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Assessing numerical methods for molecular
and particle simulation

Xiaocheng Shang, *a Martin Kröger a and Benedict Leimkuhler *b

We discuss the design of state-of-the-art numerical methods for molecular dynamics, focusing on the

demands of soft matter simulation, where the purposes include sampling and dynamics calculations

both in and out of equilibrium. We discuss the characteristics of different algorithms, including their

essential conservation properties, the convergence of averages, and the accuracy of numerical

discretizations. Formulations of the equations of motion which are suited to both equilibrium and

nonequilibrium simulation include Langevin dynamics, dissipative particle dynamics (DPD), and the more

recently proposed ‘‘pairwise adaptive Langevin’’ (PAdL) method, which, like DPD but unlike Langevin

dynamics, conserves momentum and better matches the relaxation rate of orientational degrees of

freedom. PAdL is easy to code and suitable for a variety of problems in nonequilibrium soft matter

modeling; our simulations of polymer melts indicate that this method can also provide dramatic

improvements in computational efficiency. Moreover we show that PAdL gives excellent control of the

relaxation rate to equilibrium. In the nonequilibrium setting, we further demonstrate that while PAdL

allows the recovery of accurate shear viscosities at higher shear rates than are possible using the DPD

method at identical timestep, it also outperforms Langevin dynamics in terms of stability and accuracy at

higher shear rates.

1 Introduction

In this article, we provide a current and detailed perspective on
the design of stochastic methods for simulating molecular and
particle systems. Most of our discussion is general and equally
applicable to simple and complex molecular fluids and polymer
solutions, and to both equilibrium and nonequilibrium mod-
eling. Modern software packages such as LAMMPS1 offer a
bewildering array of options for particle simulation, including
choices regarding the model ensemble, equations of motion,
discretization method, and parameter selection. In this article
we contrast a number of the different schemes available,
drawing on recent advances in the literature and focussing on
the practical needs of the simulation community. All of the
existing methods are convergent in the sense that, for suitable
choice of parameters and in the limit of small timestep, they
are capable of reproducing the exact statistical properties with
high accuracy; however, the methods have very different com-
putational efficiencies. In practice, the choice of method can
mean the difference between a computational task completing
in a day or a week. The challenge of designing efficient methods

is particularly acute in nonequilibrium modeling, where the
lack of a simple known form for the invariant distribution
makes benchmarking challenging and where the delicate
approximation of dynamical behavior plays an important role.

The state-of-the-art in molecular dynamics and its limita-
tions are well documented in recent reviews.2,3 Let us briefly
review the challenges of simulation of polymeric systems,4–7

which constitute a broad area of research of pharmaceutical,
materials, chemical, biological and physical relevance, and an
area where simulation times easily exceed available resources.
While the system size required to avoid significant finite-size
effects scales, with the polymerization degree N, as N3/2 for
flexible chains and as N3 for stiff chains, respectively, the
longest relaxation time scales as N2 for dilute systems and as
N3 (or larger) for concentrated and entangled systems, respec-
tively; the total simulation time is thus BN6 for a concentrated
polymer solution, while a typical polymerization degree is
N E 104–105 for a synthetic polymer or a biopolymer like
hyaluronan. Such systems can be investigated qualitatively
using coarse-graining strategies and multiscale modeling
approaches of various kinds.8,9 However, atomistic simulation
of polymeric systems is limited to the study of a few molecules,
or concentrated, eventually semicrystalline systems containing
simple polymers like polyethylene with N r 2000 over a
duration of a few tens of nanoseconds10–14 and subject to
deformation or flow.15–17 Highly entangled polymeric systems
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with practically relevant N, and their confined counterparts like
polymer brushes5,18–20 are still out of reach for atomistic
simulations. The limitations are even more severe for polymers
in nanocomposites,6,21,22 branched or hyperbranched polymers
like dendronized polymers,20,23–26 and polyelectrolytes.27–29

This article is addressed to stochastic simulation techniques
for polymer models based on generalizations of Brownian or
Langevin dynamics. The challenges of simulation are well
exemplified by two model polymer systems: (i) the single
polymer chain in implicit solvent, and (ii) a polymer melt. Both
models combine aspects of sampling and dynamical approxi-
mation. In the case of a single polymer, the dynamics of the
thermostat plays a crucial role in describing the relaxation
behavior. It is important in this setting to mimic the underlying
internal dynamical processes of the molecule while correctly
modeling the exchange of energy between polymer and bath.
For the melt, the key difficult quantities are rheological properties
like shear viscosity or normal stress difference and disentangle-
ment time, and the system dynamics is typically dominated by the
frequent collisions of particles. We restrict our attention to the
polymer melt case in this article, because it is computationally
more demanding.

Designing effective algorithms involves the selection of a
formulation or modeling framework, choice of parameteriza-
tion, and design of numerical discretization. These choices
cannot be isolated from each other. In practice the form of the
numerical discretization is strongly dependent on the formula-
tion used, and the choice of parameterization will depend on
both the goals of simulation and the numerical scheme.

The common feature of all the most popular formulations in
use is that they are designed to facilitate sampling in the
canonical ensemble. That is, when applied to a conservative
system with a total number of Nt particles and Hamiltonian

energy function H ¼
PNt

i¼1
pi � pi=ð2mÞ þU q1; q2; . . . ; qNt

� �
, they

are designed to drive the system toward the canonical equili-
brium state with probability density

rb(q1, q2,. . ., qNt
, p1, p2,. . ., pNt

) = Z�1 exp(�bH)

where Z is a suitable normalizing constant (i.e., the partition
function), b = (kBT)�1, with kB being the Boltzmann constant,
T the system temperature, and m the assumed uniform mass of
the Nt particles. (Generalizing all results of this article to
nonuniform particle masses would be straightforward but the
uniform mass simplifies presentation of some formulas.) Tem-
perature control is crucial for NVT simulation, but also plays a
fundamental role in barostat methods as these typically fix both
temperature and pressure.

A wide range of different approaches can be designed to
sample from the canonical distribution; each such formulation
has certain desirable properties, but also certain limitations.
For example it is well known that the dynamical response of a
system simulated using Langevin dynamics will strongly
depend on the friction coefficient. However, since Langevin
dynamics relies on a strong assumption of scale separation, it is

possible that there is no choice of the friction that gives a
satisfactory dynamical approximation30–33 (see also discussions
on time scales associated with Langevin dynamics33). In some
cases a ‘‘gentle’’ form of Langevin dynamics is used where
internal relaxation modes within the polymer are the dominant
feature of interest, or else one uses Nosé–Hoover34,35 or
stochastic velocity rescaling,36–38 both of which are in some
sense ‘‘gentle’’ alternatives to Langevin dynamics.39 Other
approaches include the pairwise Nosé–Hoover thermostat40

and multiparticle collision dynamics.41 However, we restrict
our attention to methods that are derived directly as discretiza-
tions of stochastic differential equations. In case the goal is
only to sample the equilibrium structures of the system under
study (as often needed in protein modeling42,43), one may use
the coefficient of friction as a free parameter and optimize the
choice to enhance the rate of convergence to equilibrium or
increase the effective sample size44 associated with a certain
family of observables. Whereas standard molecular dynamics
methods such as Langevin dynamics and its overdamped limit
(Brownian dynamics) are appropriate for modeling systems in
or near thermodynamic equilibrium, these methods do not
take into account the possibility of an underlying flow, and are
thus, unless modified, inappropriate for situations where the
underlying flow of the system cannot be predicted beforehand
(e.g., when dealing with interfaces or nonuniform flow).

