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Frontal photopolymerisation (FPP) is a directional solidification process that converts monomer-rich
liquid into crosslinked polymer solid by light exposure and finds applications ranging from lithography to
3D printing. Inherent to this process is the creation of an evolving polymer network that is exposed to a
monomer bath. A combined theoretical and experimental investigation is performed to determine the
conditions under which monomer from this bath can diffuse into the propagating polymer network and
cause it to swell. First, the growth and swelling processes are decoupled by immersing pre-made
polymer networks into monomer baths held at various temperatures. The experimental measurements
of the network thickness are found to be in good agreement with theoretical predictions obtained from
a nonlinear poroelastic model. FPP propagation experiments are then carried out under conditions that
lead to swelling. Unexpectedly, for a fixed exposure time, swelling is found to increase with incident
light intensity. The experimental data is well described by a novel FPP model accounting for mass
transport and the mechanical response of the polymer network, providing key insights into how
monomer diffusion affects the conversion profile of the polymer solid and the stresses that are
generated during its growth. The predictive capability of the model will enable the fabrication of
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1. Introduction

New developments in the field of polymeric additive manu-
facturing, including 3D printing, are leading to the next gene-
ration of rapid, cost-effective techniques for fabricating complex
structures across a broad range of length scales. Reductions in
manufacturing costs and fabrication time, along with increasing
ability to create objects that cannot be made with traditional
methods, have stimulated world-wide growth of 3D printing and
the value of the industry is expected to reach 20 billion USD by
2020." The versatility and accessibility of 3D printing has led
to its wide-spread use in fields such as tissue engineering
and drug delivery,”™* microfluidics,’ electronics,®’” and battery
design.® Of the various approaches to 3D printing, which
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gradient materials with tuned mechanical properties and controlled stress development.

include fused deposition modelling® and selective laser
sintering,'® light-driven technologies based on, e.g. stereolitho-
graphy, have shown exceptional promise due to their speed and
resolution. More recently, UV-based 3D printing has been used
to develop a continuous fabrication process,'" enabling further
reductions in manufacturing time and surface roughness
compared with stepwise methods.

The key process in light-driven 3D printing is the conversion
of liquid monomer into crosslinked polymer solid upon
exposure to UV light. Absorption of light by the photosensitive
monomer-rich liquid initiates a sequence of chemical reactions
that result in photopolymerisation and crosslinking."> Generally,
the rate of conversion is proportional to the intensity of
radiation."® As light passes through the mixture and is absorbed,
the corresponding decay in intensity leads to a reduction in the
rate of conversion. Thus, photopolymerisation naturally gives rise
to a spatially varying monomer-to-polymer conversion profile.
In the context of 3D printing, this non-uniform profile can be
both advantageous and detrimental. For instance, it provides a
means of fabricating gradient materials'* ™' with tunable density,
refractive index, elastic modulus, and permeability. By further
modulation of the conversion profile via coupling photopolymeri-
sation with the diffusion of an inhibitory species, wrinkled
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1718 and three-dimensional microstuctures'® can be

surfaces
generated. However, non-uniform conversion can also lead to
residual stresses within the solid and cause pattern failure and
delamination. Precise control over the conversion profile is there-
fore needed in practical applications.

During photopolymerisation, the evolving polymer network
is exposed to the monomer bath. It is well known that monomer
can diffuse into polymer networks, leading to swelling®>*" and,
under certain conditions, the onset of mechanical instability.****
In photopolymerising systems, the relative rate of monomer
conversion with respect to monomer diffusion is expected to
dictate the relevance of the latter to the evolution of the
network. Evidently, under conditions of rapid conversion, the
monomer is effectively immobile, while at slow conversion,
diffusion may become significant. The intricate interplay between
conversion and diffusion of monomer will, therefore, play a key
role in setting the patterning window of operation and in control-
ling the surface and mechanical properties of the polymer solid.

This paper presents the results of a combined experimental
and theoretical study of photopolymerisation that aims to
(i) elucidate the conditions under which monomer diffusion
and conversion occur simultaneously and (ii) determine how
diffusion can influence the conversion profile and generate
internal stresses within the polymer network.

A schematic diagram of the experimental configuration is
shown in Fig. 1(a). A photosensitive monomer bath is covered
with a transparent surface and exposed to collimated UV radiation
with intensity I,. The strong absorption of light by the bath leads
to the onset of frontal photopolymerisation (FPP), which is
characterised by the development of a thin interfacial region
separating monomer-rich liquid from polymer-rich solid, yielding
a sharp solidification front that propagates from the illuminated
surface into the bulk. FPP is therefore a directional solidification
process, which finds applications in 3D printing®* and the
fabrication of multi-level patterns used in microfluidic devices.>®
The position of the sharp solidification front, z; gives the

(@)

Fig. 1 Monomer diffusion into a growing polymer network during frontal
photopolymerisation (FPP). (a) Exposing a photosensitive monomer-rich
bath to radiation with incident intensity /o leads to a planar polymerisation
front that propagates from the illuminated surface into the bulk. At the
same time, monomer from the bath can diffuse into the network and
cause it to expand. (b) The composition of the mixture is described by the
volume fractions of polymer network ¢, and monomer ¢, = 1 — ¢,.
A sharp polymerisation front can be defined as the location where the
network fraction reaches a critical solidification value ¢..
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instantaneous height of the polymer solid and can be defined
as the point at which the volume fraction of polymer network
reaches a critical value ¢.;'®***” see Fig. 1(b). Physically, ¢.
corresponds to the gel point of the polymer: material below
¢. is insufficiently crosslinked and thus washes away upon
selective dissolution and development of the solid. As the front
propagates away from the illuminated surface, unreacted
monomer from the bath can, in principle, diffuse into the
polymer network and cause it to swell. Due to the adhesion
between the polymer network and the illuminated surface, the
volumetric expansion mainly occurs in the growth direction;
this constrained swelling results in the generation of elastic
stresses in the polymer network. Using this model FPP system,
we investigate how changes in the bath temperature and the
intensity of radiation, two key factors which control the kinetics
of monomer diffusion and front propagation, influence the
onset of swelling during FPP, as measured through the front
position z;. Due to the creation of new crosslinks in the polymer
network by FPP, we refer to these as ‘evolving’ networks.

Swelling during FPP is reminiscent of isothermal frontal
polymerisation (IFP), which is also driven by diffusion of
monomer into the growing polymer network. However, in
IFP, the diffusion of monomer converts the network into a
viscous gel that swells and propagates into the bulk.?®*° Due to
the Tromsdorff-Norish (or ‘gel’) effect, the gel layer polymerises
faster than the bulk, allowing the process to continue. IFP is
therefore auto-catalytic, unlike FPP, which is driven by the
absorption of radiation and can be terminated upon stopping
the illumination.

To further investigate the role of monomer diffusion during
FPP, a secondary set of experiments, which decouple the growth
and swelling processes, is carried out using ‘pre-made’ polymer
networks. That is, FPP is first used to create a set of polymer
networks with varying material properties under conditions of
negligible swelling. These pre-made polymer networks are then
immersed in the monomer bath from which they were created
and allowed to freely swell. The dimensions of the networks are
measured as a function of time, enabling the determination of
the kinetics of diffusion. These networks are referred to as ‘static’
networks, since no crosslinks are formed during the swelling
process.

