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Inertial migration and axial control of
deformable capsules

Christian Schaaf * and Holger Stark

The mechanical deformability of single cells is an important indicator for various diseases such as

cancer, blood diseases and inflammation. Lab-on-a-chip devices allow to separate such cells from

healthy cells using hydrodynamic forces. We perform hydrodynamic simulations based on the lattice-

Boltzmann method and study the behavior of an elastic capsule in a microfluidic channel flow in the

inertial regime. While inertial lift forces drive the capsule away from the channel center, its deformability

favors migration in the opposite direction. Balancing both migration mechanisms, a deformable capsule

assembles at a specific equilibrium distance depending on its size and deformability. We find that this

equilibrium distance is nearly independent of the channel Reynolds number and falls on a single master

curve when plotted versus the Laplace number. We identify a similar master curve for varying particle radius.

In contrast, the actual deformation of a capsule strongly depends on the Reynolds number. The lift-force

profiles behave in a similar manner as those for rigid particles. Using the Saffman effect, the capsule’s

equilibrium position can be controlled by an external force along the channel axis. While rigid particles move

to the center when slowed down, very soft capsules show the opposite behavior. Interestingly, for a specific

control force particles are focused on the same equilibrium position independent of their deformability.

1 Introduction

The mechanical deformability of biological cells is a sensitive
quantity for identifying various diseases.1 Tumor cells, for
example, are much softer than healthy cells,2,3 while malaria-
infected red blood cells become much stiffer when occupied by
the parasite.4,5 Microfluidic lab-on-a-chip devices utilize hydro-
dynamic effects in order to separate and probe biological cell
samples.6–9 Such lab-on-a-chip devices are easy to use and can
be designed as mass product. They are thus a helpful tool for
especially improving medical conditions in poor countries.10

The dynamics of deformable particles such as vesicles,11

capsules,12,13 or red blood cells14,15 has mostly been studied at
low Reynolds numbers. Deformable particles migrate towards
regions of low shear gradient. Thus, when immersed in a
Poiseuille flow they move towards the channel center.16

At medium Reynolds numbers Segré and Silberberg observed
that rigid particles in Poiseuille flow assemble in an annulus
roughly half way between the center and the wall of a channel
with circular cross section.17,18 Thus, in the non-uniform flow
profile an inertial lift force occurs that initiates a drift motion
directed away from the channel center. At the equilibrium
distance this force is compensated by repulsive particle–wall
interaction. The Segré–Silberberg effect is well studied in

experiments,19–21 in theory using matched asymptotics,22,23

and in simulations.24,25 While the original setup used a cylind-
rical channel, microfluidic experiments are usually conducted
with quadratic or rectangular channels, as they are easier to
manufacture. Due to the reduced symmetry, the circular annulus
is replaced by eight off-centered equilibrium positions in case of
a quadratic channel (four on the main axes and four on the
diagonals) or two on the short axes of a rectangular channel.26,27

In recent years also the dynamics of deformable particles
in the inertial regime has been studied.28–33 In particular,
Hur et al.34 demonstrated with their experiments that particles
can be separated from each other based on their elastic
deformability. Indeed, particles move closer to the channel
center the softer and also the larger they are. This effect was
also studied in simulations.35,36 Although all results agree that
soft particles move to the channel center, the influence of the
Reynolds number is not completely clear. While in some cases
the final equilibrium distance from the channel center seems
to depend on the Reynolds number,37,38 Kilimnik et al.35 found
no evidence of such a behavior in their computer simulations.
In contrast, they showed that the recorded values of the
equilibrium distance collapse on a single master curve when
plotted against the deformability of the particles.