More generally, as we coarse-grain the system, the hydro-
dynamic transport properties become increasingly important,
which calls for a formulation that preserves momentum
and Galilean invariance. A method which addresses these
issues is the dissipative particle dynamics (DPD) method of
Hoogerbrugge and Koelman45 which conserves momentum
‘‘exactly’’ (i.e., up to rounding errors) at each step. We find
in our studies that the recently proposed pairwise adaptive
Langevin (PAdL) method,46 which mimics DPD in the stationary
setting, is preferable to DPD in nonequilibrium applications,
e.g., for shear flows. The use of DPD or PAdL addresses a further
problem with Langevin dynamics, namely the nonphysical
screening of hydrodynamic interactions observed for Langevin
dynamics.47

Once the formulation is chosen, typically a set of stochastic
differential equations (SDEs), it is necessary to replace it for
computation with a discretized formulation, by applying a
specific numerical method. Particularly for large, computation-
ally demanding applications, the simulation must proceed at
the largest possible timestep in order to provide meaningful
answers to the questions of interest. Since we must work within
a fixed computational budget, one should ultimately compare
different numerical methods in terms of accuracy of observ-
ables for fixed computational work. On the other hand, if, as
here, we wish to separate the numerical error (due to discrete
approximation) from the statistical error (due to collecting
finite numbers of samples) it is better to analyze these two
types of error separately. This is especially true in a metastable
system, i.e., one whose dynamics are limited by rare transitions,
as for example protein folding or glassy system modeling,48,49

but generally speaking virtually any particle simulation will be
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subject to the timestep issue when pushed to deliver results on
laboratory-relevant timescales. Thus we are led to seek methods
that are optimized to deliver the desired properties in the most
cost-effective manner, and the large timestep needed means
that discretization bias becomes relevant. For molecular and
mesoscale modeling, the most fundamental type of error
incurred is the error in averages. We say that a method is
accurate for long term averaging if the distribution generated
by the numerical method converges in the limit of large time
and small timestep to a stationary distribution which is close,
in the sense of distributions, to the corresponding stationary
distribution of the SDE.50,51 The other major source of error in
large scale simulations can be viewed as the error due to
insufficient sampling of a stochastic quantity. Such error is
always present but may be difficult to estimate, since in practice
we do not necessarily know the underpinning distribution a
priori nor the normalization constant needed to compute a
robust average. To put this another way, if we remain for our
entire simulation time exploring certain states of the molecule,
it might be the consequence of a strong local confinement
rather than an indication that these are always the most
important group of states. Analyzing and comparing numerical
methods for sampling thus requires balancing the issues of
accuracy and sampling efficiency and it is crucial to realize that
different methods may have very different levels of bias and
rates of convergence which are highly dependent on the choice
of timestep. In this article we explore these issues in detail for
model systems, calculating first the bias and using this to select
timestep to control the attainable accuracy, then (for the
specific choice of timestep) assessing the rate of convergence
to equilibrium average.

The key findings of this article are as follows. First, we
compare the performance of Langevin dynamics, DPD, and
PAdL for several benchmark calculations, in particular showing
that the PAdL method provides higher accuracy (for given
computational budget) than Langevin dynamics and DPD, in
both equilibrium and nonequilibrium applications, with care-
ful study of the trade-off between numerical bias and conver-
gence rate in simulation. Second, we compare our numerical
schemes with exact results regarding the relaxation behavior for
a benchmark model, thus clarifying the performance of the
methods in dynamics-oriented modeling applications. Third,
we develop a careful procedure to quantify the sampling
efficiency of various methods by comparing the effective sam-
ple size. A fourth advance in the current article is the demon-
stration that PAdL allows the recovery of accurate shear
viscosity using larger shear rates than otherwise are possible
using DPD (at identical timestep) while PAdL outperforms
Langevin dynamics in terms of stability and accuracy at higher
shear rates. Finally, we emphasize that this article provides
specific details regarding implementation of all the various
methods which are often lacking in the literature.

The rest of the article is organized as follows. In Section 2,
we review a variety of numerical methods in polymer melts
simulation. We describe, in Section 3, various physical quan-
tities that are used to evaluate the simulation performance of

each method. Section 4 presents numerical experiments in
both equilibrium and nonequilibrium cases, comparing the
performance of numerous popular numerical methods in prac-
tical examples. Our findings are summarized in Section 5.

2 Numerical methods

In this section, we describe various numerical methods used to
simulate many-particle systems. We are interested both in
the choice of formulation of the equations of motion and in the
consequent secondary choice of discretization method. In the
literature one observes that virtually all the popular methods are
of a relatively simple design and require typically a single evalua-
tion of the forces of interaction at each timestep, the computa-
tional cost of the force evaluation being normally the unit of
computational effort.

2.1 Langevin thermostat

Following the seminal work of Grest and Kremer,52,53 Langevin
dynamics has been widely used in simulating Lennard-Jones
systems including polymer chains and their melts and can be
written as

dqi ¼ m�1pidt;

dpi ¼ Fiðq; tÞdt� g pi �muið Þdtþ sm1=2dWi;
(1)

where qi and pi are d-dimensional vectors and respectively
represent positions and absolute momenta of bead i with d
being the underlying dimensionality of the physical space
(typically d = 3), m denotes the mass of a particle, the force
on particle i, Fi(q,t), could in principle be both positions and
time dependent, however, in equilibrium, Fi = �rqi

U is the
conservative force given in terms of a potential energy function
U = U(q), dWi represents a dimensionless vector of d indepen-
dent increments of Wiener processes with stochastic properties
hdWi(t)i = 0 and hdWi(t)dWj (t0)i = dijd(t � t0)1dt, g is the bead
friction coefficient, which couples the beads weakly to a heat
bath, ui = u(qi) denotes a macroscopic streaming velocity at
position qi, and s represents the strength of the random forces,
satisfying the following fluctuation–dissipation relation:

s2 = 2gkBT. (2)

It should be emphasized here that the damping term in (1)
depends on the peculiar velocity, which is the difference
between the absolute velocity vi = pi/m and the streaming
velocity field u. That is, the thermostat acts only on the peculiar
velocity, which is essential in nonequilibrium, for instance,
when modeling shear flow. The traditional formulation of
Langevin dynamics (i.e., when u = 0) does not take into account
the underlying streaming velocity and thus is expected to fail
when there exists a nonzero underlying streaming velocity,
however, this feature is not always clearly stated.54

2.1.1 Stochastic velocity Verlet (SVV). Due to its ease of
implementation and its natural construction based on the
popular Verlet method of molecular dynamics, the stochastic
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velocity Verlet (SVV) method55 is one of the most popular
methods for Langevin dynamics. The equations are:

p
nþ1=2
i ¼ pni �

h

2
rqi

U qnð Þ � h

2
g pni �mui
� �

þ
ffiffiffiffiffiffiffi
hm

2

r
sRn

i ;

qnþ1i ¼ qni þ hm�1p
nþ1=2
i ;

pnþ1i ¼ p
nþ1=2
i � h

2
rqi

U qnþ1
� �

� h

2
g p

nþ1=2
i �mui

� �

þ
ffiffiffiffiffiffiffi
hm

2

r
sRnþ1=2

i ;

where h is the integration timestep, Rn
i and Rn+1/2

i are vectors of
uncorrelated Gaussian white noise with zero mean and unit
variance, resampled at each step.

