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Viscous forces and bulk viscoelasticity near jamming

Karsten Baumgarten * and Brian P. Tighe

When weakly jammed packings of soft, viscous, non-Brownian spheres are probed mechanically, they

respond with a complex admixture of elastic and viscous effects. While many of these effects are

understood for specific, approximate models of the particles’ interactions, there are a number of

proposed force laws in the literature, especially for viscous interactions. We numerically measure the

complex shear modulus G* of jammed packings for various viscous force laws that damp relative

velocities between pairs of contacting particles or between a particle and the continuous fluid phase.

We find a surprising sensitive dependence of G* on the viscous force law: the system may or may not

display dynamic critical scaling, and the exponents describing how G* scales with frequency can

change. We show that this sensitivity is closely linked to manner in which viscous damping couples to

floppy-like, non-affine motion, which is prominent near jamming.

Introduction

Dense packings of soft, viscous, non-Brownian spheres are
widely studied as a minimal model for emulsions, aqueous
foams, and soft suspensions.1–8 When compressed, soft spheres
‘‘jam’’ into a marginally solid state with a shear modulus that
grows continuously above a critical packing fraction fc E 0.84
in 2D and 0.64 in 3D.9 Close to the jamming point, structural
and mechanical properties display features reminiscent of a
critical point, including diverging time and length scales.1,3,6,9–17

Mechanically probing the system on finite time scales reveals a
mixture of elastic and viscous response.1,5,7,8,13,17 However
numerical studies typically represent particles’ viscous inter-
actions with their neighbors and/or the continuous fluid phase
using approximate, computationally inexpensive force laws.
Here we use simulations and theory to demonstrate that visco-
elastic properties of jammed solids are surprisingly sensitive to
the form of the viscous force law.

Linear viscoelasticity is characterized by the frequency
dependent complex shear modulus G*(o) = G0(o) + ıG00(o); its
real and imaginary parts are known as the storage and loss
modulus, respectively, and quantify the amount of energy
stored elastically and dissipated viscously during one cycle of
oscillatory driving at angular frequency o.18 The form of the
complex shear modulus near jamming was first described by
Tighe13 for a system of soft spheres interacting via ‘‘one-sided’’
(purely repulsive) springs and linear viscous contact forces;
details of the model are presented below. Characteristic
features can be seen in Fig. 1, which plots the average G* for

states prepared close to jamming. At both low and high
frequencies, the storage modulus (filled symbols) and loss
modulus (open symbols) resemble a simple Kelvin–Voigt solid
(a spring and dashpot in parallel),18 with G0 B const and
G00 B o. There is also a critical regime at intermediate

Fig. 1 (top) Storage modulus G0 and loss modulus G00 of a packing of
viscous soft disks (inset) prepared at pressure p = 10�4 and sheared at
driving frequency o. (bottom) Particle displacements evaluated at zero and
peak stress amplitude for o = 10�10, 10�3, and 104.
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frequencies, in which both G0 and G00 scale as o1/2. Similar
square root scaling has been observed experimentally in foams,
emulsions, and other complex fluids,19–23 and has been linked
theoretically to strongly non-affine motion.19 Plots of the particles’
displacements from a static initial condition, evaluated at zero and
peak shear stress (Fig. 1, bottom six panels) show that the critical
regime represents a broad crossover from highly non-affine
motion in the quasistatic limit at vanishing o, to strongly affine
motion at high frequencies.

The square root scaling is anomalous, in the sense that
simple linear interactions at the particle scale give rise to
nonlinear frequency dependence in the bulk. In contrast, the
frequency dependence of G* in a Kelvin–Voigt solid is consistent
with a direct extrapolation from the elastic forces (linear in the
particle displacements) and viscous forces (linear in the velocities).
Moreover, in soft spheres the critical regime broadens on approach
to the jamming transition, with its lower bound approaching zero
as the confining pressure p goes to zero and the system unjams.13

This strongly suggests that critical effects lie at the origin of the
square root scaling near jamming.

While spring-like forces are standard in numerical models
of foams and emulsions,1,3–7,9,13,24 a number of alternate proposals
for viscous interactions can be found in the literature.1,25–28 This
variety is largely due to authors’ efforts to strike a balance between
physical accuracy and computational complexity. What influence
does the viscous force law have on bulk viscoelastic response near
jamming? In equilibrium systems near a critical point, growing
correlations wash out particle-scale details, so that similar scaling
in bulk properties can be found for different interparticle
interactions.29 Here we show that the nonequilibrium jamming
transition is different: the complex shear modulus near jamming
is surprisingly sensitive to the form of the viscous force law.
Seemingly similar choices can alter the apparent scaling exponents
or eliminate dynamic critical scaling entirely. Still others lead to
subtler changes in the form of correlation functions.

To probe the role of viscous damping in viscoelasticity near
jamming, we implement computer simulations of Durian’s
bubble model, a widely studied numerical model for foams
and emulsions near fc. We investigate linear contact damping
for varying ratios of the drag coefficients for normal and
transverse motion, Stokes-like drag laws, and finally nonlinear
damping of the relative velocities. One of our main conclusions
will be to relate floppy-like, non-affine motion in the quasistatic
limit to the form of the storage and loss moduli at finite
frequency. We further study the role of two-point velocity
correlations and effect of pre-stress on the dynamic viscosity.