The results of both sets of experiments are interpreted with
the aid of theoretical models. In the case of a static network, the
model is based on the classical theories of nonlinear swelling of
hydrogels***®*! and adapted to use Eulerian coordinates,**
which allow the equations to be written in physically intuitive
forms. The governing equations are then extended to account
for the growth of the polymer network by FPP.>¢3473¢

A wide range of models for photopolymerisation have been
37-40

developed that account for detailed reaction steps, oxygen
inhibition,*"** polydisperse chain lengths,***** heat generation
and transport,*>** and the onset of convection.*® Models that
capture monomer diffusion during photopolymerisation have
been proposed,**” but these do not consider the mechanical
response of the network. Although these detailed physico-

chemical models can provide insight into the fundamental
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processes that occur during photopolymerisation, they can be
impractical due, in part, to their large number of parameters. Thus,
we incorporate mass transport and mechanics into a ‘minimal’
model of FPP that is capable of accurately describing experiments
carried out using thiol-ene systems'®**?” and based on key
experimental observables and a limited number of parameters.
The experimental methods are described in Section 2.
In Sections 3 and 4, theoretical models for the swelling of static
and evolving polymer networks are presented and the experi-
mental data is interpreted. The paper concludes in Section 5.

2. Experimental methods

2.1. Fabrication of static polymer networks

FPP was employed to create a set of static polymer networks with
varying material properties, as shown in Fig. 2(a). A thermally
cured polydimethylsiloxane (PDMS) mold with a vertical depth of
0.3 mm was filled with a photosensitive thiol-ene monomer bath
(optical adhesive NOA81, Norland Products) and covered with a
glass slide. A square 2 x 2 cm® photomask was placed on the
glass slide to allow for selective illumination of the bath away
from the lateral container boundaries. The bath was held at room
temperature and exposed to collimated UV light (Omnicure
S1500 equipped with a 365 nm filter) with an incident intensity
of I, = 6.6 W m ™2 The UV exposure time was selected to obtain
a precise monomer-to-polymer conversion in each sample. The
conversion fraction y of each sample was measured by FT-IR
spectroscopy using a Bruker 27 spectrometer coupled to a
Hyperion microscope.'® The decrease in absorbance of reactive
thiol groups (with absorption peak centred at 2572 cm™ ') was
monitored, taking the absorbance of carbonyl groups (with a
peak centred at 1735 cm ') as a reference. The conversion
fraction y is then defined in terms of the absorbance of thiol
and carbonyl groups, A**”> and A'7%°, respectively, as y = 1 —
(A77%1AF0) (AT 7%1A57>°), where 4, is the initial absorbance
(before UV exposure) and 4, is the absorbance at a given time ¢.
The dimensions of the resulting crosslinked samples were
19.7 x 19.7 x 0.3 mm® (x x y x 2). Due to the limited thickness,

FPP ~ 20 mm

T U U T T
X 0.3 mm z=0
20 mm -1"-1"-"1-"22’1@

Monomer bath

(a) (b)

Fig. 2 Swelling of static polymer networks. (a) FPP is used to create
thin polymer networks with uniform monomer-to-polymer conversion
fraction y. (b) Each static network is immersed in a monomer bath held at
temperature T and allowed to swell. Swelling occurs predominantly in the
growth direction. The centerline and free surfaces of the polymer network
are denoted by z = 0 and z = +h(t), respectively, where h(0) = 0.15 mm.
The half-height of the polymer network, h, is measured as a function of
time for different bath temperatures T and conversion fractions j.
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the conversion fraction y is assumed to be spatially uniform
throughout all samples.

To minimise swelling during fabrication of static networks,
the samples were created at room temperature with high-
intensity light. These conditions ensure the time scale of
network fabrication is much shorter than that of monomer
diffusion.®® The fabrication times for networks with y = 0.12,
0.35, 0.42, and 0.85 are 1, 2, 5, and 30 min, respectively.
In Section 3.2, we show that these networks expand by less
than 1% when exposed to a monomer bath held at room
temperature for the same amount of time. Moreover, in previous
FPP experiments'® carried out under similar conditions, the
spatiotemporal evolution of the conversion fraction was found
to be in excellent agreement with predictions from a minimal
model®® that does not account for mass diffusion, also suggesting
that swelling is negligible.

2.2. Characterisation of the static networks

Each static network sample is characterised by its conversion
fraction y. The elastic modulus of the network, E, has been
measured by atomic force microscopy with a Bruker Innova
instrument'® and is plotted as a function of the conversion
fraction y and the temperature T in Fig. 3. There is a sharp
increase in the elastic modulus near y = y; ~ 0.77, indicative of
the glass transition. Although the elastic modulus varies
slightly with temperature, we make the simplifying assumption
that it is temperature independent within the range considered.
The data is fit to a curve of the form E(y) = Enax exp(g(x)), where
g is a piecewise linear polynomial with a kink at yg, which
approximates detailed physico-chemical models of E(y) near the
glass transition.”® The parameter Ep,. = 187 MPa corresponds to
the elastic modulus at ymax = 0.85. We find that g(y) = 4.16(), — o) —
1.67 for y < yo and g(x) = 24.2(1 — Jmad) for y > y, where
%g = 0.77. The fitted curve is shown as the black line in Fig. 3.

2.3. Swelling of static networks

The static network samples were immersed in baths of monomer,
held at various temperatures, and allowed to freely swell; see

10° ‘ : : :
@ T=23°C :
B T =40°C :
O T =60°C '
10, | AT=80°C ! 1
& % T =100 °C
=
Mol 1
10°
0 0.2 0.4 0.6 0.8 1

Fig. 3 The dependence of the elastic modulus £ on the monomer-to-
polymer conversion fraction y at different temperatures. The dashed line
denotes the glass transition.
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Fig. 2(b). The dimensions of the networks were measured at
various times using a digital caliper (Mitutoyo, with £0.001 mm
resolution) and a reflection optical microscope (Olympus BX41M)
for each bath temperature T and conversion fraction y. In all
cases, swelling occurred predominantly along the growth direc-
tion; relative changes in the lateral dimensions were negligible.

2.4. Swelling of evolving networks

Swelling during FPP was studied with the experimental setup
described in Section 2.1 using a PDMS mold with a depth of
3.5 mm. A RayTemp8 infrared thermometer and hot plate were
used to maintain a bath temperature of T'= 65 °C, which led to
significant swelling of static networks. Three experiments were
performed using different light intensities of I, = 0.1, 1, and
10 W m 2. Each bath was illuminated for different amounts of
time ¢, the uncrosslinked material was removed with acetone
and ethanol, and the height of the polymer network z¢(t) was
measured.

3. Swelling of static polymer networks

3.1. Model formulation

We first consider the diffusion of monomer into a static
polymer network. Due to the relatively large lateral dimensions
of the networks and the observation that swelling mainly occurs
along the growth direction, it is sufficient to consider a one-
dimensional model. Swelling is assumed to occur symmetri-
cally about the centerline of the network, denoted by z = 0, so
that the total thickness is given by 2A(t), where z = =+h(f)
corresponds to the time-dependent free surfaces of the network;
see Fig. 2(b).

Swelling is rationalised as the result of two competing
mechanisms. Firstly, monomer diffuses into the network in
order to reduce the free energy of mixing. Secondly, the polymer
network must expand in order to accommodate the volume of
absorbed monomer, which increases the elastic energy of the
mixture. Equilibrium is reached when the decrease in energy
of mixing due to additional uptake of monomer is exactly
balanced by the increase in elastic energy due to further
expansion. A theoretical model of swelling must therefore
consider mass transport, the mechanical response of the polymer
network, and the thermodynamics of the mixture.