2.1.2 The BAOAB method. Numerical integration methods
for Langevin dynamics have been studied systematically in
terms of the long term sampling performance in recent works
of Leimkuhler and Matthews.50,56 Of note is the observation
that a particular choice of splitting method, ‘‘BAOAB’’, based
on a Trotter factorization of the stochastic vector field of the
system into exactly solvable subsystems, is far superior to
alternative methods in terms of sampling configurational
quantities. The BAOAB method relies on separating the vector
field of the system:

d
qi

pi

" #
¼

m�1pi

0

" #
dt

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
A

þ
0

�rqi
U

" #
dt

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
B

þ
0

�g pi �muið Þdtþ sm1=2dWi

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

O

;

(3)

in such a way that each piece can be solved ‘‘exactly’’. It is
straightforward to solve the ‘‘A’’ and ‘‘B’’ pieces, respectively.
Moreover, it is possible to derive the exact solution to the
Ornstein–Uhlenbeck (‘‘O’’) part,

dpi = gmuidt � gpidt + sm1/2dWi, (4)

as

piðtÞ ¼ mui þ pið0Þ �muið Þe�gt þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m 1� e�2gt
� �

2g

s
Ri; (5)

where Ri is a vector of independent and identically distributed
(i.i.d.) standard normal random variables. The BAOAB method
then can be defined as

ehL̂BAOAB ¼ eðh=2ÞLBeðh=2ÞLAehLOeðh=2ÞLAeðh=2ÞLB ; (6)

where exp(hLf) denotes the phase space propagator associated
with the corresponding vector field f. The integration steps

of the BAOAB method, modified to include the streaming
velocity, reads:

p
nþ1=2
i ¼ pni � ðh=2Þrqi

U qnð Þ;

q
nþ1=2
i ¼ qni þ ðh=2Þm�1p

nþ1=2
i ;

~p
nþ1=2
i ¼ mui þ p

nþ1=2
i �mui

� �
e�gh þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT 1� e�2ghð Þ

q
Rn

i ;

qnþ1i ¼ q
nþ1=2
i þ ðh=2Þm�1~pnþ1=2i ;

pnþ1i ¼ ~p
nþ1=2
i � ðh=2Þrqi

U qnþ1
� �

:

It should be noted that only one force calculation is required at
each step for BAOAB (i.e., the force computed at the end of each
step will be reused at the beginning of the next step), the same
as for alternative schemes, including the SVV method.

2.2 Dissipative particle dynamics (DPD) thermostat

Momentum conservation is an essential property required to
correctly capture hydrodynamic interactions. However, the
momentum is not conserved in Langevin dynamics due to the
fact that the thermostat (i.e., the dissipative and random forces)
is not pairwise. Analogous to Langevin dynamics, the dissipa-
tive particle dynamics (DPD) method45,57,58 is a momentum-
conserving thermostat which has been proposed to simulate
complex hydrodynamic behavior. Unlike Langevin dynamics,
the dissipative force in DPD is dependent of relative velocities
and both the dissipative and random forces are pairwise,
ensuring the momentum conservation. It should be noted that
DPD has been used primarily as a mesoscale coarse-graining
technique, where each DPD particle represents a blob of
molecules, however, it has also been used in simulating poly-
mer melts, in which case each DPD particle corresponds to one
bead (e.g., see ref. 59–61).

The equations of motion of the DPD system can be
written as

dqi ¼ m�1pidt;

dpi ¼
X
jai

FC
ij rij
� �

dt� goD rij
� �

eij � vij
� �

eijdtþ soR rij
� �

eijdWij

h i
;

where rij = 8qi � qj8 is the distance between particles i and j
with eij = (qi � qj)/rij being the unit vector in the associated
direction, vij = vi � vj is the relative velocity, FC

ij(rij) denotes the
conservative force derived from the corresponding pair
potential energy U(rij), and dWij = dWji are independent incre-
ments of Wiener processes with mean zero and variance dt. In
addition to the relation in (2), the two weight functions have to
be related by oD(rij) = [oR(rij)]

2 in order for the system to sample
the canonical ensemble.

We have observed62 that standard DPD methods perform
similarly in all the quantities that we have tested. Therefore,
following ref. 46, Shardlow’s S1 splitting method (i.e., the
DPD-S1 scheme)63 was used to represent the standard DPD
formulation. As in Langevin dynamics, we can similarly define
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the DPD-S1 (OBAB) method as

ehL̂DPD-S1 ¼ ehLOeðh=2ÞLBehLAeðh=2ÞLB ; (7)

where one should note that the ‘‘O’’ part is further split
into interacting pairs and then each pair is solved by using
the method of Brünger, Brooks, and Karplus (BBK)64 (the
detailed integration steps of the DPD-S1 scheme can be found
in Appendix A).

Due to the fact that the dissipative force depends on relative
velocities, DPD is Galilean-invariant, which makes it a profile-
unbiased thermostat (PUT)65,66 by construction and an ideal
thermostat for nonequilibrium molecular dynamics (NEMD).54

The PUT allows the simulation itself to define the local streaming
velocity (for more details, see ref. 65–67) and thus there is no need
to additionally subtract the underlying streaming velocity in
nonequilibrium applications.

2.3 Pairwise adaptive Langevin (PAdL) thermostat

Inspired by recent developments in adaptive thermostats,68–70

the pairwise adaptive Langevin (PAdL) thermostat, which can
be viewed as ‘‘adaptive DPD’’, has been proposed by Leimkuhler
and Shang,46 see also more discussions therein. It has been
observed that PAdL is able to correct for thermodynamic observ-
ables while mimicking the dynamical properties of DPD.

The equations of motion of the momentum-conserving
PAdL thermostat are given by

dqi ¼ m�1pidt;

dpi ¼
X
jai

FC
ij rij
� �

dt� xoD rij
� �

eij � vij
� �

eijdtþ soR rij
� �

eijdWij

h i
;

dx ¼ Gðq; pÞdt;

where x is an auxiliary dynamical friction variable, s a constant
amplitude as in Langevin dynamics, and G(q,p) denotes the
accumulated deviation of the instantaneous temperature away
from the target temperature

Gðq; pÞ ¼ 1

m

X
i

X
j4 i

oD rij
� �

vij � eij
� �2�2kBT=mh i

; (8)

where m is a coupling parameter (an inverse surface mass
density) which is referred to as the ‘‘thermal mass’’. It can be
shown that, in equilibrium, the PAdL system preserves the
momentum-constrained canonical ensemble with a modified
density

~rbðq; p; xÞ ¼
1

Z
exp �bHðq; pÞ � bm

2
ðx� gÞ2

� 	

� d
X
i

pxi � px

 !
d
X
i

p
y
i � py

 !
d
X
i

pzi � pz

 !
;

(9)

where g is the friction coefficient as it satisfies the fluctuation–
dissipation relation (2), and p = (px,py,pz) is the linear momentum
vector. Additional modifications should be included if the angular
momentum is also conserved.