The bubble model

Durian’s bubble model treats individual bubbles as non-
Brownian particles interacting via elastic and viscous forces.1

The equations of motion are overdamped, so that at all times
the net elastic and viscous forces on a particle i balance,

-

F el
i +

-

F visc
i =

-

0. (1)

For contact forces
-

fij, the corresponding net force ~Fi ¼
P
jðiÞ
~fij can

be found by summing over all particles j in contact with i.
We consider ensembles of packings of N particles in D = 2

spatial dimensions prepared at a target pressure p. N = 32 768
unless indicated otherwise. Initial conditions are generated by
minimizing the total elastic potential energy using a nonlinear
conjugate gradient algorithm, starting from particle positions
placed randomly via a Poisson point process. As is typical in
studies of jamming,30 the packings are bidisperse to avoid
crystallization, with equal numbers of large and small particles
and a radius ratio 1.4 : 1. The systems are bi-periodic, and shear
is imposed via Lees–Edwards boundary conditions.

Units are set by the mean particle size d, the particle
stiffness k, and a microscopic time scale t1 (the latter two being
introduced below). In simulations all three are set to one.
However, in some cases we include the microscopic time scale
in scaling relations in order to emphasize the dimensionful or
dimensionless character of a relation.

All our simulations are performed in D = 2 spatial dimensions,
which is the upper critical dimension for the jamming transition.31

We therefore expect the critical behavior we describe here, and in
particular the values of critical exponents, to remain unchanged for
D 4 2.

Elastic interactions

Elastic forces are modeled via ‘‘one-sided springs,’’ i.e. a
harmonic repulsion that acts only when particles overlap.
Linear springs are a widely accepted32,33 approximate34–39

description of the elastic repulsion that arises due to surface
tension when spherical bubbles or droplets are deformed. The
elastic force on particle i due to particle j is

~f elij ¼
�kdij n̂ij for dij � 0

~0 for dij o 0:

8<
: (2)

Here we have introduced the contact stiffness k, the overlap dij =
ri + rj � Drij, and the normal vector n̂ij = (-rj �

-
ri)/Drij. The latter

two quantities are defined in terms of the particle radii ri and
rj, center positions -

ri and -
rj, and center-to-center distance Drij =

|-ri �
-
rj|. The contact stiffness k is proportional to the surface

tension and encodes the energetic cost of deforming a particle
and thereby increasing its surface area.

For later convenience we note that the elastic energy corres-
ponding to eqn (2) is U ¼

P
hiji

Uij , where

Uij ¼
1

2
kdij2 dij � 0

0 dij o 0:

8><
>: (3)

The energy change DU due to small perturbations away from an
initial condition in mechanical equilibrium is

DU � s0gV þ
1

2

X
hiji

k Dukij
� �2

�
f 0ij

Dr0ij
Du?ij
� �2" #

; (4)
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where D-
uij = -

uj �
-
ui is the relative displacement vector, D-

u8
ij =

(D-uij�n̂ij)n̂ij is its component along n̂ij, D
-u>

ij = D-uij � D-u8
ij is the

transverse component, g is the shear strain, and V is the volume
of the packing (area in 2D). The shear stress s0 in the reference
state is small with a mean value equal to zero, because the
preparation protocol is isotropic. f 0

ij and Dr0
ij are the contact

force and center-to-center distance in the reference packing,
respectively. The term proportional to f 0

ij captures the influence
of stress in the reference packing, i.e. the confining pressure p.
It is referred to as pre-stress, to distinguish it from stresses
induced by the shear deformation. At several points below we
present data calculated ‘‘without pre-stress,’’ which is achieved
by setting f 0

ij to zero in eqn (4). This is equivalent to replacing
the packing with a network of springs, each with a rest length
equal to Dr0

ij from the corresponding contact.

Viscous interactions

Here we describe the several viscous force laws considered
below. These can be divided in three classes: linear contact
forces, linear body forces, and nonlinear contact forces.

Linear contact damping. We will explore a class of linear
viscous contact force laws that damp relative velocities at the
point of contact,

~f viscij ¼ �kt1 D _~u
k
ij þ bD _~u?;cij

h i
: (5)

See Fig. 2a for an illustration. The quantity D _~u?;cij ¼

D _u?ij � ri _yi � rj _yj
� �

n̂ij � ẑ
� �

is the tangential velocity at the

contact and ẑ is the out-of-plane unit vector. yi is the angular
displacement of particle i from its orientation in the initial
condition. Dots indicate differentiation with respect to time.
The coefficient kt1 controls the damping of relative normal
motions. It is defined in terms of a microscopic time scale t1,
which describes the exponential relaxation of two overlapping
disks and sets the natural unit of time. The damping coefficient
for relative transverse motion bkt1 is defined by its ratio b to the
damping coefficient for normal motion.

The case b = 1 describes equal damping of normal and
transverse motion. For brevity we refer to this case as ‘‘balanced’’
contact damping. Examples of prior studies employing balanced
contact damping include ref. 2, 4, 6–8, 13, 40 and 41. Note that
some of these studies apply damping to the relative motion of
the particles’ centers, neglecting particle rotations. We include
rotations, as this seems more physical – however, we have also

implemented balanced damping without rotations and find
the form of G* qualitatively unchanged from the results
presented below.

