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Collective sedimentation of squirmers under
gravity†

Jan-Timm Kuhr, * Johannes Blaschke, Felix Rühle and Holger Stark*

Active particles, which interact hydrodynamically, display a remarkable variety of emergent collective

phenomena. We use squirmers to model spherical microswimmers and explore the collective behavior

of thousands of them under the influence of strong gravity using the method of multi-particle collision

dynamics for simulating fluid flow. The sedimentation profile depends on the ratio of swimming to

sedimentation velocity as well as on the squirmer type. It shows closely packed squirmer layers at the

bottom and a highly dynamic region with exponential density dependence towards the top. The mean

vertical orientation of the squirmers strongly depends on height. For swimming velocities larger than the

sedimentation velocity, squirmers show strong convection in the exponential region. We quantify the

strength of convection and the extent of convection cells by the vertical current density and its current

dipole, which are large for neutral squirmers as well as for weak pushers and pullers.

1 Introduction

Microswimmers, whether biological or artificially produced,
propel themselves forward without the help of any external
force.1 Often however, external fields act on active particles.2

Examples are microswimmers in shear,3–6 Poiseuille,4,7–10 or
swirling flow,11 in harmonic traps,12–15 and in light fields.16,17

The most natural example is gravity, which affects every swimmer
that is not neutrally buoyant. In dilute active suspensions, where
hydrodynamic interactions between swimmers can be neglected,
both experimental18,19 and theoretical studies20,21 find exponential
density profiles similar to that of passive colloids, but with a
sedimentation length d, which depends on activity and well
surpasses that of passive colloids. Interestingly, in these dilute
suspensions, analytical studies show the emergence of polar
order,21 and if the microswimmers are bottom heavy, the
sedimentation profile can even be inverted.22

For higher densities of microswimmers hydrodynamic inter-
actions become important and collective behavior emerges.2,14,23–29

This includes motility-induced phase separation,30–34 swarming,16,35

and bioconvection,36–39 to name but a few phenomena. Further-
more, in real settings interactions with bounding surfaces are
important,31,34,40–42 especially if the swimmers are not perfectly
buoyant.43

In this article we consider systems with thousands of micro-
swimmers under the influence of gravity. We simulate their full

hydrodynamic flow fields using the method of multi-particle
collision dynamics (MPCD)44,45 in order to include hydro-
dynamic interactions between swimmers as well as between
swimmers and bounding walls. As a model microswimmer we
use the squirmer,46–49 which is versatile enough to model the
relevant swimmer types including pushers, pullers, and neutral
swimmers.

In the following we concentrate on the case, where passive
colloids would just strongly sediment to the bottom. We show
how density or sedimentation profiles depend on the ratio of
active to sedimentation velocity as well as on the squirmer type.
During collective sedimentation squirmers develop densely
packed layers in the bottom region of the simulation cell. In
contrast, we observe an exponential density profile in the upper
region, where squirmers form a more dilute active suspension.
The mean vertical orientation of the squirmers depends
strongly on their vertical position as well as on their swimmer
type. For swimming velocities larger than the sedimentation
velocity, we find that hydrodynamic interactions organize
squirmers into convection cells. Importantly, both the strength
of convection and the extension of the convection cells depend
on the squirmer type.

The article is organized as follows. We first introduce
the squirmer as our model microswimmer and then shortly
address the simulation method of MPCD along with parameter
settings and some details of our analysis in Section 2. In
Section 3 we present our results of collectively sedimenting
squirmers and analyze especially sedimentation and mean
vertical orientation (in Section 3.1) and convection (in Section 3.2).
Finally, in Section 4 we summarize our findings and
conclude.
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2 Methods and model
2.1 The squirmer as a model swimmer

In this work we use the squirmer46–49 as a model for a spherical
microswimmer with radius R. It propels itself forward using a
slip velocity field on its surface,

vs(rs) = B1(1 + bê�r̂s)[(ê�r̂s)r̂s � ê], (1)

which generates a hydrodynamic flow field in the surrounding
fluid. Here, rs is a vector, which points from the center of the
squirmer to a point on its surface, r̂s = rs/R is the corresponding
unit vector, and the unit vector ê indicates the squirmer
orientation. In the bulk of a quiescent fluid the squirmer
orientation coincides with its swimming direction. Our model
in eqn (1) only takes into account the first two terms introduced
in ref. 46 and 47. They are sufficient to determine the swimming
speed and swimmer type, by which microorganisms and artificial
microswimmers like Janus particles50,51 or active droplets52–57 are
typically characterized. Thus, the squirmer propels along its
orientation vector ê with swimming speed v0 = 2/3B1 and creates
fluid flow, the far field of which is controlled by the parameter b.
The value of b therefore indicates the squirmer type. While b = 0
creates a neutral squirmer with the far field of a source dipole
(Br�3), bo 0 and 40 refer to pushers or pullers, respectively, the
flow fields of which decay like a force dipole (Br�2).58