According to the invariant distribution (9), the auxiliary
variable x is Gaussian distributed with mean g and variance
(bm)�1. That is, the auxiliary variable will fluctuate around its
mean value during simulation and moreover we can vary the
value of the friction in order to recover the dynamics of DPD in
a wide range of friction regimes. Therefore, the PAdL thermo-
stat can be viewed as the standard DPD system with an adaptive
friction coefficient (i.e., an adaptive DPD thermostat). Further-
more, we point that the PAdL thermostat inherits key properties
of DPD (such as Galilean invariance and momentum conserva-
tion) required for consistent hydrodynamics. Note also that the
PAdL thermostat would effectively reduce to the standard DPD
formulation in the large thermal mass limit (i.e., m - N).

The splitting method of PAdL proposed in ref. 46 has been
adopted in this article:

ehL̂PAdL ¼ eðh=2ÞLAeðh=2ÞLBeðh=2ÞLOehLDeðh=2ÞLOeðh=2ÞLBeðh=2ÞLA ;

where the ‘‘O’’ part is again further split into interacting pairs
but each pair is solved exactly, and ‘‘D’’ represents the addi-
tional Nosé–Hoover part (the detailed integration steps of the
PAdL method can also be found in Appendix A). It is worth
mentioning that the computational costs per timestep of all the
methods examined in this article are very similar. With the help
of computation-saving devices such as Verlet neighbor lists,71

the computational effort of all methods under study scales with
the number of particles, and both DPD and PAdL are only
slightly more expensive than Langevin integrators.

3 Quantifiers for simulation
performance

In this section, we briefly outline the quantities we will com-
pute in simulation and use to compare the performance of
different simulation schemes. These divide into observables for
equilibrium and nonequilibrium sampling and the rate of
convergence to equilibrium.

3.1 Summed autocorrelation count (SAC)

As in Markov chain Monte Carlo methods, we are interested in
accurately and efficiently estimating the expected value of some
physical observable of interest f (x), i.e.,

E½ f � ¼ h f i ¼
ð
Ox

f ðxÞrðxÞdx; (10)

by averaging a time series of (typically correlated) Ns samples

�f ¼ 1

Ns

XNs

i¼1
f xið Þ (11)

for large Ns, where xi denotes the phase space configuration at
time ti. Denoting the variance of f with respect to the probability
density function r by sr

2, which is independent of particular
sampling methods, it can be shown72 that the variance of the
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estimator %f of the mean is

�sr2ð �f Þ ¼ tsr2

Ns
; (12)

where t indicates a quantity that we refer to as the ‘‘summed
autocorrelation count’’ (SAC),† for correlated samples, typically
estimated as t � t(kmax) for some finite kmax o Ns by the
‘‘running’’ autocorrelation count estimator‡

tðkÞ ¼ 1þ 2
Xk
j¼1

1� j

Ns


 �
Cð jÞ
Cð0Þ; (13)

where

Cð jÞ ¼ 1

Ns � j

XNs�j

i¼1
f xið Þ � �f
� �

f xiþj
� �

� �f
� �

; (14)

is the unnormalized autocorrelation function (or auto co-
variance) of f. If the samples are uncorrelated, t = 1, in which
case the variance of the estimator %f would simply be sr

2/Ns.
Note that the variance of f (i.e., sr

2) is a special case of the
autocorrelation (14), i.e., sr

2 = C(0). The running t(k) starts at
unity for k = 0, vanishes exactly for k = Ns � 1, and its value and
variance go through a maximum for intermediate k. In our
simulations, we found that it was unclear how to properly
determine the kmax. Therefore, we instead suggest to approx-
imate the SAC based on a weighted sum fitting74 of the normal-
ized autocorrelation function, whose argument is scaled to
physical time, t, for convenience:

CðtÞ
Cð0Þ ¼ ð1� cÞe�t=l1 þ c cosðwtÞ þ sinðwtÞ

wl2


 �
e�t=l2 ; (15)

where c A [0,1] is dimensionless, l1, l2 4 0 are time constants,
and w is a frequency. Integrating (15) from zero to
infinity yields

I �
ðþ1
0

CðtÞ
Cð0Þdt ¼ ð1� cÞl1 þ

2cl2
1þ l2wð Þ2

; (16)

based on which the SAC can be approximated as

t � 2I

h
� 1; (17)

where h is the stepsize associated with the numerical method.
The choice of the functional form (15) is somewhat arbitrary, as
it simply corresponds to the c-weighted superposition of solu-
tions of a damped harmonic oscillator and a monoexponential
relaxation process, but we observed good agreement with the

actual autocorrelation function behavior in our simulation
experiments (see the next section).

It should be noted that the SAC is closely related to the
statistical error bar, i.e., the statistical error bar of the estimated
mean is the standard deviation of the time series divided by the
‘‘effective sample size’’ defined as Ns/t. Thus, the SAC is an
estimate of the number of iterations, on average, for an
independent sample to be drawn, given a correlated chain.
Therefore, the SAC directly measures the efficiency of the
sampling—a lower value of SAC corresponds to a larger effec-
tive sample size, i.e., a more efficient sampling.

3.2 Configurational temperature

Since we are mostly interested in configurational sampling, in
calculating the SAC we choose for f the configurational
temperature,75–79

kB fT ¼
hrUðqÞ � rUðqÞi

r2UðqÞh i ; (18)

an observable function solely depending on positions whose
average in the canonical ensemble, as the kinetic temperature,
is precisely the target temperature:

T = h f Ti, (19)

where rU and r2U respectively denote the gradient and
Laplacian of the potential energy U in the configurational phase
space (further discussions in ref. 62). The corresponding
unnormalized correlation function and running SAC are
denoted by CT(k) and tT(k), respectively.

3.3 Polymer conformation

A multibead nonlinear spring model was employed to simulate
a polymer melt as described in detail in Section 4.1. Denote the
coordinate of the j-th bead in chain a as q(a)

j . The end-to-end
vector of chain a is then given by R(a)

ee = q(a)
N � q(a)

1 . It should be
emphasized here that in taking differences one has to respect
the periodic boundary conditions (or to simply unfold all
polymer contours before applying the above definitions if they
are not already kept unfolded within the code).

Correlation functions, which characterize the relevant dyna-
mical properties, are often studied in molecular dynamics. Of
particular interest in polymer melts is the orientational auto-
correlation function (OAF) of the end-to-end vector of polymer
chains, which characterizes the relaxation of the polymer
chains and is evaluated by choosing for f the end-to-end vector
R(a)

ee (t) of chain a, while all M chains contribute to Cee(t) as
individual samples. For this vector-valued f the product in eqn (14)
is a scalar product. Due to head–tail symmetry hR(a)

ee i = 0 and
thus %f = 0 in that case.