We also separately consider the case b = 0, in which
transverse motion goes undamped. This is not a physically
realistic scenario for densely packed foams and emulsions.
Nevertheless, this damping law is found in the literature,
presumably because it exerts no torque, eliminating the need
to keep track of rotational degrees of freedom.42–45 In dilute
systems with volume fractions outside the range considered
here, this same force law is also a means to implement inelastic
collisions.

Finally, we also treat the case of arbitrary b. We are not aware
of any prior work that has systematically varied this coefficient.

Again for later convenience, we note that the Rayleigh
dissipation function corresponding to Eqn (5) is

R ¼ 1

2
kt1
X
hiji

D _u
k
ij

� �2
þb D _u?;cij

� �2� �
: (6)

The Rayleigh dissipation function is used to implement linear
damping forces in a Lagrangian formalism. Just as conservative
forces are proportional to gradients of the potential energy,
dissipative forces are proportional to gradients of the dissipation
function.

Stokes-like drag forces. In addition to linear contact drag, we
also consider a class of linear viscous force laws in which drag
enters as a body force reminiscent of Stokes drag.1,46 These can
be motivated in two ways.

In the first interpretation, drag between particles is neglected
entirely. Instead drag is assumed to result from the motion of
individual particles with respect to the continuous fluid phase,
which itself is assumed to flow with an affine velocity profile
-
vaff(-x) = _gyx̂ set by the shear rate _g. A particle at position -

ri then
experiences a drag force proportional to the difference between
its velocity -

vi and the affine profile (see Fig. 2b),

~Fvisc
i ¼ �kt1 _~ui �~vaff ~rið Þ

h i
: (7)

In this interpretation, the damping coefficient kt1 should be
proportional to the fluid viscosity ZF, as specified in Stokes’ law.
The dissipation function is

R ¼ 1

2
kt1
X
i

_ui;x � r0i;y _g
� �2

þ _ui;y
2

� �
þ 1

2
ZF _g2V: (8)

The second term accounts for dissipation due to shearing of the
continuous fluid phase.

An alternative interpretation of eqn (7) known as ‘‘mean
field drag’’ was introduced by Durian.1 In this view the body
force is an approximation to balanced contact damping. One
assumes that the velocity of each contacting particle j can be
replaced with its average value at that position, which coincides
with the affine velocity field. Angular velocities are set to zero.
The resulting viscous force law and dissipation function are
identical to eqn (7) and (8), with the caveat that kt1 no longer
has a fixed proportion to the fluid viscosity. Retaining the fluid
viscosity term in the dissipation function is advisable, however,

Fig. 2 (a) Relative velocities in the rest frame of particle i. (b) Motion with
respect to an affine flow field.
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as otherwise the system could deform affinely without dissipating
energy.

Regardless of how the Stokes-like drag force is motivated, its
advantage is again computational. As the equations of motion
in the bubble model are overdamped, they are first order linear
differential equations. Generally, these must be solved using
matrix inversion (see below). However in the special case of
eqn (7), the relevant inversion can be performed by hand. Prior
studies using Stokes or mean field drag include ref. 1–3, 5, 17,
28, 41 and 47–49.

Nonlinear contact forces. The viscous contact force law of
eqn (5) is linear in the particle velocities. However, viscous
friction laws in real foams are actually nonlinear in the relative
velocities. There are two classes of interactions, associated with
so-called mobile and immobile surfactants, which give rise to
different flow profiles within the thin films of the flow, and
therefore dissipate energy differently. The case of immobile
surfactants was treated by Bretherton,25 whose drag law pro-
portional to the 2/3 power of velocity was subsequently verified
experimentally.50 More recently, Denkov and co-workers have
argued for an exponent 1/2 in the case of mobile surfactants.26

Seth et al.27 have also suggested a nonlinear force law with
exponent 1/2 to account for elastohydrodynamic interactions
between deformable particles in soft glassy matter. We therefore
consider force laws of the form

~f viscij ¼ �kt1
Dvcij
r0=t1

� 	a�1
D~v c

ij ; (9)

where D~v c
ij ¼ D _~u

k
ij þ D _~u ?;cij is the relative velocity at the contact.

The constant r0 has units of length and is required for dimen-
sional consistency. We set it to 1.

Equations of motion

To solve for the complex shear modulus, it is useful to rewrite
the equations of motion, eqn (1), in matrix form. Following
ref. 13, the equations of motion can be expressed as

K̂jQðtÞi þ B̂j _QðtÞi ¼ jFðtÞi: (10)

The Hessian matrix K̂ and the damping matrix B̂ are defined in
terms of the elastic potential energy U and the Rayleigh
dissipation function R,

Kmn ¼
@2U

@Qm@Qn






jQi¼j0i

Bmn ¼
@2R

@ _Qm@ _Qn






j _Qi¼j0i

: (11)

The 3N + 1-component vector Q = (u1x,u1y,. . .,y1,y2,. . .,g) con-
tains all degrees of freedom, including the amplitude g of the
pure shear strain experienced by the box. The reference packing
is defined as the state |Qi = |0i. The vector |Fi contains the
generalized forces conjugate to each of the components of |Qi.
The component conjugate to g is equal to dsV = (s � s0)V, where
s is the shear stress.