2.2 Multi-particle collision dynamics

We investigate the behavior of many squirmers, which interact
hydrodynamically with each other and with confining surfaces.
We employ multi-particle collision dynamics (MPCD)44,45,59–61

to numerically solve the Navier–Stokes equations including
thermal noise. They reduce to the Stokes equations at the low
Reynolds numbers studied in this article.

In our MPCD simulations the fluid is modeled by ca. 2 �
107 point particles of mass m0. Their positions ri are updated in a
streaming step using their velocities vi: ri(t + Dt) = ri(t) + viDt. In
the subsequent collision step fluid particles within cubic cells
of linear extension a0 exchange momentum according to the
MPC-AT + a rule.60 This conserves linear and angular momentum
and also thermalizes velocities to temperature T. Further details of
our implementation are described in ref. 31 and 34. We use here
the parallelized version of ref. 34, which is suited to simulate large
systems with many swimmers.

In the present work, we consider squirmers under gravity. So
we have to add an acceleration term aDt2/2 to the squirmers’
position in the streaming step, where the acceleration a is due
to the gravitational force � mgez along the vertical with m the
buoyant mass of a squirmer and g the gravitational acceleration.
Since gravity does not induce a noticeable density change of the
fluid on the micron length scale, we do not apply a gravitational
acceleration to the fluid particles. If a fluid particle encounters a
bounding wall or a squirmer, the particle’s position and velocity
are updated according to the ‘‘bounce-back rule’’,62 which
implements either the no-slip boundary condition or the surface
flow field of eqn (1), respectively. During the streaming step
momentum is transferred from the fluid particles to the

squirmers, the velocities of which are updated by a molecular
dynamics step. This includes steric interactions among squirmers
and with bounding walls.

MPCD reliably reproduces the analytical results, including
the flow field around passive colloids,59 the friction coefficient
of a particle approaching a plane wall,63 the active velocity of
squirmers,49 as well as the torque acting on them close to walls,
where lubrication theory has to be applied.41 It also simulates
correctly segregation and velocity oscillations in dense colloidal
suspensions under Poiseuille flow.64,65 MPCD resolves flow
fields on time and length scales large compared to the duration
of the streaming step Dt and the mean free path of the fluid
particles, respectively. Therefore, using a squirmer radius of
R = 4a0, we expect to resolve hydrodynamic flow fields even
when squirmers are close to each other.

2.3 Parameters

We simulate the behavior of N = 2560 squirmers of radius
R = 4a0 under gravity in a cuboidal box of extensions Lx =
Ly = 112a0 in the horizontal plane and Lz = 224a0 along the
vertical. Thus, the mean volume fraction of squirmers amounts
to fE 0.244. At z = 0 and z = Lz our system is bounded by walls,
while periodic boundary conditions apply in the horizontal
directions. For the duration of the streaming step we choose

Dt ¼ 0:02a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=kBT

p
, which sets the shear viscosity to

Z ¼ 16:05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0kBT
p �

a0
2.66

In the following, an important parameter will be the ratio of
active to bulk sedimentation velocity,

a :¼ v0

vg
: (2)

For spherical squirmers with buoyant mass m and gravitational
acceleration g one has vg = mg/(6pZR). We will keep v0 fixed (it is

set by v0 = 2/3B1 with B1 ¼ 0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m0

p
), and choose three values

of mg in order to study the cases a = 0.3, 1.0, and 1.5. In addition, we
mention the sedimentation lengths of passive Brownian particles
with the same buoyant masses m, d0 = kBT/(mg), where kBT is
thermal energy. For the values of a given above we calculate from
this formula the respective values d0 = 9.3 � 10�4R, 3.1 � 10�3R,
and 4.7� 10�3R, so that without activity squirmers would settle into
a dense packing at the bottom of the simulation cell.