3.4 Shear viscosity

A common approach to generate a simple shear flow in none-
quilibrium molecular dynamics is to apply the well-known
Lees–Edwards boundary conditions (LEBC),80 where, as in
normal periodic boundary conditions (PBC), the primary cubic

† Note that the SAC is often referred to as the ‘‘integrated autocorrelation
time’’44,72,73 in the computational statistics literature. The problem with using
such a term here relates to the fact that the time is a well-defined physical
quantity whereas the formula quantifies a number of steps of an iterative
procedure. Since we are mostly interested in how quickly the samples decorrelate
in terms of the number of steps, we use the word ‘‘count’’ in order to avoid
confusion with ‘‘physical time’’.
‡ It should be noted that MATLAB’s ‘‘autocorr’’ function, despite its name, does
not calculate the autocorrelation function (14), however, 1 + t(kmax) is just two
times the first 1 + kmax ‘‘autocorr’’ lags in MATLAB.
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box remains centered at the origin, however, a uniform shear
velocity profile is expected66

ui = _g(qi�ey)ex = j�qi, j = _gex # ey (20)

where ex and ey respectively denote the unit vector in the x- and
y-direction, j is the transposed velocity gradient tensor, #
represents the dyadic product of two vectors, and _g is the shear
rate defined as _g = dux/dy, where ux is the macroscopic velocity
in the x-direction. It is worth mentioning that while LEBC is
typically applied only in the x-direction, the other directions
( y and z) remain with PBC. It is nontrivial to implement LEBC
in pairwise thermostats due to the position-dependence on
both dissipative and random forces, this issue has been dis-
cussed in ref. 46.

The Irving–Kirkwood stress tensor81 subject to LEBC can be
written as

s ¼ � 1

V

X
i

m vi � uið Þ � vi � uið Þ þ
X
i

X
j4 i

qij � Fij

 !
; (21)

where V is the volume of the simulation box, and ui is the
streaming velocity (20) corresponding to the location of particle
i. Only the conservative force should be included for Fij in
Langevin dynamics since both the dissipative and random
forces are averaged out, whereas all three components of the
force should be accounted for pairwise thermostats. The gen-
erally non-Newtonian shear viscosity is extracted at finite
rates as

Z ¼
sxy
� 


_g
; (22)

where sxy denotes the shear stress, which is the off-diagonal
xy-component of the symmetric stress tensor r (21). While
employing (22) the zero shear viscosity Z0 = lim _g-0Z can be
obtained by extrapolation, it is worth mentioning that Z0 can be
alternatively calculated by integrating the stress–stress auto-
correlation function (i.e., the Green–Kubo formulas82,83). How-
ever, it is well documented that those equilibrium approaches
are subject to significant statistical error and thus not preferred
in practice (see a detailed discussion on extracting transport
coefficients by various approaches in ref. 84).

3.5 Flow alignment angle

As a nontrivial application to demonstrate the performance of
sampling schemes in the nonequilibrium context, we study the
flow alignment of the polymer segments to the imposed flow as
a function of the shear rate imposed using LEBC in manner
described in Section 3.4, thus we calculate the flow alignment
angle85 as follows:

w ¼ p
4
� 1

2
arctan

bx
2 � by

2
� 

2 bxby
� 
 !

; (23)

where bx and by respectively represent the x- and y-component
of a normalized bond vector b = bxex + byey + bze

z, and the
average is taken over all bonds.

4 Numerical experiments

In this section, we conduct systematic numerical experiments
to compare the performance of various methods introduced in
Section 2 in polymer melts simulations.

4.1 Simulation details

A popular bead-spring model originally proposed by Kremer
and Grest52,53 is used in our simulations. The system is
composed of M identical linear chains with N beads each in a
cubic box with periodic boundary conditions.86 The total number
of beads is Nt = MN in that case. Excluded volume interactions
between all Nt beads are included via a truncated Lennard-Jones
potential:

ULJ rij
� �
¼

4e
r0

rij


 �12

� r0

rij


 �6

� r0

rc


 �12

þ r0

rc


 �6
" #

; rij o rc;

0; rij 	 rc;

8>><
>>:

where rij = 8qi� qj8 denotes the distance between two beads i and
j, e and r0 are two constants that set the energy and length scales
of the beads, respectively, in reduced Lennard-Jones units, and rc

is the cutoff radius typically chosen as rc = 21/6r0 such that only the
repulsive part of the potential is considered. This potential is also
known as the Weeks–Chandler–Andersen potential.87

Adjacent N beads along the same polymer interact, in
addition, via the finitely extensible nonlinear elastic (FENE)
potential:

UFENE rij
� �

¼
� 1

2
kRmax

2 ln 1� rij
�
Rmax

� �2h i
; rij oRmax;

1; rij 	 Rmax;

8><
>:

where k = 30e/r0
2 represents the spring coefficient and Rmax = 1.5r0

determines the maximum length of a bond. This choice of para-
meters ensures that chains do not cross each other and it allows for
a reasonable large integration timestep.53 The system is thermo-
statted as described in Section 2.

Overall, the total potential energy of the system is defined as

UðqÞ ¼
XNt�1

i¼1

XNt

j¼iþ1
ULJ rij

� �
þUFENE rij

� �� �
; (24)

and the total potential of a bond, ULJ(rij) + UFENE(rij) gives rise to
a mean bond length hrijiE 0.97r0 between adjacent beads i and
j for e = kBT = 1.

A simple and popular choice of the weight function as in
ref. 58 was adopted in this article:

oR
ij ¼ oR rij

� �
¼

1� rij

rc
; rij o rc;

0; rij 	 rc:

8><
>: (25)

A system (bead number density rd = 0.84) consisting of
M = 30 identical linear chains with N = 20 beads (unit mass m)
on each chain was simulated, where the following parameter
set was used: kB = e = r0 = m = 1 (defining reduced units) at T = 1
in reduced units. The thermal mass in PAdL was initially

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
O

ct
ob

er
 2

01
7.

 D
ow

nl
oa

de
d 

on
 1

0/
29

/2
02

5 
11

:3
9:

53
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7sm01526g


8572 | Soft Matter, 2017, 13, 8565--8578 This journal is©The Royal Society of Chemistry 2017

chosen as m = 10. It should be noted that the simulated system
is usually referred to as ‘‘unentangled’’ since N r 85.85 Pre-
equilibrated initial configurations were obtained using an
existing hybrid approach:88 Initially, a mixture of phantom
and excluded volume FENE chains were placed randomly into
the simulation box at a density that exceeds the target density.
A subsequent molecular dynamics algorithm with integration
time step, force shape and force strength control was used to
achieve a prescribed minimum distance (here 0.9) between all
pairs of particles, while attempting to maintain local and global
characteristics (such as the form factor) of the chain conforma-
tions. During this process the most inefficient chains were
removed from the system, until the target density was reached.
The initial momenta were independent and identically distrib-
uted (i.i.d.) normal random variables with mean zero and
variance kBT. Unless otherwise stated, the system was simu-
lated for 1000 reduced time units in each case but only the last
80% of the snapshots were collected to calculate various
quantities described in the preceding section.