3.1.1. Mass transport and volume conservation. The com-
position of the mixture is described by the volume fractions of
the monomer and polymer network, ¢,, and ¢,, respectively.
The deformation of the polymer network is characterised by the
local stretch Z, describing the degree of expansion (4 > 1)
or shrinkage (4 < 1) that a material element has undergone.
It is assumed that the specific densities of the monomer and
network are constant and equal, and that no density change
occurs upon mixing, i.e., the mixture is ideal. These assumptions
imply that the monomer and polymer network are incompressible
at the microscopic level. However, the polymer network, which
can be envisioned as a porous material, can still experience
macroscopic compression through changes in the pore shape

9202 | Soft Matter, 2017, 13, 9199-9210
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and volume. As the density of the mixture remains constant,
the volume fractions of monomer and polymer must satisfy

Pmt Pp=1 (1)

for all time ¢. Additionally, due to the microscopic incompres-
sibility of the liquid monomer and the elastic polymer network,
volume must be conserved at a local level. That is, the volu-
metric expansion of a material element in the polymer network
must be exactly equal to the volume of absorbed monomer;
therefore,

A== ) 2)
Global conservation of volume implies (see ESI{ for details)
that the net expansion of the polymer network is equal to the
total volume of absorbed monomer:

h(1)
Pz, 1)dz. (3)

0

h(t) — h(0) :J

Applying the law of conservation of mass to both the monomer
and polymer phases yields two transport equations of the form

9¢,, 0 _

81 + E(¢mvm) - 07 (43)
o¢, 0 _

at + &(¢nvn) - 07 (4b)

where v,, and v,, correspond to the velocity of monomer and
polymer, respectively, as measured from a fixed laboratory
frame. By adding the two conservation equations in (4) and
using (1), it follows that the mixture velocity, v = ¢V, + Puvy, is
divergence-free,

%((bmvm + (:bnvn) =0. (5)

We assume that the static polymer network is initially dry and
free of monomer, corresponding to initial conditions given by
¢n(2,0) = 1 and ¢,,(0,t) = 0.

3.1.2. Mixture mechanics. Governing equations for the
monomer and network velocities, v,, and v,, can be obtained
by considering the mechanics of the two-phase mixture. Eulerian
stress balances can be derived by volume averaging the single-
phase equations®****® or applying the maximum dissipation
principle®™”? or various forms of the second law of thermo-
dynamics.>® These approaches generally result in the same
system of equations, representing the conservation of linear
momentum in each phase. Under the assumptions of negligible
inertia and viscous effects in the monomer,**>® and the existence
of a dissipative drag force between the two phases, the momentum
balances can be written as

0
£ bn (Vi — Vi) = ¢m£(ﬂm +p), (6a)

L 0,00) B30~ ) = byt (6D)

where o, is the deviatoric stress of the network, ¢ is the
drag (friction) coefficient between monomer and the network,

This journal is © The Royal Society of Chemistry 2017
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o characterises the change in network geometry (e.g., mesh size)
during swelling,®® y; is the chemical potential of phase i
associated with changes in the Helmholtz free energy, and p
is the pressure.

The drag coefficient can be interpreted as the inverse of the
monomer mobility and written in terms of the conversion-
dependent mutual diffusion coefficient D using the Einstein
relation,

571 — QmD(X)‘ (7)
kgT
where Q,, is the volume of a monomer unit and kg is Boltzmann’s
constant. The momentum balance for the monomer (6a) can then
be written as

Q’”D(X) (xbm 0 (
kBT (1 - ¢m)aaz\

G (Vi — vn) = I + D), (8)
which shows that the relative volumetric flux of monomer is driven
by gradients in the chemical potential (Fick’s law) and pressure
(Darcy’s law). The ¢,,-dependent prefactor on the right-hand side
of (8) represents the permeability of the polymer network.
We assume the permeability law is linear and set o = 1. A detailed
comparison of linear (« = 1) and nonlinear (1.5 < o < 2)**°%8
permeability laws is given in the ESL{ We find that the differences
are negligible.

The deviatoric stress of the polymer network is expressed in
terms of the Terzaghi effective stress, gy, which represents the
contribution of the elastic stresses to the total stress:*>*3

Tn = PO ©)

Summing the two equations in (6) and invoking the Gibbs-
Duhem relation ¢,,du,, + ¢,du, = 0 yields a momentum balance
for the mixture given by

005, _0p

0z 0Oz (10)

From (10) it is seen that X = ¢}, — p corresponds to the Cauchy
stress of the mixture. Given that the polymer network is
assumed to undergo one-dimensional deformation, the Cauchy
stress tensor of the mixture can be written as

X= O—stez®ez - ply

(11)

where e, is the unit vector pointing in the positive z direction
and I is the identity tensor. Eqn (11) shows that swelling will
generate lateral compressive stresses given by —p.

3.1.3. Free energy considerations. The Flory-Rehner theory
of ideal polymeric gels®® is used to decompose the Helmholtz
free energy density, %, into elastic and mixing contributions,
F e and F nix, depending only on the local stretch and compo-
sition, respectively:

'g(/lyd)my(ﬁn) = Xﬁlﬁe(l) + t%mix(d)my(]sn)-

The pre-factor of 2~ " accounts for the fact that . is tradition-
ally defined per unit reference (undeformed) volume rather
than per current (deformed) volume.

(12)
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The elastic response of the polymer network is assumed to
be neo-Hookean. The corresponding elastic energy density for
the one-dimensional deformations considered here is given by

Feo(h) = %G(X) (A% —1-2log), (13)
where G is a conversion-dependent elastic constant that plays
the role of the shear modulus at small strains. Thus, we set
G(y) = E(x)/[2(1 + v)], where v ~ 0.5 is the Poisson ratio, and
E is the elastic modulus shown in Fig. 3. The volume fraction
of monomer absorbed by the network is assumed to be suffi-
ciently small that the modulus is unchanged by the swelling
process. The effective stress can be derived from the elastic
energy via o, = 07 /04, yielding

o5 = GL(: — 7).

The free energy density of mixing 7 i is obtained from the
Flory-Huggins theory of polymer solutions®® and written as

(14)

kgT ,
T ix(b $) = o (108 b+ 9,108 6, + LEn1bnihs)
(15)

where m is the number of monomer units per polymer chain,
and ypy is an interaction parameter. As the polymer networks
under consideration consist of polymer chains that have been
formed from the mobile (diffusing) monomer, enthalpic inter-
actions between monomer and polymer are expected to be
small, i.e., the mixtures are close to being athermal. Therefore,
we set ypy = 0 for the remainder of the paper. The chemical
potentials can be derived from the Helmholtz free energy”® via
the relations w, — 9 = Fmix * CPrAF mixs lin — Ho = F mix —
OmAF mixy aNd AT ix = 0F mixl0b 1 — OF mix/O¢hn, which give

kgT
o = 1, = -[102 6+ (1 =m™)g, ], (162)
kgT
/’Lnflug :%[m7110g¢n7 (1 7m7')¢m]7 (16b)

where up, and pj are the chemical potentials of the pure
monomer and polymer network, respectively.

