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Shape-dependent effective diffusivity in packings
of hard cubes and cuboids compared with spheres
and ellipsoids

Magnus Röding *

We performed computational screening of effective diffusivity in different configurations of cubes and

cuboids compared with spheres and ellipsoids. In total, more than 1500 structures are generated and

screened for effective diffusivity. We studied simple cubic and face-centered cubic lattices of spheres

and cubes, random configurations of cubes and spheres as a function of volume fraction and

polydispersity, and finally random configurations of ellipsoids and cuboids as a function of shape. We

found some interesting shape-dependent differences in behavior, elucidating the impact of shape on

the targeted design of granular materials.

1 Introduction

Granular materials include a broad range of two-phase materials,
both natural and synthetic, consisting of discrete solid particles
(granules) surrounded by a continuous void phase. Some exam-
ples are columns for separation, chromatography, and catalytic
reactions, cathode materials for lithium-ion batteries, and phar-
maceutical materials for controlled release. Consequently, there is
great interest in determining and understanding the effective
macroscopic properties of these materials, such as effective
diffusivity.1–6 Understanding the impact of microstructural
morphology is a key prerequisite for performing the targeted
optimization of a material for a specific purpose.7

The prototypical examples of granular materials are lattices
and random configurations of impermeable spheres. However,
contemporary particle synthesis techniques facilitate the pro-
duction of a broad range of anisotropic nanoparticles, shaped
like ellipsoids, rods, disks, cubes, icosahedra, tetrahedra, tri-
angles, prisms, half shells, tripods, and stars, to name a few.8–22

The realization that particles with anisotropic shapes (and also
anisotropic interactions) can be used as colloidal building
blocks to yield complex structures with novel properties has
attracted substantial attention.23–26 A vast body of literature
exists on the topic of understanding shape-dependent assemblies
of particles including their phase behavior, phase transitions,
random close packing, and spontaneous shape-induced crystal-
lization. Just to give a brief account, studies performed include the
random close packing of ellipsoids,27 monodisperse and polydis-
perse hard spheres,28,29 polyhedra including platonic solids,30–33

superballs and superellipsoids,34–36 cubes with round edges,37

and monodisperse and polydisperse cubes and cuboids.38–42 Hard
cubes and cuboids and their packing and phase behavior have
been studied both as limiting cases of superballs and super-
ellipsoids,35,36 and modeled exactly as cubes and cuboids.39–41

The true nature of their behavior is somewhat elusive; as stated by
Jiao and Torquato,31 attempts to create random close packings
(or rather maximally random jammed packings) of cubes easily lead
to high degrees of order, raising questions concerning the appro-
priateness of some of the algorithms suggested so far to generate
these packings. Nonetheless, random sequential addition39–41 can
produce packings with a high degree of randomness, as can the
order-constrained stochastic optimization method described
in ref. 42.

Effective transport coefficients in random, two-phase
materials, and in particular the case of spherical granules is a
rather well investigated subject including both effective diffu-
sivity (including other physical processes mathematically ana-
logous to effective diffusivity, such as electrical conductivity,
thermal conductivity, and magnetic permeability)43–52 and fluid
permeability,53–58 oftentimes incorporating microstructural
descriptors such as the n-point correlation (probability) func-
tions for n = 1, 2,. . . introduced by Brown.59

In light of the increasing capabilities to manufacture aniso-
tropic nanoparticles, the topic of effective macroscopic proper-
ties and the impact of shape thereon has become increasingly
interesting. Transport properties with anisotropic granules
have been investigated in several studies. In ref. 60, random
packings of granules shaped as spheres, ellipsoids, cylinders
and parallelepipeds were generated using sequential deposition
in a gravitational field, and their conductivity, permeability, and
diffusivity were studied (but the latter only using ellipsoids for
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computational reasons). In ref. 61, the impact of shape on the
effective permittivity of ellipsoids was studied. In ref. 62, different
irregular particle shapes constructed as the union of overlapping
spheres were created and the impact on permeability was inves-
tigated. Nonetheless, not so much attention has been directed
toward aspherical particles and effective diffusivity.