4.2 Equilibrium

As a verification of our equilibrium simulations, we first investi-
gate the structural quantities obtained by using the SVV, BAOAB,
DPD, and PAdL methods introduced in Section 2. Among all the
methods, at a stepsize of h = 0.01, we obtain an (time and chain)
averaged squared end-to-end distance of hRee

2i = 29.46 and an
averaged squared radius of gyration53 of hRg

2i = 4.87 in the low
friction regime of g = 0.5, in perfect agreement with the results
of Kremer and Grest.53

Fig. 1 compares the configurational temperature (19) control
for a variety of methods with a range of friction coefficients.
Note that SVV and BAOAB are two different splitting methods of
Langevin dynamics. However, it can be clearly seen that, while
maintaining a similar accuracy control of the configurational

temperature, the BAOAB method allows the use of much larger
(at least doubled) stepsizes compared to the SVV method,
especially in the large friction limit (g = 40.5), where a super-
convergence (i.e., a fourth order convergence, indicated by the
dashed black line in the figure, to the invariant distribution)
result was observed (as in ref. 50 and 69). All the other methods
tested show second order convergence according to the dashed
order line. This again illustrates the importance of optimal
design of numerical methods. It is also interesting to note that
the relative error slightly rises as we increase the friction
coefficient for the SVV method whereas, in the BAOAB method,
the relative error decreases.

While the relative error of both SVV and BAOAB methods
depends on the friction coefficients in Langevin dynamics, the
two pairwise thermostats (i.e., DPD and PAdL) appear to show
little dependence on the friction coefficients. Although it seems
that the DPD method is as accurate as SVV, the PAdL method is
superior to both of them (even slightly better than BAOAB at
low friction, i.e., g = 0.5).

The accuracy and rates of convergence for each method
(and for each observable) depend in a nontrivial way on stepsize
and so we cannot expect to use the same stepsize for different
numerical integrators. In performing comparisons, it is crucial
to develop a careful procedure to quantify sampling conver-
gence in relation to the accuracy desired. In our studies we use
a fixed accuracy threshold to select the stepsize for each
method (in equilibrium) and then, for this choice of stepsize,
which will be different for each method, we use the configura-
tional temperature SAC (see Section 3.1) to estimate the con-
vergence rate. The detailed protocol is as follows:

1. Choose a suitable observable (for instance, the configura-
tional temperature throughout this article);

2. Determine the stepsize, h, for each method by requiring
an identical accuracy of the sample mean h f Ti (for instance,

Fig. 1 Double logarithmic plot of the relative error, i.e., the ratio between the absolute error of configurational temperature f T (18) and the preset
temperature T, against stepsize by using various numerical methods introduced in Section 2 with a variety of friction coefficients in a standard setting of
polymer melts as described in Section 4.1. Note that the relative error of DPD and PAdL appears to show little dependence on the friction coefficients,
thus the result of g = 0.5 only is shown. The system was simulated for 1000 reduced time units in each case but only the last 80% of the snapshots were
collected to calculate the static quantity f T. Five different runs were averaged to further reduce the sampling errors. The stepsizes tested began at
h = 0.005 and were increased incrementally by 10% until all methods became unstable. The horizontal solid black line indicates 1% relative error in
sample mean (11) accuracy of configurational temperature, based on which the stepsizes for each method were chosen in equilibrium simulations, unless
otherwise stated. Dashed black lines represent the second and fourth order convergence to the invariant distribution.
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1% relative error, marked as the horizontal solid black line, as
shown in Fig. 1);

3. The number of samples, Ns, for each method is subse-
quently specified as the total simulation time is kept fixed;

4. Approximate the SAC via eqn (16), which is based on
a weighted sum fitting of the normalized autocorrelation
function.

5. Calculate the effective sample size, Ns/tT, for each method,
which characterize the sampling efficiency.

In order to measure the sampling efficiency of the various
methods (three different values of the thermal mass, m, of PAdL
are included), we plot the normalized configurational tempera-
ture autocorrelation function (CTAF) and its corresponding
fitted curve based on the weighted sum (15) in Fig. 2. The
stepsize, corresponding to the B1% relative error case, for each
method was determined with the help of the horizontal solid
black line in Fig. 1. As can be seen from the normalized
autocorrelation functions in Fig. 2, the samples of various
methods decorrelate very differently. It is interesting to note that
while both Langevin dynamics and DPD exhibit ‘‘monotonic-like’’
decays, PAdL (with a wide range of the thermal mass) oscillates,
which we believe is due to the presence of the additional Nosé–
Hoover control.

As can be seen from Table 1, the SAC (tT) of DPD is
significantly larger than alternatives. Moreover, the SAC of
BAOAB is about half of that of SVV, which is due to the fact
that BAOAB can use about double the stepsize of SVV and thus
only about half as many samples are needed to achieve a
similar sample mean accuracy of the configurational tempera-
ture. Although the SAC of PAdL with m = 10 is already smaller

than either Langevin dynamics or DPD, the SAC of PAdL could
be decreased further by lowering the value of the thermal mass
m. This should not come as a great surprise since m determines
how strongly the negative feedback loops (8) couple with the
physical system. Therefore, the PAdL method has the ability of
controlling the sampling efficiency while others not.

Since different stepsizes, which result in different sample
counts (Ns) when the total simulation time is fixed, were used
for different methods in order to achieve a similar sample
mean accuracy, one should further compare the sampling
efficiency by computing the ‘‘effective sample size’’ (Ns/tT)
instead of just the SAC (tT), which corresponds to cases where
Ns is identical in each method. One can see from Table 1 that

Fig. 2 Weighted sum fittings, employing (15), of the normalized configurational temperature autocorrelation function (14) by using various methods with
fixed stepsizes shown in Table 1 in the low friction regime of g = 0.5 with sample mean accuracy of B1% relative error in configurational temperature.
Note that the horizontal axis is scaled to the reduced physical time, rather than the number of steps, for convenience.

Table 1 Comparisons of the sampling efficiency of various numerical
methods quantified by the ‘‘effective sample size’’, Ns/tT, in the low friction
regime of g = 0.5 with similar sample mean hf Ti accuracy of B1% relative
error in configurational temperature. For all entries the total simulation
time of collecting samples was Nsh E 800, where Ns and h respectively
represent the number of samples and the stepsize, and I denotes the
integrated normalized autocorrelation function (16) of f T. The DPD
method was computed by using Shardlow’s splitting method (i.e., the
DPD-S1 scheme).63 The simulation details of the table are the same as in
Fig. 1

Method h Ns h f Ti I tT Ns/tT

SVV 0.005 160 001 1.0105 0.4412 175.5 911.7
BAOAB 0.01 80 001 1.0134 0.4863 96.3 830.7
DPD 0.004 200 001 1.0093 1.1270 562.5 355.6
PAdL m = 10 0.012 66 668 0.9903 0.2703 44.1 1511.7
PAdL m = 1 0.012 66 668 0.9902 0.0959 15.0 4444.5
PAdL m = 0.1 0.012 66 668 0.9902 0.0249 3.2 20833.8

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
O

ct
ob

er
 2

01
7.