The Péclet number Pe = v0R/D, where D = kBT/(6pZR) is the
translational diffusion coefficient, has the value Pe = 323 in all
simulations, thus thermal translational motion is negligible.
Furthermore, in all our simulations we have a Reynolds number of
Re = v0Rnfl/Z = 0.17, where nfl = 10 is the average number of fluid
particles per collision cell. This implies Stokesian hydrodynamics
where inertia can be neglected. Finally, with the thermal rotational
diffusion coefficient Dr = kBT/(8pZR3), we introduce the persistence
number Per = v0/(DrR). It measures the distance in units of particle
radius R, where the squirmer moves persistently in one direction,
before rotational diffusion changes its orientation. For all our
simulations we have Per = 430. Thus, without gravity a single
isolated squirmer would swim across the vertical extent Lz of
the simulation cell in an almost straight line.
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2.4 Determining sedimentation lengths

To determine the sedimentation lengths of the squirmers, we
need to be sure that the system is in a steady state. In the
beginning of the simulations we initialize the squirmers with
random positions and orientations. We then observe that the
collection of squirmers ‘‘collapses’’ towards the bottom wall by
monitoring the mean squirmer height hzi. In continuing the
simulations, we ensure that ultimately hzi does not show any
deterministic trend, but is only subject to fluctuations. We then
simulate for a period of at least 104 MPCD time units (i.e.

104a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=kBT

p
) and use this simulation data for our further

analysis.
As explained in the results section, we determine the sedimenta-

tion or density profile r(z) of the squirmers, from which we identify
some layering at the bottom wall of the simulation box, which is
followed by a transitional and then an exponential region. In the
latter we determine the sedimentation length d using an exponential
fit. The difficulty is to specify a range of heights [zb, zt], in which
the exponential fit is performed. We have developed heuristic but
robust criteria to identify this range. They ensure that neither
layering at the bottom wall nor accumulation of squirmers at the
top wall influences the fit values for d. As a first constraint we
demand that zt is at least a distance of 10R away from the top
wall. For zb we require twice the height, which the squirmers
would assume if they were all perfectly stacked in a hexagonal
close packing. Within this first specification for the range [zb, zt]
we then determine the final zt as the height, where the density r
is minimal. For zb we take the smallest height z, where r(z) falls
below 8% of the hexagonal-close-packed density. The value of 8%
is a purely empirical value.

We use the data in the range [zb, zt] to obtain the sedimenta-
tion length d from exponential fitting. In order to also estimate its
error, we need to generate several estimates for d from our data.
Therefore, we split up the simulation time after reaching steady
state into ten intervals. For each interval we perform exponen-
tial fits in four different ranges: (i) [zb, zt], (ii) [zb + 0.1Dz, zt],
(iii) [zb, zt � 0.1Dz], and (iv) [zb + 0.1Dz, zt � 0.1Dz], where
Dz :¼ zt � zb. We use the modified ranges as an additional
measure to ensure that we are in the exponential regime. As an
estimate for d, we then take the mean of all 40 fits, while the
corresponding standard deviation specifies the error.

3 Results

After a transient, the squirmers under gravity settle into a
steady state, which we analyze in the following. Fig. 1 shows
a snapshot for a simulation, where the ratio of swimming to
sedimentation velocity was a = 1.0. In the lower part layers of
squirmers have formed. In particular, the lowest layers display
clusters of hexagonal packing (see inset of Fig. 1), which
gradually dissolves when moving upward. After a transition
region, where layering is not recognizable anymore, a dilute
region of squirmers follows, where we will identify the exponential
density profile. In the ESI,† the two Videos V1 and V2 (for a = 1.5)
illustrate very impressively how dynamic the whole sedimentation

profile is, especially in the exponential regime. This is in stark
contrast to passive particles. In the following we will investigate
some features of sedimenting squirmers in more detail.

3.1 Sedimentation profile and vertical alignment

The sedimentation profile in Fig. 2 quantifies the observations
from Fig. 1. Close to the bottom, layering is clearly observable
in the volume fraction or density r(z) and indicated by peaks,
the height of which gradually decreases within ca. 11 layers.
After a transitional regime, r(z) decays exponentially and then
is influenced by the upper bounding wall. Passive Brownian
particles with buoyant mass m show an exponential sedimentation
profile with sedimentation length d0 = kBT/mg, as previously
introduced. For very dilute suspensions of active particles, one
can still derive2,18,20–22,67 and observe18,19 an exponential profile,
however, with an increased sedimentation length d 4 d0. Even
if passive particles all sink to the bottom due to their weight
(d0 { R), active particles with sufficiently large swimming speed