3.1.4. Boundary conditions. Symmetry at the centerline
requires the monomer and polymer velocities to vanish:
v(0,6) = v,(0,/) = 0. The surface of the polymer network,
z = h(t), is assumed to be stress-free and in chemical equili-
brium with the monomer bath; therefore, ay,(h(¢),t) — p(h(t),t) =
0 and p,(A(6),t) + p(h(t),t) = 1. The two conditions at the surface
play an important role because they set the equilibrium monomer
fraction ¢ and thus the degree of swelling that the network
experiences. Solving the model under equilibrium conditions (see
ESIY) yields an equation for ¢y given by

« - ey, G002 eqy-1 8
log n?+(17n’l l)(li W?)+k]37T|:(17 n?) 7(17 n?):| =0.
(17)

Eqn (17) shows that the equilibrium monomer fraction is con-
trolled by a single dimensionless number f = G())Q./(ksT)
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characterising the relative contribution of the elastic energy to the
total free energy.

3.1.5. Reduction of the governing equations. The governing
equations can be reduced to a single nonlinear diffusion equation

given by
Obw _ 0 (0 \OPm
o o (@(qu) - )
where the effective diffusivity & is

D(fm) = D)1 = (1 = m Yy + Pl + (1 — dy) 7]

(18a)

(18b)
The associated boundary and initial conditions are
% = 07 ¢;n(h(l), [) = 3?7 ([)m(z’ O) = 0. (18(3)
z=0

By differentiation of (3) with respect to time, an evolution equation
for the half thickness of the polymer network can be obtained,

dh d¢
_ He L g eq m
(1 (/)m ) dr 9(¢m ) 82 —h(1) :

(18d)

This is supplemented with the initial condition %(0) = &;, where #; is
the initial half thickness of the polymer network.

3.2. Experimental results and model validation

We next analyse swelling experiments using static polymer networks
with varying conversion fraction y and monomer baths held at
different temperatures 7. The thickness of each film 2h(t) was
measured as a function of time and used to calculate the mean
strain &) = h(t)/h(0) — 1; the experimental results are plotted as
symbols in Fig. 4. The data clearly shows that as the conversion
fraction increases, or as the bath temperature decreases, the swel-
ling that occurs in a given time decreases as well.

The reduced swelling model (18) is numerically simulated
and fit to each set of data. The polymer network is taken to be a
polymer chain with infinite length and thus we set m = o0,
which is consistent with previous hydrogel models>®*°>”*° and
validated against experimental data.’’ Using finite values of
m > 100 resulted in small and insignificant quantitative
changes to the results. Satisfactory agreement between theory
and experiment is found if the molar volume of monomer,
Vin = 2,,N4, where N, is Avodagro’s number, is set to V,,, = 525 x
107® m?® mol™', which is roughly 30 times that of water
(Vin =~ 18 x 10~° m® mol ). The only undetermined parameter
is the diffusivity D()), which is treated as a fitting parameter.
Numerical values for the diffusivity can be found in the ESIt and
are found to increase strongly with temperature, as expected.

The solid lines in Fig. 4(a)-(c) depict numerical simulations
of the model (18) using the fitted values of the diffusivity. The
agreement between theory and experiment is especially good
for polymer networks that have been created from FPP solids with
small to moderate conversion fractions (y < 0.42), and when the
bath is above room temperature (T = 45 °C or T = 65 °C).
In particular, the > behaviour of the strain is clearly captured in
these cases. When T=21 °C and y < 0.42, the model overpredicts
the initial expansion of the network, which is linear in time.
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Fig. 4 Swelling of pre-made polymer networks of four representative
conversions y at (a) 65 °C, (b) 45 °C, (c) 21 °C and (d) at a single conversion
7 = 0.85 and three temperatures. Each panel shows the evolution of the
strain ¢(t) = h(t)/h(0) — 1, where h(0) = 150 um. Symbols and solid lines
respectively correspond to experimental data and numerical fits of the
reduced model (18).

Physically, the "> behaviour of the strain emerges due to
(i) the overall diffusive nature of the swelling process and (ii) the
assumption that the surface of the network is in chemical
equilibrium with the monomer bath. More specifically, the con-
ditions in (18c) imply that the monomer fraction at the surface
instantaneously attains its equilibrium value, whereas the bulk
volume fraction remains close to zero, leading to strong composi-
tion gradients near the surface of the network. These strong
gradients induce the rapid initial expansion of the network, as
seen from (18d). For warmer baths (T = 45 °C and 65 °C), the
assumption of chemical equilibrium at the surface appears to be
valid. For colder baths (T = 21 °C), however, the linear dependence
of the strain on time suggests that chemical equilibrium is not
immediately reached and an alternative boundary condition that
captures the relaxation to equilibrium would be more suitable.>**

The data obtained from highly converted networks (y = 0.85) is
presented in Fig. 4(d), which clearly shows a linear increase in the
strain with time for all bath temperatures. A distinguishing feature
of these polymer networks is that they are glassy;'° thus, the linear
expansion of the polymer films is likely due to the onset of case-II
diffusion,®*®* not captured by our model. Case-II diffusion occurs
in glassy polymers when the polymer chains are not sufficiently
mobile to allow monomer to penetrate the polymer network.®®
Consequently, the rate of expansion becomes set by the time scale
of polymer relaxation rather than diffusion.

4. Swelling of evolving networks
during FPP

4.1. Model formulation

The theoretical models for swelling of static and evolving
polymer networks are based on the same underlying principles.

This journal is © The Royal Society of Chemistry 2017
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Consequently, many of the governing equations presented in
Section 3.1 carry over, although modifications are required to
account for the conversion of monomer and formation of the
polymer network.

4.1.1. Problem geometry and preliminary assumptions. A
schematic diagram of the FPP experiment is shown in Fig. 1.
The model is formulated in terms of a downwards-pointing
Eulerian coordinate z, where z = 0 is chosen to coincide with the
illuminated surface. The height of the polymer network at each
point in time is denoted by z¢(t) and is a key experimental
observable. The precise definition of z¢ is given in Section 4.1.2.

While photopolymerisation processes can be strongly
exothermic®” and result in volume shrinkage,®® the NOA81
formulation that is used here has been shown to release only
a small amount of heat and undergo negligible volume changes
upon exposure to light.'® Therefore, it is assumed that the
mixture remains isothermal and that conversion does not lead
to changes in the mixture volume.

4.1.2. Definition of the polymer network. It is assumed
that a polymer network is formed when the network fraction
exceeds a critical value ¢, which is required for the polymer
chains to be sufficiently crosslinked. The polymer network can
thus be implicitly defined as the points which satisfy ¢,(z,t) >
¢.. The precise point z¢(tf) where ¢,(z¢(t),t) = ¢. represents
the position of the propagating front and corresponds to the
instantaneous height of the FPP solid. For this system, the
value of ¢. is remarkably small, due to the presence of
oligomeric species, and given by ¢. ~ 0.05.'%*”

4.1.3. A sequential growth-swelling approximation. A primary
difference between static and evolving polymer networks is the
role of the conversion fraction y and its link to the volume
fraction of polymer network ¢,. In the former case, y is treated
as an experimental control variable, setting the degree of
conversion in the polymer network, and is assumed to be
independent of the network fraction. In the latter case,
the conversion fraction is intrinsically linked to the network
fraction and the evolution of these two quantities cannot be
trivially decoupled.

On a conceptual level, the conversion and network fractions
can be decoupled by decomposing the mixture evolution into a
series of alternating growth and swelling steps, which allows
the previous modelling framework to be applied with minimal
changes. In particular, the Flory-Rehner decomposition of the
free energy (12) still holds and, thus, the chemical potentials
of the monomer and polymer network are given by (16).
In fully coupled growth-swelling models, the dependence of
elastic energy on the mixture composition can introduce stress-
dependent
contributions to the chemical potentials.
retaining model simplicity, such effects are not considered here.