Using additional control forces along the channel axis
allows for further adjustment of the particles’ equilibrium
positions. In their experiments Kim and Yoo39 demonstrated
that particles can be focused by applying an axial control force.
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They used an electric field to slow down the particles relative to
the fluid. Due to the induced Saffman force, the particles
migrated towards the channel center.40 While these experi-
ments were performed at small Reynolds numbers, previous
simulation work at moderate Reynolds numbers27 showed how
an axial control force can move a rigid particle against the
inertial lift force to a new equilibrium position. This position
sensitively depends on the strength of the control force and the
particle radius. Finally, the inertial focusing of particles can
also be influenced by controlling their rotational motion41 or by
designing external force fields with the help of optimal control
theory.42

In this article we study the dynamics of a single deformable
elastic capsule flowing through a microchannel with quadratic
cross section. To simulate the Newtonian fluid, we employ the
lattice-Boltzmann method together with the immersed boundary
method. In the first part we study in detail the equilibrium
positions of the elastic capsules, their deformations in the
inertial Poiseuille flow, as well as the scaling of the lift-force
profile by varying Reynolds number, particle rigidity, and radius.
In an intermediate regime of particle rigidity, we confirm that
the equilibrium distance hardly depends on Reynolds number
and also identify a similar master curve for varying particle
radius. The lift-force profiles behave in a similar manner as
those for rigid particles.

In the second part we apply an external axial force to allow
for an additional control of the equilibrium position. Extending
the study of rigid particles in ref. 27, we find that a speed-up of
the particle first induces a drift further away from the channel
center, which then reverses for even stronger speed-up. This
effect becomes more pronounced as the particles are softer. For
very soft particles the behavior is opposite to rigid particles. A
strong speed-up pushes them to the channel center while they
move away from the center when slowed down. Interestingly,
for a specific external control force all particles assemble at the
same equilibrium distance independent of their deformability.

The article is organized as follows. In Section 2 we explain
the set-up of our system, some details of the lattice-Boltzmann
method, how we model deformable capsules, and the measure-
ment of the lift-force profiles. In Section 3 we present the
results including the detailed study of the equilibrium position,
the deformations of the capsules, the lift-force profiles, and
finally the influence of an external control force. We summarize
and close with final remarks in Section 4.

2 Methods
2.1 Microfluidic setup in the simulations

We study a single deformable elastic capsule flowing in a micro-
fluidic channel with a quadratic cross section (edge length 2w and
channel length L; see Fig. 1). The pressure-driven Poiseuille flow
points along the z direction and the origin of the coordinate
system is in the channel center. The channel is filled with a
Newtonian fluid with density r and kinematic viscosity n. A
constant local body force (see Section 2.2) generates the almost

parabolic Poiseuille flow of a square channel.43 It is characterized
by the channel Reynolds number Re = 2wumax/n, where umax is the
maximal flow velocity in the channel center.

Inside the channel we place a deformable, neutrally buoyant
particle, which is filled with a fluid with the same viscosity as
the surrounding medium. We model the deformable capsule by
the Skalak model and characterize its deformability by the
Laplace number (see Section 2.3). In such a setup the capsule
shows cross-streamline migration within the cross section
due to three effects: (i) already at vanishing Reynolds number
(Re { 1) deformable capsules migrate towards the channel
center, where shear rate vanishes, even in unbounded parabolic
flow.16 This effect is important for the Fåhræus-effect.44

(ii) At non-vanishing Reynolds number the parabolic flow
profile generates a dynamic pressure difference along the
particle surface. Thereby an inertial lift force occurs that drives
the particle outwards towards the channel walls as indicated in
Fig. 1.45 (iii) Finally, a wall-induced lift force acts against the
inertial lift force.46 All three effects ultimately determine
the equilibrium position of the particle in the channel cross
section.

The time for migrating towards the equilibrium position
depends on the fluid parameters. Typically, in our simulations
the particles assembled at their final location after 10 to 100 w2/n.
With a channel width of 50 mm and the kinematic viscosity of
water, 1 � 10�6 m2 s�1, this corresponds to 2.5� 10�2 s to 0.25 s.
Our longest simulations are equivalent to 1 s.

In addition, an external control force applied on the
capsule along the channel axis can tune this equilibrium
position. For example, when directed against the flow (see
Fig. 1), the positive control force

-

fctrl slows down the particle.
Thereby, the relative velocity between particle surface and
surrounding fluid changes. This modifies the dynamic pres-
sure difference along the particle surface and a lateral migra-
tion known as Saffman effect occurs.40