Fig. 1 Snapshot of 2560 neutral squirmers (b = 0) moving under gravity in
a steady state at a = 1. The volume fraction is fE 0.244. Three regions can
be distinguished: layering at the bottom, followed by a transitional regime,
and finally a region with an exponential density profile and convective
motion of squirmers. Inset: Hexagonal clustering in the lowest layer of
squirmers.
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can rise from the bottom with a sedimentation length d 4 R = 4.
In our simulations, squirmers strongly interact hydrodynamically
by the flow fields they generate. Nevertheless, we observe an
exponential decay of the density r(z) similar to lattice-Boltzmann
simulations12,68 and experiments,18,19 which we find non-trivial.
Thus from fits to the exponential part of the density profile,
r(z) B e�z/d, we extract the sedimentation length d.

In Fig. 3(a) we present sedimentation profiles for a larger
swimming speed, a = 1.5, and different swimmer types b to
explore the influence of pushers and pullers. At larger a, all
profiles show an exponential regime with a larger sedimentation
length compared to a = 1. Fig. 4 shows a parametric study of d in
units of squirmer radius R plotted versus b and for three values
of a. Clearly, d decreases with a and is only a fraction of R for
a = 0.3, when the activity is too small for particles to swim
upwards. However, already the ratio a = 1.5 is sufficient to have
sedimentation lengths d E 10R. To address the robustness of

our results, for the case b = 0 and a = 1.5, we reduced the volume
density f by decreasing the number of squirmers N to a value
where layer formation does not occur, while keeping the height
Lz of the simulation box fixed. This does not influence the
sedimentation length d significantly, as long as the squirmer
density at the bottom of the box is similar to that of the top
layers. For b = 0 we also reduced both N and Lz by a factor of two,
which keeps f constant. We find that the sedimentation length
is reduced by about 30% and 40% for a = 1 and a = 1.5,
respectively. This is not surprising, since hydrodynamic inter-
actions with the top wall, which were not relevant before,
push squirmers downwards and also turn them away from the
wall,58,69 which makes them swim downwards.

In Fig. 4 we realize that for weak pushers (b = �1) the
sedimentation length is the largest and decreases for stronger
pushers and also pullers. It has been reported in the literature
that the interaction between parallel squirmers grows with
|b|.48,70 We speculate that the collective interactions of many
squirmers will therefore strongly randomize swimming directions
and hinder squirmers with large |b| from reaching larger heights,
as reflected in the sedimentation length. The larger sedimentation
length for weak pushers as compared to neutral squirmers is,
however, unexpected. A possible explanation comes from the
shape of flow fields for b a 0. Pushers, in their center-of-mass
frame, have a stagnation point with vortical flow in front of
them, while pullers have it at their back.23 Since squirmers are
typically pointing up in the exponential regime (see below) and
since their density r(z) decreases with height z, pullers reorient
more nearby squirmers compared to pushers, which decreases
d. Interestingly, the trend of d for varying b is inverted for small
a with the minimum being at b E 1. The reason for the
inversion is not clear, but since d o R, we assume that
interactions with the densely packed squirmer layers are
relevant.

Fig. 2 Semi-logarithmic plot of the sedimentation profile r(z) for the
system in Fig. 1 (a = 1.0 and b = 0). Different regions are indicated. The
green line is an exponential fit to extract the sedimentation length d.

Fig. 3 Parameter study for varying b at a = 1.5. (a) Semi-logarithmic plot of the squirmer density r(z) as a function of height z. Vertical dashed lines in
each plot indicate (from left to right) top of layering, followed by the start and end of the exponential regime, where the sedimentation length d is
extracted by an exponential fit (bold orange line). (b) Mean vertical orientation of squirmers as a function of height z. y denotes the angle between the
vertical and the squirmer orientation. (c) Vertical squirmer current density jzðxÞ, averaged over the exponential regime and time, color-coded in the xy
plane.
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In Fig. 3(a) we also observe how the layer structure in the
lower part of the system is influenced by b. For b = 0 and b = 1
the minima between successive layers are less pronounced,
which implies less order. In contrast, especially for b = �1 and
b = �2 layering is more pronounced. We ascribe this difference
to the hydrodynamic interactions between neighboring squirmers,
which depend on b.