4.1.4. Conservation of mass and momentum. The starting
points for mass and momentum conservation are (4), (5), (8),
and (10). The mass balances (4) are modified to account for the
conversion of monomer into polymer at a rate R, which will be
specified in Section 4.1.5. The pressure p is eliminated from the
problem via (10). The equations representing conservation of
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where the monomer fraction has been eliminated via ¢, =1 — ¢,,.

The chemical potential of monomer y,,, appearing in (19c),
is given by (16a) and depends on the chain length m. By
decomposing the mixture into the polymer network (¢, > ¢.)
and the monomer-rich bath (¢, < ¢.), we see that m = oo for
¢n > ¢.and m < o for ¢, < ¢, implying the chain length
should be a strongly increasing function of the network frac-
tion. This is in stark contrast to the model for a static network,
which only considers points within the polymer network where
co. Explicitly capturing the growth of chains and the
functional relationship between of m and ¢, is beyond the
scope of our coarse-grained modelling approach, which does
not distinguish polymerisation from crosslinking. Instead,
we focus on capturing monomer diffusion in the weakly cross-
linked region that lies slightly ahead of the polymerisation
front, where diffusion is expected to be the most relevant, and
take m to be a constant and finite value. Although taking m to
be finite may lead to inaccuracies when describing monomer
transport in the polymer network, any errors are expected to be
mitigated by the sharp decrease in the diffusion coefficient with
conversion fraction, which rapidly immobilises the monomer.
To capture this immobilisation, the diffusion coefficient is
written as D(x) = Do exp(—ay). This form of diffusivity leads to
an exponential permeability law, the consequences of which are
explained in the ESL¥

4.1.5. Light-driven growth of a polymer network. Keeping
in line with previous ‘minimal’ models of FPP,**3*3° the
conversion rate R is assumed to be proportional to the local
amount of monomer, ¢,, = 1 — ¢,, and the intensity of
radiation, I(z,t), leading to a rate of the form

m =

R=K(1 — ¢, (20)

where K is an effective rate coefficient for the conversion
process. A more precise description of K in terms of detailed
chemical reactions can be found in Purnama et al”® The
intensity of light is modelled using a Beer-Lambert law

(21)

where [ is the average attenuation coefficient of the mixture,
assumed to be constant. Extending (21) to capture changes in fi
with composition is straightforward,?®** but not needed here.

4.1.6. Kinematics and mechanics. For static polymer networks,
algebraic relationships exist between (i) the local stretch 4 and the
monomer fraction ¢, i.e., A= (1 — ¢,,) ", and (ii) the elastic stress
and the local stretch, ie., 65 = G(;)(2 — 4~ "). These relationships are
not adequate for describing the stretch and stress in a polymer

I(z,t) = I exp(—fiz),
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network grown by FPP because the photoconversion of monomer
should not modify (i) the existing local stretch nor (ii) the elastic
stress through the corresponding increase in the elastic modulus.
However, conversion can potentially reduce the elastic stress
through the creation of new crosslinks. Rather than using algebraic
relationships for the local stretch and the effective stress, it is more
suitable to use evolution equations for these quantities.

In one dimension, the rate of volume change (stretch) that a
material element experiences can be related to its velocity
gradient via”

Di_oi, 0n_ v
Do "oz oz

(22)

Similarly, we assume that the stress evolves according to

ov, o}
- — 23
- (23)

Do}, _
Y

G(x)(A+4")

where 7, is the time scale associated with the reduction of stress
due to the creation of new crosslinks. Accordingly, we take
7. = (KIpx) " so that the reduction in stress occurs on the same
time scale as monomer conversion at a rate that is proportional
to the conversion fraction y. Eqn (23) can be derived by taking
the convective derivative of the elastic stress (14) with a fixed
conversion fraction y, using (22), and then including stress-
reduction effects. This type of approach has been used to model
shrinkage-induced stresses during FPP.°® The role of crosslink-
induced stress reduction is discussed in the ESL

4.1.7. Initial and boundary conditions. As the mixture is
initially pure in monomer, the initial conditions ¢,(z,0) = 0,
A(z,0) = 1, and 07,(2,0) = 0 are prescribed. The illuminated glass
surface is impermeable and rigid; thus, we set v,,(0,£) = v,,,(0,t) =
0. This latter condition is equivalent to imposing a zero-
displacement condition on the polymer network. It has also
been assumed that no-slip conditions (zero tangential velocity
and displacement) apply on the illuminated surface, which is
consistent with a one-dimensional model. In contrast to the
model for a static network, the model for an evolving network
does not explicitly track the interface between the network and
the monomer bath; therefore, there is no need to impose
boundary conditions there. Instead, the bath is assumed to
have infinite depth and the far-field boundary conditions are
,/0z - 0 and Ov,,/0z > 0 as z —> .

4.1.8. Network growth in the absence of diffusion. We first
examine the model in the absence of monomer diffusion.
In this case, both the monomer and network velocities are
equal to zero and model reduces to a single evolution equation

for the network fraction which can be solved to find
$\(zt) = 1 — exp[—Klot exp(—jiz)]- (24)

The position of the sharp polymerisation front that charac-

terises the instantaneous height of the network can be determined

by solving the equation ¢{"(z”(t),t) = . to yield
2f7(0) = i log(t/(”).

The quantity 7{”) = (KI,) *log(1/(1 — ¢.)) is an induction time,
corresponding to the finite amount of time that is required for

(25)
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the critical network fraction ¢. to first be exceeded. The
logarithmic kinetics (25) imply that the propagation of poly-
merisation front and monomer conversion slow with time. This
slowing is caused by the spatial decay of light intensity and it
reflects the light-driven nature of the growth process. Eqn (24)
and (25) have been shown to successfully capture FPP experi-
ments carried out with this system near room temperature or
up to 100 °C but sufficiently small times.®

The logarithmic kinetics of front propagation (25) play an
important role in the context of swelling during FPP. On short
time scales, the rapid propagation of the polymer network
effectively entraps and immobilises excess monomer in the
bath. On longer time scales, the slowing of network growth can
lead to a regime in which the time scales of monomer diffusion
and front propagation (i.e., monomer conversion) become
commensurate, enabling swelling to occur.

4.2. Presentation and interpretation of experimental data

Three FPP experiments have been carried out using a monomer
bath held at a temperature of T = 65 °C and different light
intensities of I, = 0.1, 1, and 10 W m™ 2. The height of the
polymer network, z¢, was measured as a function of time and is
shown as symbols in Fig. 5. The data for I, =1 and 10 W m > is
truncated at 300 s, after which the network surface becomes
rough, making it difficult to obtain precise values of z;. To aid
the interpretation of the data, we also plot the predicted heights
of the polymer network in the absence of diffusion (dashed
lines), which are obtained by fitting (25) to the first few data
points of each experiment, using fi = 4.05 mm ™, ¢ = 0.05, and
treating the effective rate constant K as a fitting parameter;
we find K ~ 0.015 m*J ™.