Fig. 1 Left: Schematic of the microfluidic setup in the simulations. We use
a quadratic channel with edge length 2w and channel length L. The
channel center is located at x,y = 0. Due to the symmetry of the quadratic
cross section, only the shaded area needs to be considered. The blue
spheres indicate possible stable equilibrium positions. Right: Poiseuille
flow in the xz plane. The undeformed capsule with radius a, lift (flift) and
control (fctrl) forces acting on it, and the axial capsule velocity vz are
indicated.
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2.2 Lattice-Boltzmann method

The viscous fluid is simulated by the lattice-Boltzmann method
(LBM) in 3D with 19 different velocity vectors (D3Q19) using the
Bhatnagar–Gross–Krook (BGK) collision model.47,48 The LBM
generates a solution of the Navier–Stokes equations by solving
the Boltzmann equation on a cubic lattice. For this the one-
particle distribution function f (-x,

-
v,t) for position -

x and velocity
-
v is discretized in space on a cubic lattice and for a discrete
set of velocity vectors. These vectors point to the center of the
faces and edges of a cube (Fig. 2). The time evolution of the
Boltzmann equation is governed by two alternating steps:

collision: fi
� ~x; tð Þ ¼ fi ~x; tð Þ þ 1

t
f eqi ~x; tð Þ � fi ~x; tð Þ½ � (1)

streaming: fi(
-
x + -

ciDt,t + Dt) = fi*(-x,t), (2)

where fi(
-
x,t) is the discretized particle distribution function

with the index i indicating the velocity vectors, f eq
i is an

expansion of the Maxwell–Boltzmann distribution up to second
order in the mean velocity, and t is a typical relaxation time
from the BGK model.

Macroscopic quantities like the density r or the momentum
density r-u correspond to the first two moments of the distribu-
tion function with respect to velocity:

r ~x; tð Þ ¼
X
i

fi ~x; tð Þ (3)

r ~x; tð Þ~u ~x; tð Þ ¼
X
i

~cifi ~x; tð Þ: (4)

Following the Chapman-Enskog theory,49 one can derive a
relation between the relaxation time t and the fluid viscosity n,

n ¼ cs
2Dt t� 1

2

� �
; (5)

where cs
2 ¼ 1

3
is the speed of sound measured in LBM units. It is

important to note that the LBM is only valid for small Mach

numbers Ma = umax/cs to ensure the incompressibility of the
Newtonian fluid. We chose the maximum flow velocity such
that Ma r 0.1 for all our simulations, which corresponds to
density variations of less than 1%.

Simulations with immersed-boundaries like our deformable
capsules show the best accuracy for relaxation times t r 1 or
viscosities n r 1/6, according to eqn (5) with LBM time step
Dt = 1. Due to this restriction we tuned the Reynolds number
by adjusting the Mach number while keeping the viscosity
fixed n = 1/6. This is only possible up to a Reynolds number
Re E 50, depending on the number of lattice cells. For higher
Re we fixed Ma = 0.1 and reduced the viscosity n.

To simulate the pressure-driven Poiseuille flow, we imple-
mented a constant body force

-
g following the Guo force

scheme.50 In this scheme the fluid momentum density at each
time step is modified according to

r~u ¼
X
i

cifi þ
Dt
2
~g: (6)

As lattice-Boltzmann solver we used the code provided by the
Palabos project.51 The deformable capsule was implemented
with the help of the immersed-boundary method as described
in the following section.

Our simulations were conducted with a length-to-width ratio
of L/2w = 4 using periodic boundary conditions along the
channel (z-axis). As resolution for the lattice-Boltzmann solver,
we chose 120 cubic unit cells along the full width of the
channel, when we recorded trajectories of the capsules, and
90 cells for determining the lift-force profiles. Especially for soft
particles (La = 1 to 10) and high Reynolds numbers (Re = 100)
the lift force was not constant but oscillating in time. To avoid
these oscillations, the resolution was enhanced to 180 cells.

2.3 Modeling a deformable capsule

To couple the deformable capsule to the fluid, we use the
immersed-boundary method.52–54 In this method the capsule
is modeled with a deformable Lagrangian grid, which moves in
the fixed Eulerian grid of the LBM. The Lagrangian mesh of the
undeformed spherical capsule is obtained by starting from an
icosahedron and then repeatedly subdividing each triangle into
four triangles such that the distance between two neighboring

Fig. 2 Set of velocity vectors for the D3Q19 implementation of the LBM.
Six vectors point to the center of the faces, 12 to the center of the edges,
and one is the zero velocity.