The Fourier transform of eqn (11) gives

K̂ þ ioB̂
� �

Q�ðoÞj i ¼ dsV jĝi (12)

where o is the angular frequency. Note that |Q*(o)i is complex.
We impose a generalized forcing term pointing along the
g-coordinate, i.e. |Fi p |ĝi = (0, 0,. . .,1). All other generalized
forces are zero (body forces and torques are balanced). The
equations of motion are therefore reduced to a set of complex
linear equations which can be solved numerically for each
frequency o.

The complex shear modulus can be determined by solving
eqn (12) for the complex vector |Q*(o)i using standard linear
algebra routines. The resulting shear strain is g*(o) = hĝ|Q*(o)i.
The complex shear modulus is then

G�ðoÞ � G0ðoÞ þ iG00ðoÞ ¼ g�ðoÞ
ds

: (13)

Linear contact damping

We now consider the complex shear modulus in the presence of
linear contact damping. We begin with balanced damping, i.e.
Eqn (5) for b = 1. This scenario was already extensively studied in
ref. 13, and provides a useful point of comparison for alternative
viscous force laws. Here we highlight the main results.

Balanced damping

Balanced linear contact damping was discussed above for the case
p = 10�4 – see Fig. 1. We can gain further insight by varying the
distance to jamming. In Fig. 3a we plot the complex shear modulus
as a function of frequency for a range of pressures p = 10�5–10�2. In
all cases the same quasistatic, critical, and affine regimes identified
in Fig. 1 are evident. However the crossover frequency o* � 1/t*
from the quasistatic to the critical regime shifts to lower values as
p - 0, indicating that the time scale t* diverges at the jamming
point. The crossover from critical to high frequencies, on the other
hand, is insensitive to pressure; it occurs for o 	 Oð1Þ in all cases.
We can infer that the quasistatic and critical regimes are intimately
related to the jamming transition, while the high frequency
response does not have a critical character.

Inspired by the above observation, we now restrict our focus
to frequencies o o 1. A more rigorous derivation of the
following results is found in ref. 13. Our approach here is more
heuristic and begins with the scaling ansatz

G�

G0
¼ G� ot�ð Þ forooOð1Þ; (14)

which relates the dimensionless ratio G*/G0 to the dimension-
less product ot*. As discussed below, the quasistatic shear
modulus scales as G0 B pm with m = 1/2. Similarly, we assume
that t* diverges at the jamming point,

t� 	 1

pl
(15)

for some positive exponent l. The real and imaginary parts of
the scaling function G� ¼ G0 þ iG00 satisfy

G0ðxÞ 	
1 xo 1

xD x4 1

(
(16)
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and

G00ðxÞ 	
x xo 1

xD x4 1:

(
(17)

The forms G0 	 1 and G00 	 x for small x are the simplest
choices respecting the symmetry properties of the storage and
loss moduli, which are even and odd functions, respectively. The
power laws G0 	 xD and G00 	 xD represent non-trivial assumptions.
The same exponent D must appear in both the real and imaginary
parts to satisfy the Kramers–Kronig relations.

The scaling ansatz of eqn (14)–(17) is tested in Fig. 3b, which
plots G0/pm and G00/pm with m = 1/2 versus o/pl with l = 1. The
resulting collapse is excellent. As expected, the real and imaginary
parts of the scaling function are constant and linear, respectively,
for low values of the rescaled frequency. There is a crossover
around o=p 	 Oð1Þ to a power law with exponent D E 0.5 (long
dashed line). This is the o1/2 scaling discussed above.

The scaling collapse in Fig. 3 empirically determines the values
of the critical exponents; they are m = 1/2, l = 1, and D = 1/2. The
value of m is fixed by the known scaling of G0. The exponent D is
related to m and l. To see this, note that one generally expects the
moduli to remain finite except possibly at the critical point, where
both p and o go to zero. In the case where p = 0 and o 4 0,
eqn (14)–(17) predict that both moduli scale as pm�lDoD, which
remains finite only if D = m/l = 1/2. It remains to motivate l = 1,
which we do in Section 3.3.

‘‘Imbalanced’’ contact damping (b a 1)

In this section we probe the effects of undamped sliding
motion, with emphasis on the limit b = 0. Our main result is
to show that imbalanced damping ‘‘kills’’ dynamic critical
scaling near jamming.

It is useful first to consider response in the absence of the
pre-stress term, i.e. by setting f 0

ij = 0 in eqn (4). The Hessian and

damping matrices are then directly proportional, K̂ ¼ t1B̂,
allowing eqn (12) to be solved exactly in terms of G0,

G* = G0(1 + it0o). (18)

The resulting complex shear modulus is that of a Kelvin–Voigt
element, the simplest viscoelastic solid – the storage modulus is
flat, while the loss modulus is linear over the entire range of o.
Re-introducing the pre-stress term breaks the direct proportionality
between K̂ and B̂, but produces only mild changes in the moduli, as
shown in Fig. 4a (open and filled squares). Moreover, data for a
range of pressures close to the jamming point can all be collapsed
by rescaling the storage and loss moduli by p0.5. Note that the
frequency axis does not need to be rescaled, indicating the absence
of a diverging time scale.

