Soft Matter

View Article Online

CORRECTION

Check for updates

Cite this: *Soft Matter,* 2017, **13**, 4541

Correction: Cellulose regeneration and spinnability from ionic liquids

Lauri K. J. Hauru, Michael Hummel, Kaarlo Nieminen, Anne Michud and Herbert Sixta*

DOI: 10.1039/c7sm90096a

Correction for 'Cellulose regeneration and spinnability from ionic liquids' by Lauri K. J. Hauru *et al.*, *Soft Matter*, 2016, **12**, 1487–1495.

rsc.li/soft-matter-journal

For the spinning system, the manufacturer's software reported an incorrect extrusion flow rate v_e (ml min⁻¹) when using the smaller cylinder. Thus, the error only affects [DBNH]OAc and [TMGH]OAc; NMMO and [emim]OAc data remains intact. The correct values for v_e may be obtained by multiplying the reported v_e with 1/0.6. As D_R is determined from v_e , it is also affected: to obtain correct D_R , multiply the reported D_R with 0.6. The extrusion velocities (v_e) and draw ratios (D_R) reported for [DBNH]OAc and [TMGH]OAc in the main text are modified as follows:

$\nu_{\rm e} [{\rm ml}{\rm min}^{-1}]$		$D_{ m R}$		
Reported	Correct	Reported	Correct	
0.02	0.033	1.0	0.6	
0.02 0.04	0.067	2.0	1.2	
		7.5	4.5	
		12.5	7.5	

In the section "Practical spinning", the sentence beginning "Spinnability was good..." should be modified as follows: "Spinnability was good for [DBNH]OAc (up to D_R **4.5**), but poor for [TMGH]OAc (only D_R **1.2**)." The corrected Table 2 is as follows:

Table 2	Highest	draw	ratios	obtained	in	spinning	experiments
---------	---------	------	--------	----------	----	----------	-------------

Spinning solvent	<i>d</i> ₀ [μm]	$T_{\rm extr} [^{\circ} C]$	$T_{ m bath} \left[^{\circ} m C ight]$	D _{Rmax}	Titer [dtex]	Tenacity [cN tex ⁻¹]
[DBNH]OAc	100	70	15	<u>4.5</u>	3.0 ± 0.9	38.5 ± 8.4
NMMO·H ₂ O	100	95	15	6.2	3.7 ± 0.7	31.2 ± 6.6
[TMGH]OAc	100	80	15	<u>1.2</u>	15.5 ± 0.9	10.9 ± 1.1
[emim]OAc	250	90	45	2.9	44.4 ± 1.7	13.9 ± 1.6

 d_0 , spinneret diameter; T_{extr} , extrusion temperature; T_{bath} , regeneration bath temperature; D_{Rmax} , highest draw ratio spun.

Modified Fig. 8 and 9 are as follows:

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Open Access Article. Published on 14 June 2017. Downloaded on 7/28/2025 11:10:21 PM.

Department of Forest Products Technology, Aalto University, School of Chemical Engineering, P. O. Box 16300, 00076 Aalto, Espoo, Finland. E-mail: herbert.sixta@aalto.fi

Soft Matter

Fig. 8 Final fiber birefringence vs. draw ratio in spinning.

Fig. 9 Dry to wet modulus ratio of final fibers vs. draw ratio in spinning.

The conclusions remain intact. The lower draw ratio exhibited by [TMGH]OAc solutions (1.2 instead of 2.0) actually adds credence to the stated conclusions about [TMGH]OAc. For [DBNH]OAc, the lower draw ratio is not an issue, since it is known from the outset that a monofilament system is suboptimal and better results can be obtained with a multifilament system.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.