Table 1 Mesh resolution for different setups

Particle radius a/w Number of lattice nodes Number of vertices

0.1 90 1280
0.1 120 1280

0.16 90 5120

0.2 90 5120
0.2 120 5120
0.2 180 20 480

0.3 90 20 480
0.3 120 20 480

0.4 90 20 480
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vertices is approximately equal to the lattice spacing of the
Eulerian grid. The resolution for the different simulated meshes is
given in Table 1. The membrane forces are calculated on the
Lagrangian mesh and interpolated to the grid of the fluid. Likewise,
the velocities of the mesh vertices are determined by an inter-
polation from the fluid velocity vectors of the surrounding grid
nodes. For both interpolations a weighting function f(r) is used,
which averages over all lattice nodes within a distance Dx from the
center, where Dx is 2. For further details we refer to ref. 54.

To model the capsule, three contributions need to be
considered: in-plane elasticity of the capsule membrane, its
bending stiffness, and volume conservation due to the incom-
pressible fluid interior. Elastic deformations are described by the
Skalak model, which originally was introduced for red blood
cells.55 The elastic energy is written in the strain invariants I1 and
I2 of the Green strain tensor as defined in Appendix A.2,

Es ¼
ð
A0

dA
ks
12

I1
2 þ 2I1 � 2I2

� �
þ ka
12
I2
2

h i
; (7)

where ks is the shear modulus governing shear deformations
and ka is the area modulus, which penalizes changes in the area
of the mesh triangles relative to the initial value.

Bending stiffness is needed to prevent buckling of the
capsules and the formation of cusps. To quantify bending
elasticity, we take the Helfrich functional, which can be dis-
cretized on the triangular surface mesh,56,57

Eb ¼
ffiffiffi
3
p

kb
X
hiji

1� cos yij � yð0Þij

� �h i
(8)

where kb is the bending modulus, yij is the angle between the
normal vectors of two neighboring triangles, and y(0)

ij is the
reference angle for the spherical capsule. Finally, to approxi-
mately ensure volume conservation, we added an energy of
the form

Ev ¼
kv
2

V � V ð0Þ
� �2

Vð0Þ
; (9)

where kv is the elastic bulk modulus, V the volume of the
capsule, and V(0) the volume of the spherical ground state. We
chose kv = 300 000rn2/L2 such that the volume changes were
less than 1%. To reduce the number of variable parameters, we
followed Krüger et al.37 and fixed the ratios of the area and the
bending moduli with the shear modulus,

ka/ks = 2 kb/(ksa2) = 2.87 � 10�3. (10)

The ratio of bending to shear modulus is close to the
experimental ratio of red blood cells (kb = 2 � 10�19 N m,
ks = 5 � 10�6 N m�1).58,59 For biological cells the ratio of area to
shear modulus is quite high as the cell surface hardly changes
on the time scale of seconds. However, even at constant volume
most of them can deform due to their elliptical or biconcave
shape. For this study we restricted ourselves to spherical initial
cell shapes, since we were interested in the principal behavior.
To allow a capsule to deform, we chose a lower ratio of area to
shear modulus. Increasing one or both of the ratios in eqn (10),

we expect that the capsule deforms less and behaves more like a
rigid particle as a sphere has the minimal area-to-volume ratio.

The capillary number Ca, as the ratio between applied
viscous shear stress rnumax/w and typical elastic stress ks/a,
describes the deformability of an elastic capsule,

Ca ¼ rnumaxa

wks
: (11)

The capillary number still depends on the explicit flow speed. A
dimensionless number to quantify the rigidity of a capsule is
the Laplace number. It is defined as the ratio between typical
elastic shear forces ksa and the intrinsic viscous force scale rn2.
Using the particle Reynolds number Rep = Re(a/w)2, one can
write the Laplace number as

La ¼ Rep

Ca
¼ ksa

rn2
(12)

We will see that it is the right quantity to plot the equilibrium
distance of a capsule from the channel center.