 D
ow

nl
oa

de
d 

on
 1

0/
29

/2
02

5 
11

:3
9:

53
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7sm01526g


8574 | Soft Matter, 2017, 13, 8565--8578 This journal is©The Royal Society of Chemistry 2017

the effective sample sizes of SVV and BAOAB are very close to
each other since they are just two different splitting methods of
the same stochastic (Langevin) dynamics. While the effective
sample size of DPD is roughly half that of Langevin dynamics
(either SVV or BAOAB), PAdL with m = 10 is over 50% larger than
the latter. Further reducing the value of the thermal mass in
PAdL leads to an even more efficient sampling than alterna-
tives: the effective sample size of PAdL with m = 1 is more than
four times that of DPD and Langevin dynamics; with m = 0.1,
this increases to a factor of 20. There is a limit to how much
m can be reduced, however, without introducing numerical
instability and thus requiring a smaller timestep. Note that
although the thermal mass m in PAdL has a strong influence on
the sampling efficiency, it appears that the sampling accuracy
depends little on it (for instance, the long term behavior of
PAdL with a wide range of the thermal mass m is almost
indistinguishable in Fig. 1). Therefore, unless otherwise stated,
m = 0.1 will be used in subsequent comparisons.

The characterization of the relaxation of polymer chains in a
melt corresponding to different dynamics was compared and
plotted in Fig. 3. In particular, we measured the orientational
autocorrelation function (OAF) of the end-to-end vector of
polymer chains defined in Section 3.3. It is believed that, for
such a dense system, the long-time diffusion depends only on
the interactions between beads and does not arise from the
associated thermostat.53 Therefore, the reference decay was
calculated by using Hamiltonian dynamics (i.e., switching off
the thermostat, g = 0). Since the OAFs obtained by SVV and
BAOAB are almost indistinguishable, the SVV method was used
for Langevin dynamics. (Note that in what follows, unless
otherwise stated, Langevin dynamics was calculated by using
the benchmark SVV method.)

It can be seen from Fig. 3 (left) that the OAF of Langevin
dynamics depends strongly on the friction coefficient. To be
more precise, the OAF starts to (significantly) deviate from
the reference decay as we increase the friction coefficient.

Although a relative small friction (i.e., g = 0.5 in this parameter
setting) was suggested in ref. 53 to not only minimize the
effects of the Langevin thermostat but also to be large enough
to stabilize the system in the long time limit, visible discrepancies
were still observed in the case of g = 0.5 in our numerical
experiments. In stark contrast, the OAFs of the PAdL method in
a wide range of the friction coefficients are almost indistin-
guishable from the reference decay as shown in Fig. 3 (right).
Very similar behavior was also observed in the DPD method,
which implies that the projection of the interactions of both the
dissipative and random forces (i.e., the thermostat) on to the
line of centers (and thus the conservation of the momentum)
may have played a role in preserving the correct relaxation
behavior in the case of the pairwise thermostats. Since a
relatively small friction has been widely used in the literature
of polymer melts, in what follows we restrict our attention
to comparing various methods in the low friction regime
of g = 0.5.

4.3 Nonequilibrium

The stepsize for each method was chosen according to certain
sample mean accuracy threshold (e.g., E1% relative error in
configurational temperature) when examining the sampling
efficiency in the previous subsection. However, we are more
interested in investigating the stability issues in nonequili-
brium simulations. Thus in what follows we fix the stepsize
of h = 0.01, which is close to the stability threshold, for all
methods.

The shear viscosity was extracted by using the formula (22)
outlined in Section 3.4 and plotted in Fig. 4. All methods appear
to show similar behavior except that the range of shear rates in
DPD is greatly limited (that is, the largest usable shear rate in
DPD is _g = 0.08, compared with _g = 1.2 in both Langevin and
PAdL). The error bars were indeed included, however they were
relatively very small (particularly in the large shear rate regime)
and thus not visible.

Fig. 3 Comparisons of the normalized orientational autocorrelation function (OAF), Cee(t)/Cee(0), of the end-to-end vector of polymer chains in a melt
between Langevin dynamics (left) and the PAdL method (right) with three different values of the friction coefficient. Note that PAdL and DPD exhibit
indistinguishable behavior and thus only the result of the former was shown. The same stepsize of h = 0.01 was used for all methods as the focus here is
to study the autocorrelation decays (in fact, reducing the stepsize leaves the autocorrelation decays indistinguishable). 100 different runs were averaged
to reduce the sampling errors after the system was well equilibrated. The solid black line is the reference decay obtained by using Hamiltonian dynamics
(i.e., switching off the thermostat, g = 0), which used exactly the same initial conformations and velocities as alternative stochastic dynamics.
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In Fig. 5, we plot the evolution of the shear stress against the
shear strain for PAdL and Langevin. While PAdL was perfectly
stable for all runs performed, Langevin dynamics occasionally
becomes unstable with a shear rate of _g = 1, therefore, a smaller
shear rate of _g = 0.5 was used here instead in order to provide
comparisons. As can be seen from the figure, for both methods,
as the shear strain increases, the shear stress rises rapidly from
zero to its maximum at shear strain of around 2.5 before
relaxing to its steady state, consistent with the results in
Fig. 4. At startup the system tends to transform affinely and
builds up stress before relaxation takes over. The faster the
shear rate, the more likely the shear stress maximum occurs, as
affine shear deformation. During this phase, particles are forced

into close proximity resulting in strong Lennard-Jones repulsion
and quickly producing enormous shear stress. However, the max-
imum is not expected, and was indeed not observed by us, at small
rates. Overall, the behavior is in good agreement with previous
studies.89–92 We also investigated the evolution (including DPD
whenever possible) with a wide range of shear rates and did not
observe significant differences between the methods.

Fig. 6 plots the standard deviation in the computed shear
viscosity over a wide range of shear rates by using various
methods subject to Lees–Edwards boundary conditions. Once
again, all methods behave very similarly. As we increase the
shear rate, the standard deviation decreases, which is consistent
with the observations in Fig. 4. Note that the DPD method

Fig. 4 Comparisons of the computed shear viscosity in a standard setting
of polymer melts as described in Section 4.1 against shear rate by using
various methods (in the low friction regime of g = 0.5) with Lees–Edwards
boundary conditions. The simulation details of the figure are the same as in
Fig. 1 except the same stepsize of h = 0.01 was used for all methods. Note
that the error bars were included but could be seen with relatively small
shear rates only. Note also that we did short runs to highlight the
deviations, while the errors decrease further and the viscosity reaches
the Newtonian plateau at small shear rates upon increasing the length of
the runs, as is well known from previous studies.

Fig. 5 Plot of the relations of shear stress and shear strain, which is the
product of shear rate and simulation time, between Langevin dynamics
and PAdL (in the low friction regime of g = 0.5) for the polymer melts
modeled using Lees–Edwards boundary conditions with a shear rate
of _g = 0.5. The same stepsize of h = 0.01 was used for both methods.
10 000 different runs were averaged to obtain relatively smooth curves.

Fig. 6 Double logarithmic plot of the standard deviation in the computed
shear viscosity at the specified rates against stepsize by using various
methods (in the low friction regime of g = 0.5) in the presence of Lees–
Edwards boundary conditions. The simulation details of the figure are the
same as in Fig. 1 except the stepsizes tested began at h = 0.01.