We emphasize that a seemingly simple change to the viscous
force law, namely setting the damping coefficient for sliding
motion to zero, has produced a dramatic and qualitative shift
in the viscoelastic response. More precisely, the intermediate
regime, identified above when b = 1, has completely vanished.
Recall that this regime is a manifestation of dynamic critical scaling
and dominates the response for a wide range of frequencies near
jamming. In this sense setting b = 0 kills dynamic critical scaling.

What happens for intermediate values of b? In Fig. 4b we
plot G* for fixed p and a range of b over seven decades. One sees
that the critical regime gradually appears, and for sufficiently
large b the moduli resemble their form for b = 1. This suggests
that it is reasonable to speak of weakly and strongly damped
sliding motion. We quantify this distinction more precisely below.

Relation to floppiness in quasistatic response

The dynamic critical scaling of eqn (14), and the critical
exponent l in particular, can be related to the scaling relations
for normal, transverse, and non-affine motion in quasistatic
response. This link is motivated by the observation that for
asymptotically low driving frequencies, the particles’ trajectories
must approach their quasistatic (o - 0) form.

Packings at the jamming point are isostatic, meaning they
have just enough contacts to constrain all particle motions
(except for a few individual ‘‘rattlers’’, which can be removed
from the analysis). Consider breaking a contact in a packing at
the jamming transition, where all contacting particles are
‘‘kissing’’ and f 0

ij = 0. The broken contact removes a constraint

Fig. 3 (a) The storage and loss moduli, G0 and G00, for balanced contact damping (b = 1). The dashed line has slope 1. (b) Collapse of the same data to two
critical scaling functions. The short- and long-dashed lines have slopes of 1 and 1/2, respectively.
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and therefore introduces a floppy mode, an infinitesimal motion of
the particles that can be performed without work. By considering
the energy expansion of eqn (4), one sees that all relative normal
motions in a floppy mode must be zero – floppy motions are sliding
motions, in which all relative motion between particles is transverse
to the contact. Jammed packings do not have floppy modes, but the
eigenmodes of the Hessian remain ‘‘floppy-like,’’ i.e. transverse/
sliding motion dominates.12,51 This feature is also found in the
response to shear, which is dominated by low frequency modes.13

Through careful analysis of the modes, it is possible to show that
the shear modulus scales as G0 B p1/2.13,52 Here we take this scaling
relation as a given and, following ref. 51, infer its consequences for
the typical relative normal and transverse displacement amplitudes,
Du8 and Du>, as well as the typical amplitude of non-affine
displacements una.

By definition, the change in elastic energy DU � U � U0

due to an infinitesimal shear strain g is DU = (1/2)G0Vg2.

Momentarily neglecting the pre-stress term in eqn (4), which
should be small as p - 0, we anticipate that the typical relative
normal motion scales as (Du8)2 B G0g

2, or

Duk

g
	 p1=4: (19)

This scaling relation is consistent with our expectation that relative
normal motion vanishes at the jamming point. We now re-introduce
the non-positive pre-stress term in eqn (4) in order to determine
Du>. The first and second terms in brackets in eqn (4) have typical
values (Du8)2 and p(Du>)2, respectively; in the latter case we have
used the fact that the typical force in the reference packing is
proportional to the pressure. While mechanical stability requires
the total energy change DU to be positive,53 the system can minimize
its deformation energy by organizing its motion to make the
magnitude of the pre-stress term as large as possible – in other
words, if the bound p(Du>)2 t (Du8)2 is saturated. This gives

Du?

g
	 1

p1=4
: (20)

This relation relies on the (reasonable) assumption that the typical
contact force scales linearly with the pressure. As expected, the
amount of sliding motion grows dramatically and ultimately
diverges as the system approaches the jamming point.

Finally, we consider the typical amplitude of non-affine
displacements una. Bond vectors D-r0

ij in the reference packing
are randomly oriented, so there is a local competition between
energetically favorable sliding at the particle scale, and globally
imposed affine motion. Therefore we expect the typical non-affine
amplitude to be comparable to the typical relative displacement
amplitude, which is dominated by transverse motion, i.e.

una

g
	 1

p1=4
: (21)

Hence non-affine motion is the natural consequence of floppy-like
motion near jamming.

Eqn (19)–(21) have previously been derived and tested
numerically by Ellenbroek et al. and Wyart et al.51,54 For
completeness we verify them again in Fig. 5, which plots the
median of the probability density function of |Du8|, |Du>|, and
|una| for varying p while neglecting the pre-stress term. Results
including pre-stress show compatible trends, albeit with more
noise; we revisit the role of pre-stress below. Plots of the means
show the same trend for Du> and una, but Du8 develops a
plateau at low p due to a long tail of the PDF.

We now use the quasistatic relations (19)–(21) to determine
the critical exponent l. The o - 0 limit of the dissipation
function is proportional to the dynamic viscosity, R = Z0(og0)2V/2,
where g0 is the maximum strain amplitude. At the same time,
from the viscous force law one anticipates R B

-

f visc�D-
v B

o2[(Du8)2 + b(Du>)2]. Invoking eqn (19) and (20) gives

Z0 	
Duk

g0

� 	2

þb Duk

g0

� 	2

	ðp=kÞ1=2 þ b
ðp=kÞ1=2:

(22)

Fig. 4 (a) Storage and loss modulus for a system without transverse
damping (b = 0). (b) G0 and G00 for systems at pressure p = 10�4 and
varying transverse damping b. (inset) Dynamic viscosity Z0 and affine
viscosity ZN for the same data, denoting the low and high frequency limits
of G00/o. In both figures the dashed line has slope 1.
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For balanced damping and p { 1, the second term dominates
and Z0 B 1/p1/2. Comparing to eqn (14)–(17), which require
Z0 = G0t* B pm�l, it follows that l = 1 and D = 1/2. Hence we
can motivate the exponents in the scaling functions (16) and (17).