2.4 Measurement of the lift-force profile

To determine the inertial lift force acting on the capsule, we fix
its lateral position and measure the force of the LB fluid on the
membrane following ref. 41. To hold the capsule in place, we
apply an adjustable force ffb evenly distributed over all the
membrane vertices, which compensates the lift force. To calcu-
late this feedback force, we use a proportional-integral (PI)
feedback controller.60 The idea is to steer a system parameter,
here the lateral position, by an external force ffb in a targeted
state. In our case the dynamics of the lateral position of the
capsule’s center of mass, -xcom, is determined by

_~xcom ¼ ~flift þ ~ffb: (13)

The feedback force depends on the deviation of the control
parameter from the desired state at the current and all
previous times,

~ffbðtÞ ¼ gx ~x0 �~xcomðtÞð Þ þ
ðt
0

gu ~x0 �~xcom t 0ð Þð Þdt 0; (14)

where gu/x are the stiffnesses of the feedback controller and -
x0 is

the targeted lateral position. We choose gx = 1 and gu = 100 in LB

units. In steady state, _~xcom ¼ 0, one obtains
-

flift = �
-

ffb. The lift
force is averaged over at least 200 000 time steps, where the first
20 000 time steps, until the system equilibrates, are neglected.

3 Results
3.1 Equilibrium position

We first study in detail the equilibrium position of one single
capsule varying particle radius a, its deformability measured by
the capillary number Ca or the Laplace number La, and the
channel Reynolds number Re. We vary the Laplace number in
the interval between 1 (very soft) and 1000 (almost rigid) or the
capillary number between 10�4 and 10. For the Reynolds
number we choose the values 5, 10, 50, 100.
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We used two different methods to determine the equili-
brium position of the capsule. The first method is closer to the
experiment. The particle is put at a specific position and can
then move freely. Fig. 3 shows a collection of example trajec-
tories. Especially the small particles with a/w = 0.1 at Re = 10
migrate slowly and do not reach their equilibrium positions on
either the diagonal or the x axis, even in the longest simulation
runs. The reason is that the lift force driving the particle motion
strongly scales with particle radius a and Reynolds number, as
discussed in Section 3.3 but also depends on the deformability
of the capsule. However, in most cases one clearly sees where
the particles migrate to.

As most particles in our study migrate towards the diagonal,
we will focus our attention on this axis in the following analysis.
Migration towards the main axes and the diagonals has been
more thoroughly studied for rigid particles in ref. 27. Roughly
speaking, larger particles migrate towards the diagonal, where
they are further away from the walls, while smaller particles
migrate towards the main axes.

For the particle trajectories, which we visualize in Fig. 3(c),
we plot in Fig. 4 the lateral velocity v> in the cross-sectional
plane of the channel versus the distance d from the center. All
particles start at the same position at a distance d/w = 0.583.
The velocity rapidly increases and then gradually decreases to
zero as the particles move inwards towards their equilibrium
position. Clearly, softer particles (small La) show a larger lateral
migration velocity than rigid particles. For the smaller particles
in Fig. 3(b) the migration process itself splits into two phases.

First, the particles quickly move inwards along the radial
direction. This corresponds to the gradual decrease of the
lateral velocity as discussed in Fig. 4. When the capsules are
close to their final equilibrium distance, the radial movement
stops and the lateral velocity is close to zero. Thus, the particles
only very slowly drift along the polar direction towards their
equilibrium positions. A similar kind of motion was already
observed for rigid particles.24

To have a computationally more efficient method for deter-
mining the equilibrium positions, we also measured lift-force
profiles using the method outlined in Section 2.4. The equili-
brium positions correspond to the stable fix points. We will
discuss the lift-force profiles in more detail in Section 3.3.
Both methods agree well, as we demonstrate in Fig. 13 in
Appendix A.1. For the following discussion based on Fig. 5 we
will take the equilibrium positions determined from the lift-
force profiles. The free migration of the capsules indicate that
they mostly lie on the diagonals. Only small capsules (a/w = 0.1)
and capsules at Re = 100, which are sufficiently rigid (La 4 50),
clearly migrate towards the x axis. The results on the rigid
particles are in agreement with our earlier work.27

We now discuss the equilibrium distance from the channel
center, deq, in more detail. In the inset of Fig. 5(a) we plot it
versus the deformability of the capsule, the capillary number
Ca, for different Reynolds numbers Re. All curves show how
deformable capsules (large Ca) migrate to the channel center.
Making them more rigid by decreasing Ca, the inertial lift force
becomes more dominant and drives the capsules away from the
center towards the equilibrium distance of solid spheres.
Clearly, since the strength of the inertial forces increases with
Re, the migration towards the channel walls already starts when
the capsules are more deformable (large Ca).

