtration transfer. First
(~4 ml) of the Gr-PD-W ink was diluted with deionized water at
a ratio of 1 : 9 respectively and passed through a nitrocellulose
membrane (100 nm pore size), hastened with the use of
a Biichner flask attached to a vacuum pump. The graphene/PD
film on the membrane was then transferred onto a stainless
steel mesh with 0.2 mm spacing. After oven annealing (~80 °C)
the sample was placed in an acetone bath overnight in order to
dissolve the nitrocellulose membrane and leave behind a gra-
phene/PD film of thickness 635 nm (Bruker Dektak Stylus Pro-
filometer) on the metal mesh (cathode SS-Gr-PD). SS-Gr-PD
was then cleaned in acetone and isopropanol baths sequentially
and then died in a nitrogen flux. The sheet resistance (R) of
each cathode was determined with a Jandel probe head in a 4-
point probe configuration. The Ry of a Gr-PD film transferred
onto glass is 3.7 kQ [0, significantly higher than the R; of the
SS cathode (<10 @ O ).

Pore size distribution and surface area

The pore size distribution and specific surface area of the
anodes were determined using a mercury intrusion technique
(Micromeritics AutoPore IV 9500). Mercury was pushed into the
sample from 6.9 kPa (1 psia) to a maximum pressure of
206 843 kPa (30000 psia). The relationship between this

This journal is © The Royal Society of Chemistry 2017
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pressure (P) and the pore diameter (D) can be found through the
Washburn equation assuming the pores are cylindrical,**** D =
—4v cos(6)/P where v is the surface tension of mercury (485 mN
m™ '), 0 is the contact angle (130°) acting along the parameter of
the pore. The pore size diameter is plotted as a function of the
differential intrusion (ml g~* A~") which is found by dividing
the incremental intrusion (ml g~') by the difference in pore
diameter (A). The specific pore area (4) is then calculated (4 =
4V/D) assuming a cylinder pore volume (V = wD2h/4) and open
cylinder pore area (A = wDh). For each specific surface area
measurement the contribution from the macro (~75 pum) and
meso (~1 um) pores while the contribution from the micro-
pores (~10 nm) could not be determined as the foams collapsed
at the higher pressures (~400 psia), a known problem when
examining soft foams with mercury porosimetry.>*>

Electrochemical impedance spectroscopy (EIS)

EIS was conducted in a two-electrode setup. Each working
electrode was an aerogel or foam attached directly to a stainless-
steel mesh. The electrodes were separated by a filter paper
(Millipore JVWP, 0.1 pm pore size) and pressed together
between PTFE blocks. The cell was immersed in 1.0 M tetraethyl
ammonium tetrafluoroborate (TEABF)/propylene carbonate
(Sigma-Aldrich) non-aqueous electrolyte. EIS experiments were
conducted using a BioLogic VSP-300 potentiostat, using an AC
voltage of 0.2 V with 5 mV amplitude over a frequency range of
10 mHz to 10 kHz. All experiments were performed at room
temperature.*’

Electrochemical measurements

The MFCs used in this study were based around the design
shown in Fig. 1. The MFC system consisted of two blocks of
Teflon® (60 x 60 x 30 mm) with drilled cylindrical channels (@:
13 mm, height 30 mm), between which were clamped in
descending order: a marine grade stainless steel (Mesh
Company Ltd, UK) anodic electrode connector, a dialysis
membrane of 10 kDa pore size (Thermo), a Nafion® proton
exchange membrane (Dupont) with a conductive and catalytic
carbon-Pt coating facing into the air exposed cathodic
chamber, and finally a second SS mesh. The top and bottom SS
mesh layers served as contacts for the anode and cathode
respectively. Carbon fibre and aerogel electrodes were placed
over the anodic SS mesh with wet thickness of 4 mm and 1 mm
respectively, and total geometrical area of 1.33 cm®. No electron
shuttle mediator was used. 4 ml of adjusted cell culture was
injected into the top anodic chamber and cells were allowed to
settle and form a biofilm on the anode. To characterize the SS-
Gr-PD cathodes, the MFC device was modified with a secondary
channel (@: 6 mm) drilled perpendicular and intersecting
midway to the anodic channel. The SS-Gr-PD cathode was
placed at the end of this channel, with a total geometrical area
of 0.283 cm?, and 2 g of carbon fibre (Carbonmods Ltd, UK) was
used in the anodic chamber. Platinum coated carbon paper (CP-
Pt) was used as a benchmark (hydrogen electrode/reformate
cathode Alfa Aesar 45452). Bioelectrochemical character-
isation was carried out with a PALM-SENS MultiEmstat
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8-channel potentiostat. Following stabilisation at the open
circuit potential, polarisation and power curves were calculated
by Ohm's law via linear voltage sweeps scanning the applied
voltage from its open circuit potential to 0 volts with a slow scan
rate of 1 mV s~ to avoid overpotential effects.® Cyclic voltam-
metry measurements were also carried out at 1 mV s~ ' between
—900 mV and 900 mV after incubation for 3 days in the MFC.

Raman spectroscopy

Raman spectra for the cathode and anodes were acquired with
a Renishaw 1000 InVia micro-Raman spectrometer at 457,
514.5, and 633 nm and a x20 objective, with an incident power
of below ~1 mW.** The G peak dispersion is defined as Disp(G)
= APos(G)/AAL, where AL is the laser excitation wavelength.
Raman spectra for the Gr-PD-IPA and Gr flakes were acquired
on Si/SiO, substrate while all other spectra were acquired on the
anodes and cathodes directly.

Scanning electron microscopy

Scanning electron microscopy images were taken with a high
resolution Magellan 400L scanning electron microscope (SEM).
The field emission gun was operated at an accelerating voltage
of 5 keV and gun current of 6.3 pA. Images were obtained in
secondary electron detection mode using an immersion lens
and TLD detector. The biological samples were taken on a FEI
Verios 460 scanning electron microscope. Samples were washed
in distilled water, fixed in liquid ethane, and mounted on
a liquid nitrogen cooled plate before freeze drying overnight
and coating in 14 nm of iridium.
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