Finally, in Fig. 5 we show the mean orientation of squirmers
as a function of height z for the system illustrated in Fig. 1. The
neutral squirmers in the bottom layer at z = 0 have an upright
orientation due to hydrodynamic interactions with the bounding
wall.31,41,42,48 The mean orientation then decreases to zero (see also
Fig. 1) and drops to a negative value at the rim of the layering. This is
simply because squirmers from above swim into the dense squirmer
region and need some time to reorient and swim away. In the
transitional region the orientation changes again rapidly to nearly
upright and shows only small variations in the exponential regime.

The occurrence of polar order in the sedimentation profile
of dilute suspensions has been predicted by theory and already

occurs without any interactions (i.e. for dilute suspensions of
active Brownian particles) just for kinetic reasons.2,21 Hydro-
dynamic interactions between squirmers obviously do not
destroy the polar order. In our parametric study of Fig. 3(c),
this is also confirmed for other squirmer types b. Differences
occur in the layering and in the transitional region. For pullers
the upright orientation in the bottom layer decreases for larger
b, as expected by hydrodynamic interactions with the bottom
wall in lubrication theory.41,42,48 In the adjacent layers hardly
any polar order is visible in contrast to neutral squirmers. Weak
pushers (b = �1 and �2) show a similar but weaker trend
compared to neutral squirmers. For strong pushers (b = �5),
again, there is hardly any polar order in the layering.

3.2 Convection

As Videos V1 and V2 in the ESI† demonstrate, the squirmers in
the exponential density region are very mobile. In fact, while
their mean vertical velocity is zero, the steady-state distribution
of vertical velocities for b = 0 and a = 1.5 can be well fitted by a
Gaussian with a standard deviation comparable to v0 (see
Fig. 6). For large |b| small deviations from the Gaussian form
occur. Thus, also vertical squirmer speeds larger than 1

3v0 arise
(the maximal vertical velocity a single bulk squirmer can have
at a = 1.5). This means that squirmers are advected by flow
fields set up by their neighbors. Indeed, for neutral squirmers
and weak pullers/pushers, we see evidence for convection flow
extending over the whole simulation cell.

To quantify convection, we take the vertical squirmer cur-
rent density and average it along the vertical in the exponential
regime:

jz(x) = hriJ(x)hvziJ(x) (3)

where x = (x,y) is a position in the horizontal plane, h� � �iJ means
average along the vertical, and r is the squirmer density. In the
following we always indicate a time average over some quantity
q in the steady state by %q. We plot jzðxÞ in Fig. 7 for neutral
squirmers and a = 1.5 in the xy plane of the simulation box.

Fig. 4 Sedimentation length d in units of R as a function of squirmer
parameter b for different ratios of swimming to sedimentation velocities, a.
Inset: Semi-logarithmic plot.

Fig. 5 Mean vertical orientation of squirmers, hcos yi, as a function of
height z for the system in Fig. 1 (a = 1.0 and b = 0).

Fig. 6 Distribution of vertical squirmer velocity (blue) and Gaussian fit
(black) for a = 1.5 and b = 0 in the exponential regime.
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While in the lower left region squirmers move upward, the
vertical current goes downward in the upper right indicating a
convection cell, which extends over the whole horizontal plane.

In Fig. 3(c) we present jzðxÞ for different squirmer types at the
same a. For weak pullers (b = 1 and 2) the extent of the
convection cell decreases and at b = 5 large-scale convection
is no longer observable. For weak pushers (b = �1 and �2) the
current density becomes weaker but still large-scale convection
is visible, which then vanishes for b = �5. For the case b = 0,
a = 1.5 we checked that large-scale convection is stable against a
reduction in the squirmer density f at constant Lz and for
reduced Lz while keeping f constant. In both settings a single
convection cell extends across the simulation box.

To further characterize the squirmer density current jz(x), we
calculate its zeroth and first moment. The zeroth moment is
the volume average of the vertical current density:

jzh i ¼
1

A

ð
A

jzðxÞd2x ¼ hri vzh i; (4)

where A is the area of the xy plane of the simulation cell and
h� � �i means average over the whole volume of the exponential
region. The vertical current density h jzi strongly fluctuates in

time (see Fig. 8) but in the steady state its temporal mean, h jzi,
has to be zero because of particle conservation. Thus, we use
h| jz|i to quantify how mobile the squirmers are in the expo-
nential region (see Fig. 8). In Fig. 9 we show the time average

hj jzji versus b for different rescaled swimming velocities a. As
expected, at a 4 1 the squirmers are more mobile than for
a r 1 since they are able to move against gravity. Furthermore,

for a = 1.5 the mean vertical current density hj jzji decreases for
large |b|, revealing again the importance of the advective flow
set up by the different squirmer types.