All curves in the inset roughly have the same shape and shift
to the right with increasing Re. The capillary number Ca is
proportional to the absolute flow velocity umax. Indeed, removing
this dependence and plotting the equilibrium distance versus the
Laplace number La, which measures the rigidity of the capsule,

Fig. 3 Trajectories of the capsules in the cross-sectional plane of the
channel with different rigidities quantified by the Laplace number La. The
trajectories are plotted for different particle sizes a/w and Reynolds
numbers Re as indicated in (a)–(d). The capsules start at the same position
and the endpoint of the trajectories are shown by filled squares. Not all of
them reach their equilibrium position on the diagonal or the main axis
during the simulations.

Fig. 4 Lateral velocity v> plotted versus the distance d to the channel
center for different Laplace numbers La. All particles start at the same initial
position (d/w = 0.583) and with time move inwards to their equilibrium
positions indicated by a black dot.
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all curves roughly fall onto one master curve [see main plot of
Fig. 5(a)]. This was already observed by Kilimnik et al.35 Deviations
from the master curve occur for very rigid capsules (large La), which
move closer to the channel walls with increasing Re.22,25,61 Also, the
value of La, where the capsule starts to move away from the
channel center, is sensitive to Re. This might be due to the fact
that the shapes of two capsules, located either in the channel center
or close-by, differ strongly as we will discuss below.

Also the particle radius a/w plays an important role for the
equilibrium distance, as Fig. 5(b) demonstrates. Larger particles
leave the channel center at larger La and thereby assemble closer
to the channel center compared to smaller particles. One
obvious reason for this behavior is that La p a. However, in
addition the lift force, which drives the capsule away from
the center, roughly scales with a3 as discussed in ref. 62 and
Section 3.3. So, if we plot deq versus La/(a/w)4, the equilibrium
distances collapse on a single master curve in the regime where
the capsules are deformable [see inset of Fig. 5(b)]. For rigid
particles (large La) the curves do not collapse since smaller
particles move closer to the channel walls.25,34

3.2 Deformation of the capsules

In Fig. 6 we illustrate the shapes of capsules at their equilibrium
positions for different Laplace (La) and Reynolds (Re) numbers.

At La = 1 both capsules are located in the channel center and
show the expected form of a parachute, which is more visible at
larger Reynolds numbers.63 At La = 2.5, the capsules have left the
center with deq/w E 0.28 and the deformation is more asym-
metric. The capsules become less deformed with increasing La,
although the capsules move further away from the channel
center, where the viscous shear stresses increase. Interestingly,
although the shapes of capsules with the same La differ for the
two Re values, in Fig. 5(a) we demonstrated that their equili-
brium distances to the channel center are roughly the same
independent of Re.

To quantify the deformation of the capsule, we follow64,65

and determine its moment-of-inertia tensor and then the equi-
valent ellipsoidal particle with the same principal moments of
inertia. Now, the smallest and largest semi-axes of the ellipsoid,
rmin and rmax, are then used to define the Taylor deformation index,

D ¼ rmax � rmin

rmax þ rmin
: (15)

For spherical particles it is zero. In Fig. 7 we plot D versus Laplace
number La for different Re. We discuss the graph in more detail.
Very rigid particles (La = 500) assemble around halfway between the

Fig. 6 Shapes of the capsules for different Laplace and Reynolds num-
bers. Below each picture is the corresponding equilibrium distance.

Fig. 7 Taylor deformation index D of an elastic capsule at the equilibrium
location plotted versus Laplace number La for different Reynolds numbers
Re. The symbols correspond to the symmetric shapes in the channel
center (�) and to the asymmetric shapes occurring not in the center (’).

