

CORRECTION

[View Article Online](#)
[View Journal](#) | [View Issue](#)

CrossMark
click for updates

Cite this: *J. Mater. Chem. A*, 2017, **5**, 852

DOI: 10.1039/c6ta90256a

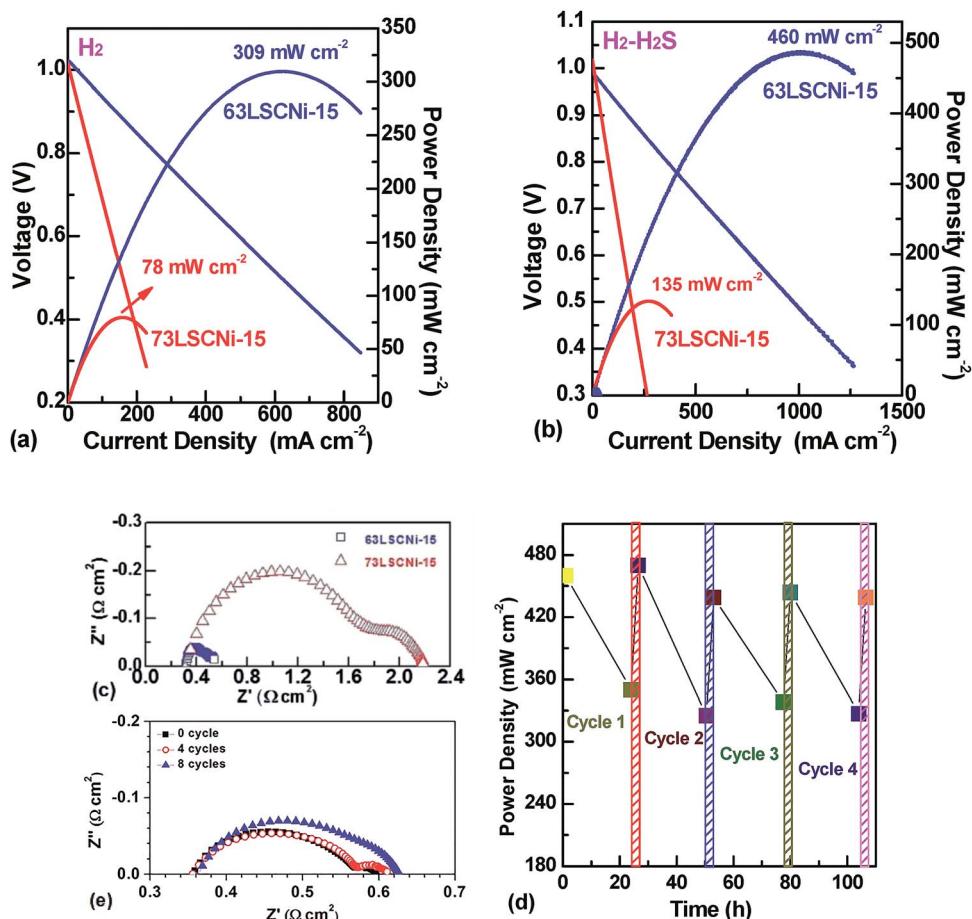
www.rsc.org/MaterialsA

Correction: A-site deficient perovskite: the parent for *in situ* exsolution of highly active, regenerable nano-particles as SOFC anodes

Yifei Sun,^a Jianhui Li,^{*bc} Yimin Zeng,^d Babak Shalchi Amirkhiz,^d Mengni Wang,^a Yashar Behnamian^a and Jingli Luo^{*a}

Correction for 'A-site deficient perovskite: the parent for *in situ* exsolution of highly active, regenerable nano-particles as SOFC anodes' by Yifei Sun *et al.*, *J. Mater. Chem. A*, 2015, **3**, 11048–11056.

The authors wish to replace Fig. 4(e) of the above manuscript with the correct version shown below as the ohmic resistance in the original Fig. 4(e) is incorrect. The YSZ composition for Fig. 4(e) is 8YSZ – with 8 mol% Y_2O_3 fully stabilized ZrO_2 .


The authors also wish to clarify that, in the redox test (Fig. 4d), the metallic Ni nanoparticles were transformed to NiS in 5000 ppm $\text{H}_2\text{S}-\text{H}_2$. However, this is recoverable since NiS can be reoxidized to NiO during the redox process.

^aDepartment of Chemical and Materials Engineering, University of Alberta, Alberta, T6G 2V4, Canada. E-mail: Jingli.Luo@ualberta.ca

^bNational Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China. E-mail: jhli@xmu.edu.cn

^cDepartment of Chemistry and Applied Chemistry, University of Changji, Changji, 831100, China

^dCanmet MATERIALS, Natural Resources Canada, Hamilton, Ontario, L8P 0A5, Canada

Fig. 4 Fuel cell performances with the various anodes in H₂ or 5000 ppm H₂S–H₂. Current density–voltage and power density curves for fuel cells with 63LSCNi-15 and 73LSCNi-15 anodes using (a) pure H₂ fuel and (b) 5000 ppm H₂S–H₂ fuel at 800 °C. (c) EIS for the cells with 63LSCNi-15 and 73LSCNi-15 anodes fueled with 5000 ppm H₂S–H₂ at 800 °C. (d) The redox test results for the 63LSCNi-15-YSZ/YSZ-LSM fuel cell at 800 °C during four 26 h-cycles. In each cycle, the cell was treated with 5000 ppm H₂S–H₂ for 24 h and then recovered *via* the *in situ* treatment of 5% O₂/N₂ for 2 h (hatching period). Then the fuel was introduced again and the power density was measured after the introduction of fuel for 30 min. (e) The comparison of EIS results for the cell using the 63LSCNi-15 anode before and after 4 redox cycle tests in (d).

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.