We call the first moment of jz(x) current dipole,

jD ¼
1

A

ð
A

xjzðxÞd2x; (5)

where we choose the center of the xy plane as the origin of x.
The current dipole serves to quantify the strength and horizontal

extension of the convection cell by its magnitude jD :¼ |jD|. The
cell’s orientation relative to the x-axis is given by the angle jD

with cosjD = jD�ex/jD. Fig. 10 shows how jD strongly fluctuates in
time, reflecting again the high mobility of the squirmers. The
orientation angle jD also fluctuates and in the example of Fig. 10
assumes two mean orientations around 1.5p and p. Overall, we
can record that the spatial arrangement of convection is subject
to strong fluctuations and is strongly variable in time.

Finally, in Fig. 11 we plot the time average jD versus squirmer
type b for different a. Convection is largest for large a and
neutral squirmers. The current dipole we define in eqn (5) can
be interpreted in analogy with a charge dipole in electrostatics.
Its magnitude changes when either the current density (the
separated ‘‘charges’’) changes in magnitude or when the distance
between regions of positive vs. negative vertical speed is altered
(the distance of ‘‘charge separation’’). In accordance with Fig. 3(c)
we find that jD for a = 1.5 decreases when the magnitude of the
current density jz(x) decreases (weak pusher, bo 0) or the extension
of the convection cell becomes smaller (weak puller, b 4 0).

Fig. 7 Squirmer current density, jzðxÞ, averaged over the exponential
regime and time, color-coded in the xy plane for a = 1.5 and b = 0. Fig. 8 Volume average of the squirmer current density, h jzi, and its

magnitude, h| jz|i, plotted versus time for a = 1.5 and b = 0.

Fig. 9 Time and volume average of the magnitude of the current density,

hj jzji, as a function of squirmer parameter b for different rescaled
swimming speeds a.
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Strong pushers/pullers with |b| = 5 only show weak convection. For
small rescaled swimming speed ar 1 convection is generally small.

4 Conclusions

In this work we addressed the collective sedimentation of
squirmers in a gravitational field concentrating on the relevant
case, where the corresponding passive particles would completely
sediment. We showed that the sedimentation profile can be
divided into three distinct regions; closely packed layers near
the bottom, a transition region, and a rather dilute active
suspension at the top. Here, the density depends exponentially
on height, as for passive colloids, and the profile is very dynamic.
The exponential dependence is non-trivial given the strong
hydrodynamic interactions between the squirmers due to their
flow fields. We also identified a strongly height-dependent mean
orientation of the swimmers. While the mean orientation is
strongly varying across the closely packed layers, in particular
for small |b|, it varies far less in the exponential region. From the

latter we extracted sedimentation lengths and showed that these
not only grow with the ratio of active to sedimentation velocity, but
also depend on the squirmer type. We argue that neutral squirmers
or weak pushers and pullers are more persistent when swimming
upwards and thereby show larger sedimentation lengths.

Furthermore, sedimenting squirmers create strong convective
currents due to their hydrodynamic interactions. The spatial
extension and the strength of convection are again determined
by the rescaled swimming speed and by the squirmer type.
Neutral squirmers as well as weak pushers and pullers show
the strongest convectional flow. In particular, for swimming
speeds larger than the sedimentation velocity pronounced
convection cells occur, which extend over the whole simulation
box. Finally, as another signature of the highly dynamic
sedimentation profile in the exponential region, we identified
strong temporal fluctuations of the convective currents.

What we could not resolve in our current simulations due to
limited computational resources is the question of what determines
the lateral extent of the convection cells. Is there an intrinsic length
scale, which sets it? For this we would need to increase the
simulation cell in the lateral directions. In future work, we plan to
include bottom heaviness of the squirmers in our simulations and
study in detail the inversion of the sedimentation profile, which
was discussed in ref. 22 for very dilute swimmer suspensions.
Preliminary results in denser systems show that instabilities
occur due to hydrodynamic interactions.71 In a harmonic trapping
potential a similar instability leads to the formation of fluid pumps
by breaking the rotational symmetry of the trap.12,14 In the present
case we expect convectional patterns to occur. Thereby, we will
connect to the phenomenon of bioconvection.36–39
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29 C. Krüger, C. Bahr, S. Herminghaus and C. C. Maass, Eur.

Phys. J. E: Soft Matter Biol. Phys., 2016, 39, 103.
30 M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter Phys.,

2015, 6, 219–244.
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