Fig. 5 Equilibrium distance deq/w from the channel center: (a) plotted
versus Laplace number La for a/w = 0.2 and different Re, inset: deq/w
versus capillary number Ca; (b) deq/w plotted versus La for Re = 10 and
different a/w, inset: deq/w versus La/(a/w)4.
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channel walls and the center and are hardly deformed (small D).
The softer the particles become, the more they are deformed
asymmetrically, which means increasing D. This happens although
capsules migrate to smaller equilibrium distances deq, where shear
gradients are lower. At small La values, where the equilibrium
distances deq in Fig. 5(a) sharply decrease to zero, the deformation
indices also sharply decrease to small values since the capsules
have a more symmetric parachute shape in the channel center. The
sharp decrease of D becomes less prominent with decreasing Re
since the capsules are less deformed.

3.3 Lift-force profile

The dynamics and equilibrium positions of an elastic capsule
are determined by the lift-force profile. In this section we study
how the inertial lift force scales with Reynolds and Laplace
number as well as particle radius and compare it to rigid
particles. For rigid particles with radii much smaller than the
channel width the analytical solution22,45 for the lift force
predicts the scaling flift p Re2(a/w)4. For larger rigid particles,
of similar size as ours, numerical solutions of the Navier–
Stokes equations give a scaling proportional to Re2(a/w)3 near
the channel center and Re2(a/w)6 near the channel walls.18 To
measure the lift force we use the procedure described in
Section 2.4. As almost all capsules travel to equilibrium
positions on the diagonal, we study the lift-force profiles along
this direction.

We usually observe the typical form of the lift-force profile
with two equilibrium positions of the capsule, where the lift
force vanishes [see, for example, Fig. 8(a)]: the unstable fix
point in the channel center (d = 0) and one stable fix point
between channel center and walls. In the previous section we
found that the equilibrium position is almost independent of
the Reynolds number, in particular, in an intermediate range of
capsule rigidity measured by La. When we measure the lift-
force profile for different Reynolds numbers while keeping the

particle radius and the Laplace number fixed, this is also visible
in the lift-force profiles as all zero crossings coincide [see
Fig. 8(a)]. Furthermore, the profiles for small Re fall on top of
each other when we scale flift by Re2. This scaling is confirmed
in Fig. 3(b), where we plot the maximum lift force versus Re.
Only for high Reynolds number (Re = 100) we obtain a
deviation from flift p Re2. Indeed, by measuring the parti-
cle–wall interaction of rigid particles, the authors of ref. 46
noticed an increase of the wall lift coefficient around
Re E 100 due to an imperfect bifurcation of the wake
structure. This might explain our observation. However, in
total the scaling law flift p Re2 also seems to be valid for soft
spheres at moderate Re.

Fig. 9(a) confirms the scaling flift p (a/w)3 for small dis-
tances, while closer to the walls the force profiles clearly differ.
Strong deviations also occur for larger particles with a/w Z 0.3,
which is also visible in the maximum lift force plotted versus
a/w in Fig. 9(b). This is in contrast to ref. 25 and 62, where the
scaling was verified for rigid particles with radii up to
a/w = 0.38. The different behavior can be attributed to the
deformability of the capsules. Indeed, for La = 500 we verify the
scaling up to a particle radius of a/w = 0.4 as demonstrated by
Fig. 14 in Appendix A.3.

For increasing Laplace number the lift-force profiles
approach the limit of a rigid capsule [see Fig. 10(a)]. Making
the particles softer, the stable equilibrium position moves
towards the channel center and ultimately for La = 1 reaches
the center, as already discussed in Section 3.1. Also, the maximum
value of the lift force decreases the softer the particles become as
illustrated in Fig. 10(b).

3.4 External control force

Experiments39 and simulations27 showed that the lateral posi-
tion of rigid particles can be controlled by an external force,

Fig. 8 (a) Inertial lift force flift along the diagonal in units of rn2Re2 plotted
versus distance d/w to the center for different Reynolds numbers. Other
parameters are La = 10 and a/w = 0.2. (b) Maximum of flift plotted versus Re.