In this work, we performed computational screening of
effective diffusivity in packings of (hard and impermeable)
cubes and cuboids. Very little work is done in terms of both
analytical models and simulations of effective diffusivity for
particles with these shapes. As a reference, we compared all the
results with packings of spheres and ellipsoids. We studied
both periodic (lattice) configurations, i.e. simple cubic crystals
and face-centered cubic crystals, and random configurations
for different solid volume fractions, polydispersities and shapes.
In total, more than 1500 structures are generated and screened
for effective diffusivity. The aim of this computational screening
paradigm is to explore the effect of varying different geometrical
parameters independently, and discover and understand generic
design rules for the tailoring of effective transport properties.
This effort will aid in guiding future experimental work.

2 Structure generation

We first describe the details of generating the lattice structures
in a cubic, periodic simulation domain with side L. A simple
cubic (SC) lattice of spheres is generated by placing a single
sphere with radius r = 1 in (L/2,L/2,L/2) with L being defined by
the solid volume fraction f through

L ¼ 4pr3

3f

� �1=3

: (1)

The upper bound for the solid volume fraction is f = p/6 E
0.5236, which is when the spheres tangent each other. An SC
lattice of cubes is generated by placing a single cuboid with
semi-axes r1 = r2 = r3 = r = 1 in the same position, with L being

L ¼ 8r3

f

� �1=3

: (2)

The upper bound for the solid volume fraction is f = 1 when the
cubes tangent each other. A face-centered cubic (FCC) lattice of
spheres is generated by placing four spheres with radii r = 1 in
(0,0,0), (L/2,L/2,0), (L/2,0,L/2), and (0,L/2,L/2), with L being

L ¼ 16pr3

3f

� �1=3

: (3)

The upper bound for the solid volume fraction is f ¼
p= 3

ffiffiffi
2
p� �

� 0:7405 when the spheres tangent each other. An
FCC lattice of cubes is generated by placing four cuboids in the
same positions as above, with L being

L ¼ 32r3

f

� �1=3

: (4)

The upper bound for the solid volume fraction is f = 1/2 when
the cube corners tangent each other, resulting in a 3D ‘checker-
board’ structure.

The random microstructures are generated using in-house
developed software implemented in Julia (www.julialang.org)63

and available in a Github repository (https://github.com/rod
ing/whitefish_generation, version 0.2). Random configurations
of non-overlapping particles are generated using a hard particle
Markov Chain Monte Carlo (MCMC) algorithm. For spheres,
the overlap condition is straightforward. For ellipsoids, the
Perram–Wertheim criterion64 for two ellipsoids of arbitrary
orientation is used. For cubes and cuboids, a separating axis
theorem65 is employed for the detection of overlap for two
cuboids. To quantify the degree of overlap, it is further deter-
mined how far one of the particles needs to move along the axis
defined by their respective center points to remove the overlap.
First, particles are assigned uniformly distributed locations and
orientations (the latter encoded using a quaternion representa-
tion). Second, the configurations are relaxed by sequentially
performing random translations of all particles and then
random rotations of all particles until no two particles overlap.
Proposed translations and rotations are only accepted if they
lead to a lower or equal degree of overlap for the considered
particle. These ‘local’ stochastic optimization steps eventually
lead to a ‘global’ optimization, resulting in no overlap. Third,
the configurations are equilibrated by performing a large num-
ber of random translations and rotations ensuring a distribution
in location and orientation that is as uniform as possible. Now, if
the desired solid volume fraction f is less than 0.50, we are
done. Otherwise, as a final step, the steps above are performed
for f = 0.50 and the configuration is compressed in small steps,
Df = 10�5, until the target solid volume fraction ftarget is
reached. The proposed translations are normal distributed with
standard deviation st in each direction. The proposed rotations
are normally distributed with standard deviation sr in a random
direction. In every step, st and sr are chosen in an adaptive
fashion to aim for an acceptance probability of 0.25. For very
high solid volume fractions, the configuration might get jammed
before reaching ftarget. In this case, the generation is restarted
from scratch with a new random configuration. All configura-
tions have 512 particles (there is a point to having an even cube,
i.e. 83, because otherwise the configurations of the cubes actually
cannot reach high solid volume fractions in the (artificially)
periodic simulation domain). Using a dual Intel Xeon E5-2699
v4 setup, the execution times for the generation are between
B1 min and B2.5 hours (single thread), depending strongly of
course on the type of particle and on ftarget.