Fig. 7 For the polymer melts modeled using Lees–Edwards boundary
conditions, the absolute error (in degrees) of the flow alignment angle (23)
produced by the PAdL and Langevin algorithms (in the low friction regime
of g = 0.5) is plotted against the stepsize (in semi-log scale) for a shear rate
of _g = 1. The reference value of the alignment angle was obtained by using
the PAdL method with a sufficiently small stepsize of h = 0.001
(20 different runs). The simulation details of the figure are the same as in
Fig. 1 except 20 different runs were averaged to further reduce the
sampling errors.
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appears only in the smallest shear rate case. In the regimes of
small and moderate shear rates, the standard deviations of
all/both methods are very similar. However, in the high shear
rate (_g = 1) case, Langevin dynamics has not only a visibly
(E 60%) larger standard deviation but also a smaller range of
stepsizes usable than the PAdL method.

We further investigate in Fig. 7 the stepsize effects on the
alignment angle of the polymer chains subject to LEBC at a
relatively high shear rate of _g = 1. It appears that while the
absolute error of the alignment angle of PAdL remains below
around 0.04 degrees, the corresponding error of Langevin
dynamics is around six times larger. This clearly demonstrates
the superiority of PAdL over Langevin dynamics in nonequili-
brium simulations especially at relatively high shear rates.

5 Conclusions

We have reviewed a variety of numerical methods (SVV and
BAOAB of Langevin dynamics, DPD, and PAdL) that can be used
to simulate polymeric systems. We have systematically com-
pared those methods in terms of accuracy, efficiency, and
stability both in equilibrium and nonequilibrium settings.

In terms of sampling accuracy in equilibrium simulations,
we have observed that the BAOAB and PAdL methods outper-
form the SVV and DPD methods in a wide range of friction
coefficients. We have also discovered that while perfectly
matching the reference decay, the OAF, which characterizes
the orientational relaxation of the polymer chains, of both
pairwise (momentum-conserving) thermostats (DPD and PAdL)
has little dependence on the friction coefficient in a wide range.
On the other hand, the OAF of Langevin dynamics strongly
depends on the friction coefficient, moreover, a clear discre-
pancy was observed even for the commonly used low friction of
g = 0.5. We have further developed a careful procedure to
quantify the sampling efficiency of various methods. By com-
paring the effective sample size, we found that PAdL substan-
tially outperforms alternatives, particularly with a relatively
small thermal mass of m = 0.1, for which remarkably about
twenty times increase in the effective sample size was achieved
in comparison to alternative approaches (see Table 1).

We are more focused on investigating the stability issues in
nonequilibrium simulations. We have demonstrated that, with
a stepsize of h = 0.01, the largest usable shear rate was around
_g = 0.08 for DPD, compared with _g = 1.2 for both Langevin and
PAdL, in a standard setting of polymer melts as described in
Section 4.1. Thus, in agreement with previous studies,61 DPD is
not recommended for nonequilibrium simulations, when the
mean flow dissipation rates begin to overwhelm the thermostat,
limiting its use in practice for relatively large shear rates. Between
Langevin dynamics and PAdL, we have found that they perform
rather similarly with relatively low shear rates. For the investiga-
tion of even smaller rates, where the FENE polymer exhibits a
Newtonian plateau in the shear viscosity, thermodynamically
guided methods are more suitable.93,94 Nevertheless, we have
illustrated that while both methods share a similar relation of

shear stress and shear strain, Langevin dynamics performed
unreliably with a relatively high shear rate of _g = 1 at a stepsize
of at least h = 0.01—it not only produced a larger (by about 60%)
standard deviation of the computed shear viscosity than PAdL,
but also resulted in a significantly larger (about six times) absolute
error of the flow alignment angle.
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Appendix
A Integration schemes

We list here detailed integration steps for both DPD-S1 and PAdL
methods described in the article. Verlet neighbor lists71 are used
throughout each method in order to reduce the computational cost.

Shardlow’s splitting method: DPD-S1. For each interacting
pair of particles i and j, the summations go over all interacting
pairs within cutoff radius (rij o rc),

p
nþ1=4
i ¼ pni �

X
j4 i

Hij enij � vnij
� �

enij þ
X
j4 i

Jij ;

p
nþ1=4
j ¼ pnj þ

X
j4 i

Hij enij � vnij
� �

enij �
X
j4 i

Jij ;

p
nþ2=4
i ¼ p

nþ1=4
i þ

X
j4 i

Jij �
X
j4 i

Hij

1þ 2Hij
enij � v

nþ1=4
ij

� �
enij þ 2Jij

h i
;

p
nþ2=4
j ¼ p

nþ1=4
j �

X
j4 i

Jij þ
X
j4 i

Hij

1þ 2Hij
enij � v

nþ1=4
ij

� �
enij þ 2Jij

h i
;

where Hij� goD(rn
ij)h/2 and Jij � soR rnij

� �
enij

ffiffiffi
h
p

Rn
ij

.
2 with Rn

ij being

normally distributed variables with zero mean and unit variance.
For each particle i,

pn+3/4
i = pn+2/4

i + hFC
i (qn)/2,

qn+1
i = qn

i + hvn+3/4
i ,

pn+1
i = pn+3/4

i + hFC
i (qn+1)/2,

where FC
i (q) = �rqi

U(q) are the total conservative forces acting
on particle i with configuration q.

Pairwise adaptive Langevin thermostat: PAdL. For each particle i,

qn+1/2
i = qn

i + hvn
i /2,

pn+1/4
i = pn

i + hFC
i (qn+1/2)/2.

The summations go over all interacting pairs within cutoff
radius (rij o rc),

p
nþ2=4
i ¼ p

nþ1=4
i þ 1

2

X
j4 i

mDvij qnþ1=2; pnþ1=4; xn
� �

e
nþ1=2
ij ;

p
nþ2=4
j ¼ p

nþ1=4
j � 1

2

X
j4 i

mDvij qnþ1=2; pnþ1=4; xn
� �

e
nþ1=2
ij ;
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with

Dvij ¼
eij � vij
� �

e�~th=2 � 1
� �

þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�~th½ �=ðxmÞ

p
Rij ; xa0;

2s=mð ÞoR rij
� � ffiffiffiffiffiffiffiffi

h=2
p

Rij ; x ¼ 0;

8<
:

where ~t = 2xoD(rij)/m and Rij are normally distributed variables
with zero mean and unit variance. For the additional variable x,

xn+1 = xn + hG(qn+1/2,pn+2/4)/2,

where

Gðq; pÞ ¼ m�1
X
i

X
j4 i

oD rij
� �

vij � eij
� �2�2kBT=mh i

:

The following summations go over all interacting pairs within
cutoff radius (rij o rc),

p
nþ3=4
i ¼ p

nþ2=4
i þ 1

2

X
j4 i

mDvij qnþ1=2; pnþ2=4; xnþ1
� �

e
nþ1=2
ij ;

p
nþ3=4
j ¼ p

nþ2=4
j � 1

2

X
j4 i

mDvij qnþ1=2; pnþ2=4; xnþ1
� �

e
nþ1=2
ij :

For each particle i,

pn+1
i = pn+3/4

i + hFC
i (qn+1/2)/2,

qn+1
i = qn+1/2

i + hvn+1
i /2.

An extension of the PAdL algorithm for systems with beads
of different masses and identical friction coefficients can be
found in ref. 46.
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