Eqn (22) is compatible with our numerical results for
undamped sliding (b = 0), as well. Then only the first term is
present and Z0 B p1/2 – it vanishes rather than diverges.

One can also consider the case of arbitrary b. The second
term will always dominate for sufficiently low pressure; hence
the dynamic viscosity diverges for any finite damping of sliding
motion. In this sense the case b = 0 is singular. For arbitrary
b 4 0 the crossover frequency where the quasistatic regime
ends and the linear regime begins scales as o* B p/b. We have
seen above that the critical regime ends at a frequency
ot1 	 Oð1Þ. Hence the critical regime, with its o1/2 scaling in
G0 and G00, is avoided entirely whenever o* c 1, or b{ b* B p.
This crossover is evident in Fig. 4b. The scale b* provides a
convenient dividing line between cases of strong and weak
damping of transverse motion.

Stokes drag

We now turn to the case of linear viscous body forces, i.e. the
mean field or Stokes-like drag of eqn (7). In Fig. 6a we plot the
complex shear modulus for Stokes drag for varying pressure
and a fluid viscosity ZF = 1. We find dynamic critical scaling
with the same critical exponents m = 1/2, l = 1, and D = 1/2 as for
balanced contact drag. Hence it appears that Stokes drag falls
into the same universality class as strongly damped relative
transverse motion.

As in the previous section, the above result can be rationalized
on the basis of quasistatic scaling relations. The key observation is
that the typical non-affine motion una and the relative transverse
motion Du> diverge in the same way as the pressure tends to zero;
cf. Eqn (20) and (21). For Stokes drag the dissipation function
scales as R B (unao)2, again giving Z0 B 1/p1/2.

Recall that if one considers the Stokes drag term to be a
mean field approximation for balanced contact damping, then
the fluid viscosity ZF can vary independently of the damping
coefficient kt1. We probe the dependence of G* on ZF in Fig. 6b
by varying ZF over ten decades. We observe that the fluid
viscosity contributes a linear term ZFo to the loss modulus,

which is always dominant at sufficiently high frequencies. For
large ZF and/or low pressures satisfying ZF c 1/p1/2, the loss
modulus becomes linear for all frequencies. In this event the
critical properties of the loss modulus are obscured, but
criticality is still apparent in the storage modulus.

Correlations

Despite the similarity in their viscoelastic response, we find a
striking difference in the spatial correlations of non-affine
displacements between the cases of linear viscous body forces
and balanced contact damping.

For a system undergoing simple shear in the x-direction,
correlations of the non-affine displacements between particles sepa-
rated by a distance dij = |xi� xj| can be quantified with the two-point

correlation function C ¼ ui;y
0
xið Þuj;y

0
xi þ dij
� �� �.

ui;y
0� �2D E

. Here

ui,y
0 is the y-component of the real part of the complex displacement

vector of particle i with x-coordinate xi. The average h�i runs over all
particle pairs within a narrow ‘‘lane’’, hence C is a function of |dij|.

Fig. 5 Scaling of the relative normal, relative transverse, and non-affine
motion as a function of pressure. Dashed lines have slopes of 
1/4.

Fig. 6 (a) Critical scaling collapse of the storage and loss moduli for
Stokes drag and fluid viscosity ZF = 1. (b) Storage and loss moduli for
p = 10�4 and varying ZF.
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We have verified that C becomes independent of the lane width for
sufficiently small values. We have also confirmed that results using
the imaginary part u0iy are indistinguishable.

Non-affine correlation functions in weakly jammed solids
have been studied previously for three cases. DiDonna and
Lubensky55 and Maloney56 showed there is no characteristic
length scale in quasistatic linear elastic response; instead C
collapses when distances are rescaled by the box size L. Heussinger
and Barrat found compatible results for quasistatic shear flow.
Olsson and Teitel3 found that the same correlation function does
select a growing length scale, independent of L, in shear flow at
finite rate using Stokes drag. However Tighe et al.57 showed that
the form of C resembles quasistatic linear response when one uses
balanced contact damping instead of Stokes drag. Hence there
remain important open questions about correlations at finite
driving rate and the role of the viscous force law. Here we fill a
gap in the literature, namely linear response at finite rates.

In Fig. 7a we plot C for balanced contact damping at a single
pressure, two system sizes, and three values of the frequency o
separated by twelve decades. There is a monotonic decay of
the correlations, with little dependence on the frequency. The
shape is also independent of the pressure (not shown). The data
collapse when plotted as a function of d/L. Hence two-point
displacement correlations provide no evidence of a growing
length scale near jamming; snapshots of the velocities display
‘‘swirls’’ with a characteristic radius of approximately one
quarter of the box size.