3 Diffusion simulation

Obstructed diffusion in the generated structures is simulated
using an in-house developed software also implemented in
Julia (www.julialang.org)63 in a parallel implementation and
also available in a Github repository (https://github.com/rod
ing/whitefish_diffusion, version 0.2). A ‘random walk particle
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tracking’ technique50 is used, initially placing an ensemble of
N = 106 point particles uniformly distributed in the void part of
the simulation domain, by rejection sampling. The stochastic
particle motion is simulated as a Gaussian random walk with time
resolution dt = 2.5 � 10�5 (a.u.) and corresponds to the diffusion
coefficient D0 = 1 (a.u.). Hence, random normal distributed
displacements are added to the current position in each

time step with zero mean and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0dt
p

. The
positions are recorded at each major time step Dt = 0.01 (a.u.).
The simulation proceeds up to tmax = 50 (a.u.) or 100 (a.u.)
(for different data sets). Single and multiple rejection boundary
conditions are implemented but multiple rejection is used here;66

proposal displacements are generated until one is found that does
not mean leaving the void phase. A cell list data structure (with
10 � 10 � 10 cells for large random configurations, but only a

single cell for lattice structures) is used to accelerate computa-
tions. The computations are run on a variety of architectures
comprising around 20 cores yielding execution times between B2
hours and B30 hours, within the total 5 � 105 core hours used.

A time-dependent effective diffusion coefficient (i.e. obstruc-
tion factor) is computed as

Dt

D0
¼ 1

6ND0t

�
XN
n¼1

xnðtÞ � xnð0Þð Þ2þ ynðtÞ � ynð0Þð Þ2þ znðtÞ � znð0Þð Þ2
h i

:

(5)

Here, xn(t), yn(t), and zn(t) are the positions of the n:th particle at
time t. The effective diffusivity is obtained as the asymptotic
value DN/D0 A (0,1). In Fig. 1 some examples of computed
effective diffusivity curves are shown.

4 Results and discussion

First, we consider the lattice structures, i.e. simple cubic (SC) and
face-centered cubic (FCC) configurations of spheres and cubes.
Examples of the structures and the results of the diffusion
simulations are shown in Fig. 2. For the spheres, the results
are in very good agreement with earlier analytical findings67 (see
Fig. 2 in this paper, and the solid black lines in the figure herein)
and with earlier simulated findings using a very similar simula-
tion technique as herein.50 Obviously, for small f the impact of
shape is small, and grows larger for increasing f. The FCC of
cubes consistently has the lowest diffusivity of them all. For f
smaller than B0.4, the SC of cubes has smaller diffusivity than
the SC of spheres, whereas for f larger than B0.4, the opposite
is true. Similarly, for f smaller than B0.6, the SC of cubes has a
smaller diffusivity than the FCC of spheres, whereas for f larger

Fig. 1 Examples of effective diffusivity curves, showing the Dt/D0 ratio, i.e.
the obstruction factor, as a function of time t. Asymptotic values DN/D0

are obtained by extracting the end points of these curves. These particular
curves originate from the face-centered cubic structures of cubes, for
(in order of decreasing diffusivity) solid volume fractions f = 0.05,
0.10,. . .,0.45.