Fig. 5 shows that the extent of swelling for a fixed time ¢, as
measured relative to the unswollen network height, increases
with the incident radiation intensity, I,. For medium to high-
intensity light, I, = 1, 10 W m >, the growth of the polymer
network can be decomposed into two main regimes. First, there
is a reaction-dominated regime, whereby the front position
evolves according to the logarithmic kinetics associated
with an absence of monomer diffusion. As the growth of the
polymer network slows, a second, diffusion-dominated regime
is entered. Here, monomer diffusion leads to substantial swelling
and a marked departure from the logarithmic kinetics observed in
the first regime. For low-intensity light, I, = 0.1 W m >, these two
regimes are difficult to distinguish because swelling occurs early
in the growth process due to the slow conversion of monomer.

A useful approximation for the network height z; can be
derived by first noting that the two growth regimes shown in
Fig. 5 indicate that monomer conversion and diffusion can
initially occur on vastly different time scales,*” with diffusion
being the slower process. By exploiting this separation of time
scales in the FPP-swelling model (19)-(23), the height of the

polymer network can be approximated as (see ESIT for details)
z(t) = i Mog(t/t) + (1/2)mDom (¢ — 7o), (26)

where 1; ~ {9, Thus, the observed height z¢(¢) can be decom-
posed into the sum of the unswollen height, z{)(t) = i~ log(t/,),

This journal is © The Royal Society of Chemistry 2017
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Fig. 5 Evolution of the height z of a polymer network grown from a
monomer bath by FPP as a function of the incident light intensity /5. The
temperature of the bath is held at T = 65 °C. Symbols correspond to
experimental data. In the absence of monomer diffusion, the height of the
network grows logarithmically in time according to (25), shown as dashed
lines. The departure of the data from the logarithmic curves is due to the
onset of diffusion-induced swelling. The solid lines are numerical fits of the
FPP-swelling model given by (19)-(23).

and a diffusive correction accounting for changes in the height
due to swelling, z{(¢) = (1/2)@Dom ™~ '(t — ;). The latter contribu-
tion to z; shows that, for a fixed time ¢, an increase in the
incident light intensity, I,, will drive an increase in swelling due
to the reduction in the induction time. In other words, the
polymer network undergoes a greater expansion as I, is
increased because it has existed for a longer period of time
and the monomer has had more time to diffuse into it.

The onset of swelling can be estimated from the rates at
which the network grows by monomer conversion and expands
due to monomer uptake. The rate of network growth is given by
dz{”/dt = (it) ' and decreases with time. The rate of expansion
can be calculated as dzf*)/d¢ = (1/2)aDym ", which is constant in
time. The onset of swelling will occur when these two rates
become comparable, ie., when ¢, ~ 2mjii >D, '. Thus, the
onset of swelling is independent of the incident light intensity,
a feature which is experimentally confirmed in Fig. 5; substan-
tial deviations from the unswollen height profile begin to occur
at roughly the same time, ¢; ~ 300 s.

To obtain an estimate of the diffusion coefficient, the full
FPP-swelling model (19)-(23) is fit to the experimental data.
We set V,,, = Q,,Ny = 525 x 10~® m® mol ' to be consistent with
the value used in the swelling experiments with static networks.
The effective reaction constant is obtained from earlier fits
using the unswollen height (25) and set to K = 0.015 m* J .
Satisfactory agreement with the data is obtained using a chain
length of m = 5 and a diffusivity exponent of a = 5. By treating D,
as a fitting parameter, we find that D, ~ 0.08 mm? min~?,
which is roughly four times smaller than the self-diffusion
coefficient of water’* (D, ~ 0.34 mm? min"). The results from
the fit are shown as solid lines in Fig. 5, in excellent agreement
with experiment.

Numerical simulations (details in ESIt) are used to examine
the composition of the network and the stresses that are
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generated during its growth. Fig. 6(a), (c) and (e) show, in the
case of I, = 1 W m™2, the spatial variation of the network
fraction ¢, (solid line), the network fraction without diffusion
$'9 (dashed line), the excess monomer fraction A¢,, (dashed-
dotted line), and the local stretch A (dotted line) at times ¢ = 26,
150, and 680 s, corresponding to z¢ = 0.5, 1.0, and 1.5 mm,
respectively. The excess monomer is defined as the net amount
of monomer that has accumulated in a volume element due to
diffusion and can be calculated via

)
A, = _J-OE((I - ¢n)vm)dt'

(27)

As the system transitions from a reaction-dominated (Fig. 6(a))
to diffusion-dominated (Fig. 6(e)) regime, the gradient of the
network fraction undergoes a substantial decrease, resulting in
a broader conversion profile compared to when diffusion is
absent. Interestingly, both positive and negative monomer
excesses can develop within the polymer network, as shown in
Fig. 6(e). The region near the illuminated surface (z < 0.6 mm)
experiences a net accumulation of monomer, which is exactly
offset by a net depletion of monomer away from the illuminated
surface (z > 0.6 mm). Thus, substantial monomer transport
occurs behind the polymerisation front, z;, which is made possible

1.2 1.8 10 X107
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0.6 14 =5
0.33 127 &
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05 1 15 2 0 05 1 15 2
z [mm] % [mm]

v [mm/s]

z [mm]

(e ®

Fig. 6 Numerical simulation of the FPP-swelling model (19)-(23) when
the incident light intensity is Io = 1 W m~2. The solutions are shown at times
t = 26 s (panels (a) and (b)), 150 s (panels (c) and (d)), and 680 s (panels (e)
and (f)), corresponding to z¢ = 0.5, 1.0, and 1.5 mm, respectively. Panels (a),
(c) and (e) show the network fraction ¢, (solid line), unswollen network
fraction r/)ﬁ,m (dashed line), and the excess monomer fraction A¢,,, (dashed-
dotted line). Panels (b), (d) and (f) show the monomer and network velocity.
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by the low value of the critical conversion fraction ¢, and is
driven by the stronger gradients in composition (chemical
potential) in this region. Despite the depletion of monomer, the
network still experiences an overall stretch (4 > 1) due to the
extensional flow that arises from the conservation of mass. As
Fig. 6(b), (d) and (f) show, the network velocity has a positive
gradient, leading to stretching of material elements; see (22).
Thus, while monomer diffusion leads to an expansion of the
network, this is not caused by swelling in the traditional sense.

The non-monotonicity of the local stretch A shown in
Fig. 6(e) is directly related to the transition between reaction-
and diffusion-dominated regimes. During the reaction-dominated
regime (Fig. 6(a)), diffusion is negligible except in a thin boundary
layer near the illuminated surface, leading to a localised expan-
sion of the network. However, as the system transitions into and
later evolves in the diffusion-dominated regime (Fig. 6(c) and (e)),
significant expansion of the network occurs in regions away
from the illuminated surface behind the polymerisation front z,
resulting in 4 developing a second maximum.

Fig. 7 provides a detailed examination of the conversion profiles
and the elastic stresses within the polymer network for the three
incident light intensities I,. Panels (a)-(c) and (d)-(f) show the
results at a fixed time of ¢ = 300 s and a fixed solid height of
zr= 1.5 mm, respectively. In each panel, the effective stress, normal-
ised by its maximal value o,a, iS superposed on the conversion
profile. Recall from (11) that the effective stress o7, also corresponds
to the magnitude of in-plane lateral compressive stresses.