Correlations for Stokes-like drag display a strikingly different
shape, as shown in Fig. 7b. C possesses a minimum that shifts
to larger distances with decreasing o. For the lowest plotted
frequencies, o = 10�5.5 and 10�6.5, the minimum is no longer

clearly identifiable and the shape of C begins to resemble the
form for balanced contact damping. One can define a correlation
length l from the point where C crosses the x-axis, plotted in
Fig. 7c. We find a length scale that grows with decreasing
frequency, before reaching a plateau with a height of approxi-
mately L/4. Focusing on length scales below this plateau, we
find empirically that a reasonable data collapse is achieved by
plotting l/(�ln p)0.65 versus o/p0.5, implying that the length scale
would diverge at the jamming point (p - 0 and o - 0) in
thermodynamically large systems. We note that log corrections
are typical in systems at their upper critical dimension, which is
indeed D = 2 for the jamming transition.31,58

The takeaway is that the form of the correlation function at
finite rate is strongly sensitive to the viscous force law. For
balanced contact damping there is no evidence of a diverging
length scale. For Stokes drag there is a growing correlation length
that is cut off by the box size as the frequency is sent to zero.

Finite size effects

Elastic moduli and the mean coordination number of marginally
jammed matter are known to be influenced by finite size
effects.7,31,53,58,59 In quasistatic systems they become important
when the pressure p is comparable to the pressure increment
p* B 1/N2 required to add a contact to, or remove a contact from,
the packing. Here we show that the same pressure scale governs
finite size effects in the dynamic viscosity Z0.

In Fig. 8 the dynamic viscosities for both balanced contact
damping and Stokes drag (ZF = 1) are plotted for a wide range of
pressures and system sizes, both with pre-stress (open symbols)
and without pre-stress (filled symbols). In all cases, we find that
the data collapse to a master curve when Z0/N a is plotted versus

Fig. 7 (a) Two-point correlation function C of the transverse (hence non-affine) particle displacements with balanced contact damping. (b) The same
correlation function C for Stokes drag. (c) Length scale l corresponding to roots of the curves in (b). (d) Data collapse of l.
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p/p* B pN2, implying Z0 B 1/pa/2. For balanced contact damping,
we find the best collapse when a = 1.0, consistent with the scaling
Z0 B 1/p1/2 determined above. For Stokes drag we find better
collapse for the somewhat higher value a = 1.09. For comparison,
we also plot curves with slope �a/2. Provided that Z0 is an intensive
material property, as is typically the case, the master curves must
approach this slope for large system sizes. This condition is met for
the contact damping data, but for Stokes drag the collapsed data
have a slightly shallower slope, particularly for the data with pre-
stress. Using a lower value of a brings �a/2 closer to the observed
slope, but the data collapse is somewhat worse. Given the small
difference in these values and the scatter in our data, we consider it
likely that a is in fact equal to 1 for Stokes drag. However, on the
basis of present data we cannot exclude the possibility that a 4 1 for
Stokes drag, or that Z0 has a weak system size dependence.

For both contact damping and Stokes drag, pre-stress plays a
role in the onset of finite size effects. Whereas the data without pre-
stress show a sharp crossover around pN2 	 Oð1Þ, the crossover in
the data with pre-stress is much more gradual. Even for pN2 4 103,
a naı̈ve power-law fit to Z0 versus p would yield a slope that is too
shallow. Therefore studying the results of simulations with and
without pre-stress, side-by-side, can potentially improve the assess-
ment of critical exponents near jamming at modest system sizes.

Nonlinear damping

The drag forces considered in the previous sections are all
linear in the particle velocities. Compared to nonlinear drag

laws, linear forces are easier and cheaper to simulate. However,
theory25–27 and experiments50 indicate that the bubble-bubble
viscous force in foams (and so likely emulsions, as well) is in
fact nonlinear in the relative velocity, as in eqn (9). We now
probe the influence of an exponent a a 1 on the complex shear
modulus. Our main result is that the time scale t1 must be
generalized to account for a nontrivial frequency dependence.
As a result, the frequency dependence of both the storage and
the loss modulus changes.

Nonlinear equations of motion cannot be written as a matrix

equation in terms of K̂ and B̂. Molecular dynamics simulations
are an option,28 but beyond the scope of the present work.
Instead, we turn to an approximation known as the method of
equivalent damping. The central idea of the approximation is to
replace the nonlinear force law with an ‘‘equivalent’’ linear force
law with a frequency dependent effective damping coefficient kta,

-

f eff
a = �ktaD

-
vc. (23)

The effective damping coefficient is expressed in terms of a
microscopic time scale ta that depends on the frequency and
amplitude of the forcing, as described below. ta generalizes t1,
the constant time scale for a = 1.

We now apply the method of equivalent damping to a single
degree of freedom system, namely an overdamped oscillator
driven by a sinusoidal force with amplitude F0 and frequency o.
For the effective damping law of eqn (23), the resulting oscillations
have an amplitude

u0 ¼
F0

k

1

1þ otað Þ2

" #1=2
: (24)

To fix ta, we require that the energy dissipated by
-

f eff
a during

one period is equal to the energy dissipated by the nonlinear
force law (9) when the particle is constrained to follow the same
trajectory through phase space. One finds

taðoÞ ¼
2ta1ffiffiffi
p
p u0o

r0

� 	a�1G 1þ a
2

� �
G

3

2
þ a
2

� 	: (25)

This is an implicit relation, as u0 depends on ta. Separately
considering the low and high frequency limits gives

ta ¼
1
.