Fig. 2 Lattice structures showing (a) a simple cubic lattice of spheres, (b) a simple cubic lattice of cubes, (c) a face-centered cubic lattice of spheres, and
(d) a face-centered cubic lattice of cubes. All lattices shown have a solid volume fraction f = 0.4. In (e), effective diffusivities for different volume fractions
are shown (yellow circles for the SC of spheres, green squares for the SC of cubes, red circles for the FCC of spheres, and blue squares for the FCC of
cubes). Also, the analytical results obtained from ref. 67 are shown for both SC and FCC (black solid lines).
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than B0.6, the opposite is true. The 3D checkerboard structure
of the FCC of cubes yields very narrow ‘channels’ between large
open spaces, even for relatively low solid volume fractions;
indeed, for f = 0.5, the void phase is discontinuous and the
effective diffusivity is zero. Furthermore, there is some benefit in
terms of effective diffusivity in the SC and FCC of spheres as
compared to the FCC of cubes as long as the solid volume
fraction is not too large, because of a less tortuous path for the
diffusing species with smoothed boundaries of the void phase.
However, for large solid volume fractions, the SC of cubes can
provide highly non-tortuous and straight paths (at least along
the axes), simply because packing of cubes is more efficient than
that of spheres, leading to rather high diffusivities even for
extremely high solid volume fractions. We first believed this to
be an artifact of our simulation method, in particular the
multiple-rejection boundary conditions, but as can be seen
below in Fig. 3, when the ‘straight channels’ are no longer there,
the diffusivity indeed drops to zero much more quickly (the
curve shown in Fig. 2 would consequently, if we could simulate
it, have a very rapid drop to zero as f approaches 1). Hence, the
different ordering for different solid volume fractions is the
result of a varying trade-off between two competing effects. For
lower solid volume fractions, f r 0.4, the smaller diffusivities
for cubes is supported through their greater tortuosity as found
in ref. 68–70.

Second, we study random packings for different solid
volume fractions. Examples of the structures and results of
diffusion simulations are shown in Fig. 3. For low solid volume
fractions, spheres yield a higher effective diffusivity than cubes,
the same as above. For high solid volume fractions, it appears
that the benefit of straight ‘channels’ induced by the cubic
shape in lattices is lost for random configurations. This is not
surprising; rather, it is intuitively obvious that adjacent cubes
randomly displaced from each other can provide a very efficient
obstacle. For f larger than B0.6, we observe akin to ref. 39–42

that ordering and orientational correlations start manifesting
themselves (for f Z 0.57, crystallization behaviour has been
observed). It can hence be discussed whether these configura-
tions are random and to what extent; herein, it suffices to
conclude that our algorithm will create crystals for high solid
volume fractions. The substantial spread in effective diffusivity
for cubes with solid volume fractions larger than B0.6 indicates
that it is largely up to chance whether the configuration will
provide ‘simple’ paths for the diffusers or not. This may also be
highly dependent on the choice of algorithm for generating the
configurations. We have a hypothesis that the slightly slowed
decrease (the slight ‘bump’) in diffusivity in the range f = 0.6–0.8
depends on the increased ordering among the cubes yielding
some ‘channels’ between the cubes, before the effect of a larger
solid volume fraction once again starts to dominate. In any case,
a more detailed answer on the true effective diffusivity for cubes
with very large solid volume fractions would likely require much
larger configurations.

Third, we investigate the effect of polydispersity for f = 0.5
by introducing a lognormal distribution for the particle
volumes (due to the family of lognormal distributions being
closed under powers, the semi-axes/radii are also lognormally
distributed). Examples of the structures and the results of the
diffusion simulations are shown in Fig. 4. The coefficient of
variation (CV), i.e. the ratio of standard deviation to the mean,
is varied from 0 to 3. The effect of polydispersity is not that
pronounced, but a slightly decreasing trend for increasing the
coefficient of variation is seen. As the calculation of effective
diffusivity is a scale-independent problem, increasing the size
of all particles would not change anything. However, intro-
ducing the occasional large particle through polydispersity will
apparently contribute toward blocking the diffusion more
efficiently. Although we only investigate for f = 0.5, it is clear
that the effect of polydispersity will be positively correlated with
solid volume fraction and vanish for f approaching zero.