For a fixed exposure time (Fig. 7(a)-(c)), an increase in the
light intensity leads to a corresponding increase in the overall

View Article Online
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extent of conversion, as expected. However, the distribution of
the stress within the network is significantly altered as the
intensity increases. For low-intensity light (I, = 0.1 W m™?), the
induction time and the time scale of diffusion are of the same
order of magnitude and thus monomer can diffuse into the
network as soon as it is created. Consequently, the stress is
localised near the illuminated surface and we find that .. =
1.7 MPa. For high-intensity light (I, = 10 W m~?), substantial
conversion can occur before monomer diffusion takes place,
resulting in a fully developed conversion profile with a stress-
free region near the illuminated surface. In this case, the stress
is localised to the interfacial layer behind the solidification
front that separates liquid-rich bath from fully converted solid.
In this case, omax = 0.16 MPa. FPP with medium-intensity light
(I, = 1 W m™?) gives rise to an intermediate case where stress
accumulates near the illuminated surface and the interfacial
layer. Furthermore, medium-intensity light is found to produce
the highest stress of the three cases, omax = 2.0 MPa; this is
because conversion is slow enough for diffusion to take place
immediately, yet fast enough to create a substantial polymer
network with strong gradients in the chemical potential.
Similar trends are seen when the intensity of radiation is
increased for fixed solid height z; (Fig. 7(d)—(f)). In particular,
there is a corresponding increase in the overall conversion and
the localisation of the stress shifts from the illuminated surface
to the interfacial region just behind the solidification front.
However, in this case, there is a monotonic decrease in the
stress as the intensity increases; we find gy = 9.4, 1.2, and
0.2 MPa for I, = 0.1, 1, and 10 W m ™2, respectively. The inverse
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Fig. 7 Conversion profiles at a fixed time of t = 300 s (panels (a—c)) and at a fixed network height z; = 1.5 mm (panels (d—f)). Superposed is the effective
stress o, normalised by its maximal value omax. The effective stress also corresponds to the magnitude of in-plane lateral compressive stresses, shown in
the inset of panel (a). The circle corresponds to the position of the polymerisation front z(t). Values for the maximal effective stress, in units of MPa, are

Omax = 1.7 (a), 2.0 (b), 0.16 (c), 9.4 (d) 1.2 (e), and 0.20 (f).

9208 | Soft Matter, 2017, 13, 9199-9210

This journal is © The Royal Society of Chemistry 2017


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7sm01279a

Open Access Article. Published on 29 November 2017. Downloaded on 7/23/2025 6:56:37 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

proportionality between o, and I, is a consequence of the
additional exposure time that is required to create a polymer
network of a given height when the intensity is decreased,
hence allowing more time for monomer to diffuse into and
deform the network.

5. Conclusions

We examine the role of monomer diffusion in frontal photo-
polymerisation (FPP), combining patterning experiments and
theory. We find that the swelling of (static) polymer networks is
generally well described by a poroelastic model based on the
classical theory of swelling hydrogels, enabling the quantifica-
tion of monomer diffusion kinetics as a function of the network
conversion and temperature.

The role of monomer diffusion during FPP was then inves-
tigated as a function of light intensity. By contrast with the
logarithmic growth kinetics observed in the absence of monomer
diffusion,”®** for a fixed exposure time, network swelling was
found to increase with the light intensity due to the earlier
creation of the polymer network. However, for a fixed network
height, swelling was found to decrease with increasing light
intensity due to the increased velocity of the polymerisation front.

A novel model of FPP, incorporating mass transport and the
mechanical response of the polymer network, was found to
describe all experimental data obtained using a commercial
thiol-ene formulation (NOAS81). By accounting for heat
generation and transport®® or multiple reaction steps,’* the
applicability of the model can be extended to a range of non-
commercial thiol-ene and acrylate systems, as previously
demonstrated.?” Significantly, the model yields an estimate of
the time at which swelling is relevant, and is found to agree
with experiments. From a patterning perspective, this estimate
provides a useful guideline for the maximum exposure time
that will result in a stress-free solid, which can otherwise cause
delamination or other undesirable effects. The model provides
insight into how the monomer-to-polymer conversion fraction
and distribution of elastic stresses within the network vary with
experimental parameters. It can therefore serve as a useful
predictive tool and facilitate the fabrication of gradient materials
with highly tuned mechanical properties and well-controlled
internal stresses.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was supported by the Engineering and Physical
Sciences Research Council (EPSRC) Manufacturing with Light
Grant EP/L022176/1. MH has been partially funded by the
CERCA Programme of the Generalitat de Catalunya.

This journal is © The Royal Society of Chemistry 2017

View Article Online

Paper

References

1 L. Columbus, 2015 Roundup of 3D Printing Market Forecasts and
Estimates, 2015, Available online: http://www.forbes.com/sites/
louiscolumbus/2015/03/31/2015-roundup-of-3d-printing-
market-forecasts-and-estimates, accessed June 2017.

2 D. B. Kolesky, R. L. Truby, A. Gladman, T. A. Busbee, K. A.
Homan and J. A. Lewis, Adv. Mater., 2014, 26, 3124-3130.

3 S. V. Murphy and A. Atala, Nat. Biotechnol., 2014, 32, 773-785.

4 J.-F. Xing, M.-L. Zheng and X.-M. Duan, Chem. Soc. Rev.,
2015, 44, 5031-5039.

5 A. L. Shallan, P. Smejkal, M. Corban, R. M. Guijt and
M. C. Breadmore, Anal. Chem., 2014, 86, 3124-3130.

6 J. A. Lewis and B. Y. Ahn, Nature, 2015, 518, 42-43.

7 M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn
and S. Magdassi, Adv. Mater., 2015, 28, 4449-4454.

8 K. Sun, T.-S. Wei, B. Y. Ahn, ]J. Y. Seo, S. J. Dillon and
J. A. Lewis, Adv. Mater., 2013, 25, 4539-4543.

9 F. Ning, W. Cong, J. Qiu, J. Wei and S. Wang, Composites,
Part B, 2015, 80, 369-378.

10 R. Goodridge, C. Tuck and R. Hague, Prog. Mater. Sci., 2012,
57, 229-267.

11 J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin,
R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen,
R. Pinschmidyt, J. P. Rolland, A. Ermoshkin, E. T. Samulski
and J. M. DeSimone, Science, 2015, 347, 1349-1352.

12 C. Decker, Prog. Polym. Sci., 1996, 21, 593-650.

13 E. Andrzejewska, Prog. Polym. Sci., 2001, 26, 605-665.

14 M. V. Turturro and G. Papavasiliou, J. Biomater. Sci., Polym.
Ed., 2012, 23, 917-939.

15 M. V. Turturro, D. M. Rend6n, F. Teymour and G. Papavasiliou,
Macromol. React. Eng., 2013, 7, 107-115.

16 A. Vitale, M. G. Hennessy, O. K. Matar and J. T. Cabral,
Macromolecules, 2015, 48, 198-205.

17 D. Chandra and A. J. Crosby, Adv. Mater., 2011, 23, 3441-3445.

18 J. Lacombe and C. Soulié-Ziakovic, Polym. Chem., 2017, 8,
1129-1137.

19 J. H. Kim, K. Je, T. S. Shim and S.-H. Kim, Small, 2017,
13, 1603516.

20 M. Doi, J. Phys. Soc. Jpn., 2009, 78, 052001.

21 M. Quesada-Pérez, J. A. Maroto-Centeno, J. Forcada and
R. Hidalgo-Alvarez, Soft Matter, 2011, 7, 10536-10547.

22 T. Tanaka, S.-T. Sun, Y. Hirokawa, S. Katayama, J. Kucera,
Y. Hirose and T. Amiya, Nature, 1987, 325, 796-798.

23 J. Dervaux and M. B. Amar, Annu. Rev. Condens. Matter Phys.,
2012, 3, 311-332.

24 A. Vitale and ]. T. Cabral, Materials, 2016, 9, 760.

25 J. T. Cabral, S. D. Hudson, C. Harrison and J. F. Douglas,
Langmuir, 2004, 20, 10020-10029.

26 J.T. Cabral and J. F. Douglas, Polymer, 2005, 46, 4230-4241.

27 A.Vitale, M. G. Hennessy, O. K. Matar and J. T. Cabral, Adv.
Mater., 2015, 27, 6118-6124.

28 L. L. Lewis, C. S. Debisschop, J. A. Pojman and V. A. Volpert,
J. Polym. Sci., Part A-1: Polym. Chem., 2005, 43, 5774-5786.