F0oð Þ1�a ooo�

1
.
F
ð1�aÞ=a
0 o4o�;

8><
>: (26)

with a crossover frequency o� B F (1�a)/a
0 .

To extend the above insights to soft sphere packings, we
make an additional but reasonable assumption that the typical
induced force on each contact is proportional to the applied
stress, F0 B ds. Under this assumption, the scaling ansatz (14)–(17)
remains valid, provided that one takes t* B ta/p, instead of t1/p.
Because ta is a function of frequency and the applied stress,
the ‘‘bare’’ storage and loss moduli G0 and G00 (as opposed to
G0 and G00) inherit new dependences on o and ds. For systems
near jamming and the physically relevant case a o 1, 1/t* is

Fig. 8 Finite size scaling collapse of the dynamic viscosity Z0 for
(a) balanced contact damping and (b) Stokes drag. Filled/open data points
are calculated with/without pre-stress. Dashed curves have a slope of
�a/2, with a indicated in the plot.
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always smaller than o� and hence ta B (dso)a�1 in the quasi-
static and critical regimes. In the quasistatic regime one finds
that the storage modulus G0 C G0 is unchanged, while the loss
modulus becomes

G00 	 1

ds1�a
oa

p1=2
: (27)

As in the linear case, the loss modulus in the quasistatic regime
‘‘trivially’’ reflects the form of the viscous force law, i.e. both
scale as oa. G00 also no longer displays linear response, as it
depends on the applied stress. In the critical regime one finds

G0 	 oa=2

dsð1�aÞ=2
(28)

and likewise

G00 	 oa=2

dsð1�aÞ=2
: (29)

We emphasize that the o1/2 scaling of the linear case has been
generalized to oa/2. Hence within the method of equivalent
damping, the nonlinear frequency dependence of G* in viscous
soft spheres contains a nontrivial dependence on the exponent a
of the nonlinear viscous force law.

Conclusions

We have shown that the viscoelastic response of viscous soft
sphere packings close to jamming depends qualitatively on the
damping law. The extent to which damping couples to floppy-
like, and hence non-affine, motion is a key determinant of the
resulting response. When the coupling is strong, as for balanced
linear contact damping or Stokes-like drag with ZF = 1, the
viscoelastic response displays dynamic critical scaling, including
square root scaling of the storage and loss moduli over a
broadening range of frequencies. When the coupling is weak,
as when 0 o bo b* for contact damping or when ZF 4 1/p1/2 for
Stokes-like drag, aspects of the critical response are obscured.
And when floppy-like motion is completely undamped, as for
b = 0, dynamic critical scaling vanishes entirely. We demon-
strated a subtle interplay between the force law and non-affine
correlations. For systems with contact damping, the only length
scale identified by two-point correlation functions is the box size.
However, in systems with Stokes drag, we observe a correlation
length that diverges with vanishing o, with a cutoff at the box
size. Finally, we presented numerical evidence that pre-stress
increases the strength of finite size effects.

We have also made predictions for the viscoelastic response
in the presence of nonlinear drag laws. Within the context of
the method of equivalent damping, we find that dynamic
critical scaling survives; however the scaling of the bare storage
and loss moduli now depends on the microscopic exponent a.
This provides a novel way to infer properties of the dominant
dissipative mechanism at the particle scale from the frequency
dependence of G*. As the method of equivalent damping is an
approximation, these predictions require further testing. As a
basic check, we have verified eqn (27)–(29) by directly inserting

the effective damping coefficient from eqn (26) in the linear
equations of motion. Of course this does not constitute an
independent test of the method of equivalent damping, which
would require, e.g., molecular dynamics simulations of
Durian’s bubble model. We leave this as an important task
for future work.

Our results suggest that, when performing numerical studies
of jammed matter, one must take care to match the form of the
viscous force law to the physics of whatever particular material
one wishes to model – growing correlations do not wash out this
detail. In particular, the linear contact damping law with b = 0
should be avoided, as it significantly alters the viscoelastic
response and is difficult to justify on physical grounds, at least
in the context of foams, emulsions, and soft colloidal particles.
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14 E. Lerner, E. DeGiuli, G. Düring and M. Wyart, Soft Matter,

2014, 10, 5085–5092.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
O

ct
ob

er
 2

01
7.

 D
ow

nl
oa

de
d 

on
 8

/9
/2

02
4 

7:
11

:1
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7sm01619k


8378 | Soft Matter, 2017, 13, 8368--8378 This journal is©The Royal Society of Chemistry 2017

15 K. Karimi and C. E. Maloney, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2015, 92, 022208.

16 K. Baumgarten, D. Vågberg and B. P. Tighe, Phys. Rev. Lett.,
2017, 118, 098001.

17 K. Khakalo, K. Baumgarten, B. P. Tighe and A. Puisto, 2017,
arXiv:1706.03932.

18 H. A. Barnes and J. F. Hutton, An Introduction to Rheology,
Elsevier, 1989.

19 A. J. Liu and S. R. Nagel, Nature, 1998, 396, 21–22.
20 S. Cohen-Addad, H. Hoballah and R. Höhler, Phys. Rev. E:
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49 E. Lerner, G. Düring and M. Wyart, Proc. Natl. Acad. Sci.

U. S. A., 2012, 109, 4798–4803.
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