Fig. 3 Random packings of monodisperse spheres and cubes showing (a) spheres with f = 0.5, (b) cubes with f = 0.5, (c) cubes with f = 0.7, and
(d) cubes with f = 0.9. Increased ordering and crystallization can be observed for cubes for high solid volume fractions. In (e), effective diffusivities
for different volume fractions with replicates are shown (yellow circles for spheres and green squares for cubes).
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Fourth, we investigated the effect of shape for ellipsoids
and cuboids for f = 0.5. For both particle types, we studied
semi-axes 1 : 1 : a, where the semi-axis ratio a is varied between
0.25 and 4. Examples of the structures and the results of
diffusion simulations are shown in Fig. 5. As can be expected
from the results for both mono- and polydisperse packings of
spheres and cubes, cuboids do consistently yield lower effective
diffusivities than ellipsoids. However, for very oblate particles
(to the extent that this is an appropriate word for cuboids), the
difference gradually vanishes. The same convergence is not
observed for very prolate particles in the investigated a regime,
although it seems plausible that for extremely elongated particles,
shape (of the cross-section) would once again not matter so much.
We investigated this for a = 10 and f = 0.4 (because we cannot
reach f = 0.5 for such elongated particles) and somewhat surpris-
ingly found that D/D0 was B0.77 for ellipsoids and B0.73 for

cuboids, i.e. the difference in diffusivity reduces from B0.05 to
B0.04 when jumping from a = 4 to a = 10, suggesting that they
‘converge’ very slowly as a increases. We cannot generate
structures with arbitrary large values of a due to numerical
issues with the overlap criterion (for ellipsoids) and particles
possibly overlapping themselves due to the periodicity of
the simulation domain, so we have to settle for this result.
Anyhow, the two particle types have the same generic relation
between shape and effective diffusivity, suggesting some
degree of universality with respect to the aspect ratio impact
on diffusivity. The importance of shape and aspect ratio could
be due to the shape itself, and also due to the ordering that
the shape can impose on the overall structure, or a combination
of the two. A deeper analysis of microstructural descriptors
would be required to find an answer. Although we only investi-
gated for f = 0.5, it is clear that the effect of shape will be

Fig. 4 Random packings with f = 0.5 of polydisperse spheres and cubes with different coefficients of variation (CV) showing (a) spheres with CV = 1,
(b) spheres with CV = 3, (c) cubes with CV = 1, and (d) cubes with CV = 3. In (e), effective diffusivities as a function of CV are shown (yellow circles for
spheres and green squares for cubes).

Fig. 5 Random packings with f = 0.5 of ellipsoids and cuboids with different semi-axis ratio 1 : 1 : a showing (a) ellipsoids with a = 0.5, (b) ellipsoids with
a = 2, (c) cuboids with a = 0.5, and (d) cuboids with a = 2. In (e), effective diffusivities as a function of shape (a) are shown (yellow circles for ellipsoids
and green squares for cuboids).

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
O

ct
ob

er
 2

01
7.

 D
ow

nl
oa

de
d 

on
 6

/2
8/

20
24

 1
1:

17
:4

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7sm01910f


This journal is©The Royal Society of Chemistry 2017 Soft Matter, 2017, 13, 8864--8870 | 8869

positively correlated with solid volume fraction and vanish for f
approaching zero.

5 Conclusion

We have performed computational screening of effective diffu-
sivity in lattices and random configurations of cubes and
cuboids compared with spheres and ellipsoids. In total, more
than 1500 structures were generated and screened for effective
diffusivity. Very little is done in terms of both analytical models
and simulations of effective diffusivity in the literature for cubic
and cuboidal particles. For lattice configurations, the solid
volume fraction will determine which shape gives higher and
lower effective diffusivity. For random configurations, cubes
and cuboids consistently yield lower effective diffusivities.
Although the solid volume fraction is the primary determinant
of effective diffusivity, shape effects are still substantial and
more research is needed to understand them. The shape-
dependent differences found in the behavior help in under-
standing the impact of shape on the targeted design of granular
materials, with respect to the relations between porosity, specific
surface, pore size distributions, and effective properties. Further
work would naturally include an extension to superballs/super-
ellipsoids as well as cubes/cuboids with rounded edges and
corners, both of which can ‘interpolate’ between spheres/ellipsoids
on the one hand and cubes/cuboids on the other. Furthermore,
the use of 2- and 3-point correlation functions as well as other
microstructural descriptors will help elucidate the nature of the
shape dependence in these systems.
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