29 C. A. Spade and V. A. Volpert, Math. Comput. Modell., 1999,
30, 67-73.

Soft Matter, 2017, 13, 9199-9210 | 9209


http://www.forbes.com/sites/louiscolumbus/2015/03/31/2015-roundup-of-3d-printing-market-forecasts-and-estimates
http://www.forbes.com/sites/louiscolumbus/2015/03/31/2015-roundup-of-3d-printing-market-forecasts-and-estimates
http://www.forbes.com/sites/louiscolumbus/2015/03/31/2015-roundup-of-3d-printing-market-forecasts-and-estimates
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7sm01279a

Open Access Article. Published on 29 November 2017. Downloaded on 7/23/2025 6:56:37 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

W. Hong, X. Zhao, J. Zhou and Z. Suo, J. Mech. Phys. Solids,
2008, 56, 1779-1793.

S. A. Chester and L. Anand, J. Mech. Phys. Solids, 2010, 58,
1879-1906.

C. W. MacMinn, E. R. Dufresne and ]. S. Wettlaufer, Phys.
Rev. Appl., 2016, 5, 044020.

T. Bertrand, J. Peixinho, S. Mukhopadhyay and C. W. MacMinn,
Phys. Rev. Appl., 2016, 6, 064010.

J. A. Warren, J. T. Cabral and J. F. Douglas, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2005, 72, 021801.

M. G. Hennessy, A. Vitale, O. K. Matar and ]. T. Cabral,
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2015, 91,
062402.

M. G. Hennessy, A. Vitale, J. T. Cabral and O. K. Matar, Phys.
Rev. E: Stat., Nonlinear, Soft Matter Phys., 2015, 92, 022403.
N. B. Cramer, T. Davies, A. K. O’Brien and C. N. Bowman,
Macromolecules, 2003, 36, 4631-4636.

M. D. Goodner and C. N. Bowman, Chem. Eng. Sci., 2002, 57,
887-900.

S. K. Reddy, N. B. Cramer and C. N. Bowman, Macro-
molecules, 2006, 39, 3673-3680.

S. K. Reddy, N. B. Cramer and C. N. Bowman, Macro-
molecules, 2006, 39, 3681-3687.

A. K. O’Brien and C. N. Bowman, Macromol. Theory Simul.,
2006, 15, 176-182.

D. Dendukuri, P. Panda, R. Haghgooie, ]J. M. Kim, T. A.
Hatton and P. S. Doyle, Macromolecules, 2008, 41, 8547-8556.
O. Okay and C. Bowman, Macromol. Theory Simul., 2005, 14,
267-277.

G. Terrones and A. J. Pearlstein, Macromolecules, 2003, 36,
6346-6358.

A. K. O’Brien and C. N. Bowman, Macromolecules, 2003, 36,
7777-7782.

M. Belk, K. G. Kostarev, V. Volpert and T. M. Yudina, J. Phys.
Chem. B, 2003, 107, 10292-10298.

G. Terrones and A. J. Pearlstein, Macromolecules, 2004, 37,
1565-1575.

S. L. Simon, G. B. Mckenna and O. Sindt, J. Appl. Polym. Sci.,
2000, 76, 495-508.

D. A. Drew and S. L. Passman, Theory of Multicomponent
Fluids, Springer, 2006, vol. 135.

C. Liu and N. J. Walkington, Arch. Ration. Mech. Anal., 2001,
159, 229-252.

9210 | Soft Matter, 2017, 13, 9199-9210

51

52

53

54
55

56
57

58

59

60

61

62

63

64
65

66
67

68

69

70

71

72

73

74

View Article Online

Soft Matter

Y. Hyon, D. Y. Kwak and C. Liu, Discret. Cont. Dyn. Syst.,
2010, 26, 1291-1304.

V. Camacho, A. Fogelson and J. Keener, SIAM J. Appl. Math.,
2016, 76, 341-367.

H. Zhang and M. C. Calderer, SIAM J. Appl. Math., 2008, 68,
1641-1664.

O. Coussy, Poromechanics, John Wiley & Sons, 2004.

P. Howell, G. Kozyreff and J. Ockendon, Applied Solid
Mechanics, Cambridge University Press, 2009, vol. 43.

M. Tokita and T. Tanaka, J. Chem. Phys., 1991, 95, 4613-4619.
M. Engelsberg and W. Barros Jr, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2013, 88, 062602.

C. A. Grattoni, H. H. Al-Sharji, C. Yang, A. H. Muggeridge
and R. W. Zimmerman, J. Colloid Interface Sci., 2001, 240,
601-607.

M. Doi, Introduction to Polymer Physics, Oxford University
Press, 1996.

A. D. Drozdov and J. de C. Christiansen, Int. J. Solids Struct.,
2013, 50, 1494-1504.

J. Li, Y. Hu, ]. J. Vlassak and Z. Suo, Soft Matter, 2012, 8,
8121-8128.

Y. Liu, H. Zhang, J. Zhang and Y. Zheng, Int. J. Solids Struct.,
2016, 80, 246-260.

M. G. Hennessy, G. L. Ferretti, J. T. Cabral and O. K. Matar,
J. Colloid Interface Sci., 2017, 488, 61-71.

N. L. Thomas and A. Windle, Polymer, 1982, 23, 529-542.
G. Rossi, P. Pincus and P.-G. De Gennes, Europhys. Lett.,
1995, 32, 391.

L. Masaro and X. X. Zhu, Prog. Polym. Sci., 1999, 24, 731-775.
J. A. Pojman, Polymer Science: A Comprehensive Reference,
Elsevier, Amsterdam, 2012, pp. 957-980.

Z. Zhao, J. Wu, X. Mu, H. Chen, H. J. Qi and D. Fang, Sci.
Adv., 2017, 3, €1602326.

F. Larché and J. W. Cahn, Acta Metall., 1973, 21, 1051-1063.
C. H. Wu, J. Mech. Phys. Solids, 2001, 49, 1771-1794.

J. Chakraborty, C. P. Please, A. Goriely and S. J. Chapman,
Int. J. Solids Struct., 2015, 54, 66-81.

A. R. Purnama, M. G. Hennessy, A. Vitale and J. T. Cabral,
Polym. Int., 2017, 66, 752-760.

0. Gonzalez and A. M. Stuart, A First Course in Continuum
Mechanics, Cambridge University Press, 2008.

O. Dietrich, Diffusion coefficients of water, 2015, http://dtrx.
de/od/diff/, accessed June 2017.

This journal is © The Royal Society of Chemistry 2017


http://dtrx.de/od/diff/
http://dtrx.de/od/diff/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7sm01279a



