Soft Matter

CORRECTION

View Article Online
View Journal | View Issue

Cite this: *Soft Matter*, 2017, **13**, 4541

Correction: Cellulose regeneration and spinnability from ionic liquids

Lauri K. J. Hauru, Michael Hummel, Kaarlo Nieminen, Anne Michael and Herbert Sixta*

Correction for 'Cellulose regeneration and spinnability from ionic liquids' by Lauri K. J. Hauru *et al., Soft Matter,* 2016, **12**, 1487–1495.

rsc.li/soft-matter-journal

DOI: 10.1039/c7sm90096a

For the spinning system, the manufacturer's software reported an incorrect extrusion flow rate ν_e (ml min⁻¹) when using the smaller cylinder. Thus, the error only affects [DBNH]OAc and [TMGH]OAc; NMMO and [emim]OAc data remains intact. The correct values for ν_e may be obtained by multiplying the reported ν_e with 1/0.6. As D_R is determined from ν_e , it is also affected: to obtain correct D_R , multiply the reported D_R with 0.6. The extrusion velocities (ν_e) and draw ratios (D_R) reported for [DBNH]OAc and [TMGH]OAc in the main text are modified as follows:

$v_{\rm e} [{\rm ml} \; {\rm min}^{-1}]$		$D_{ m R}$		
Reported	Correct	Reported	Correct	
0.02	0.033	1.0	0.6	
0.04	0.067	2.0	1.2	
		7.5	4.5	
		12.5	7.5	

In the section "Practical spinning", the sentence beginning "Spinnability was good..." should be modified as follows: "Spinnability was good for [DBNH]OAc (up to D_R **4.5**), but poor for [TMGH]OAc (only D_R **1.2**)." The corrected Table 2 is as follows:

Table 2 Highest draw ratios obtained in spinning experiments

Spinning solvent	d_0 [μ m]	$T_{ m extr} \left[^{\circ} { m C} \right]$	$T_{ m bath} \ [^{\circ}{ m C}]$	$D_{ m Rmax}$	Titer [dtex]	Tenacity [cN tex ⁻¹]
[DBNH]OAc	100	70	15	4.5	3.0 ± 0.9	38.5 ± 8.4
$NMMO \cdot H_2O$	100	95	15	6.2	3.7 ± 0.7	31.2 ± 6.6
[TMGH]OAc	100	80	15	1.2	15.5 ± 0.9	10.9 ± 1.1
[emim]OAc	250	90	45	2.9	44.4 ± 1.7	13.9 ± 1.6

 d_0 , spinneret diameter; T_{extr} , extrusion temperature; T_{bath} , regeneration bath temperature; D_{Rmax} , highest draw ratio spun.

Modified Fig. 8 and 9 are as follows:

Correction Soft Matter

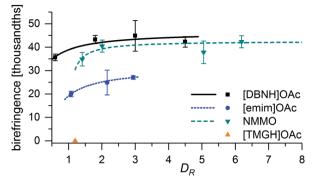


Fig. 8 Final fiber birefringence vs. draw ratio in spinning

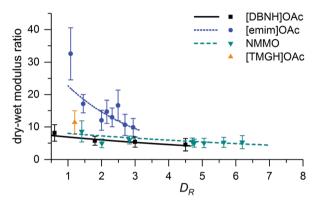


Fig. 9 Dry to wet modulus ratio of final fibers vs. draw ratio in spinning.

The conclusions remain intact. The lower draw ratio exhibited by [TMGH]OAc solutions (1.2 instead of 2.0) actually adds credence to the stated conclusions about [TMGH]OAc. For [DBNH]OAc, the lower draw ratio is not an issue, since it is known from the outset that a monofilament system is suboptimal and better results can be obtained with a multifilament system.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.