Fig. 9 (a) Inertial lift force flift along the diagonal in units of rn2(a/w)3

plotted versus distance d/w to the center for different particle radii a/w.
Other parameters are La = 10 and Re = 10. (b) Maximum of flift plotted
versus a/w.
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applied along the channel axis. Depending on its direction it
either speeds up or slows down the particle relative to the
channel flow. This changes the relative velocity between particle
surface and surrounding fluid. Thereby, the dynamic pressure
varies along the surface, which causes the lateral motion of the
particle known as Saffman effect.40 In our simulations we apply a
constant force on the elastic capsule evenly distributed on the
membrane vertices along the axial direction. We observe that the
shape of the capsules is hardly influenced by the external control
force. It is mainly determined by the local shear gradient, which
depends on the distance from the channel center.

In the following discussion we choose the convention that a
positive force is directed against the flow and thus slows down
the particle. In Fig. 10 we plot the equilibrium distance to the
channel center as a function of the external control force fctrl. As
before, we determined the equilibrium positions from the
stable fix points of the lift-force profiles. For rigid capsules
(La = 500) the results agree with previous simulations:27 when
these particles are slowed down (fctrl 4 0), they move towards
the channel center and ultimately reach it for sufficiently large
fctrl 4 0, while accelerated particles move closer to the channel
walls. However, for strongly negative control forces a decrease
in the equilibrium distance is observable. This behavior is
clearer visible for La = 50. We observe the softer the capsules
are, the more does the maximum equilibrium distance move
to larger and even positive control forces. Furthermore, the
maximum equilibrium distance decreases until at around
La E 12.5, where the curve is symmetric about its maximum.
For even softer capsules it increases again. As a consequence,
soft particles (La = 5) behave opposite to rigid particles: when
slowed down, they move away from the channel center, while
when moving faster ( fctrl o 0), they approach the center and
ultimately stay there.

Förtsch et al.66 observed a similar kind of migration for soft
capsules under gravity in pure Stokes flow. They showed

by simulation and analytical calculations that this can be
explained by the anisotropic drag coefficient. Due to their
elongated shape (see Fig. 6) the resistance of the soft capsules
is different along their main axes. By pulling on such a
deformed capsule, it migrates in the direction of the smallest
drag coefficient, which is along their longest axis.

Even more interesting, we find that all curves for different
La intersect in one point at a positive control force of about
fctrl* = 1.2rn2. At this control force all particles assemble at the
same equilibrium distance deq* independent of their deform-
ability. This property seems to be generic. We also find it
for other Reynolds numbers as illustrated in Fig. 15 of
Appendix A.4. While the intersection point moves to higher
control forces with increasing Reynolds number, in fact,
fctrl* p Re as Fig. 12 demonstrates, the distance from the
channel center stays almost the same at d̃/w E 0.46. We do not
have a clear understanding of this behavior. However, we
checked that it is generic and not a numerical artifact. In
particular, this behavior does not change when we increase
the channel length to investigate the influence of the periodic
boundary condition or when we increase the resolution of
the lattice-Boltzmann grid to check for discretization errors
(see Fig. 15 in Appendix A.4).

Fig. 10 (a) Inertial lift force flift along the diagonal in units of rn2 plotted
versus distance d/w to the center for different Laplace numbers. Other
parameters are Re = 10 and a/w = 0.2. (b) Maximum of flift plotted versus La.

Fig. 11 Equilibrium distance deq plotted versus the external control force
fctrl for different Laplace numbers La. Other parameters are Re = 10 and
a/w = 0.2.

Fig. 12 Control force of the intersection point fctrl* plotted versus
Reynolds number Re. At lower Reynolds numbers the errorbars are on
the order of the symbol size.
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Using such an external force, allows a much finer control of
the particle’s equilibrium position. For example, in the absence
of a control force ( fctrl = 0 in Fig. 11) the equilibrium position
of particles with La = 5 and La = 12.5 are quite close to each
other. By applying fctrl = �1rn 2 the softer particle moves
towards the center while the equilibrium position of the less
deformable particle hardly changes. This effect should help to
enhance particle separation based on its deformability. One
way to implement an external force experimentally could be
using buoyancy where fluid and particles have a different
density.

4 Conclusions

Manipulating deformable capsules by hydrodynamic flow
in the regime of intermediate Reynolds numbers has a
large variety of applications, e.g., for cell sorting or probing.
The high fluid velocities allow a high throughput and the
resulting inertial focusing can be used to separate and steer
particles towards desired positions within a channel. In this
work we studied the equilibrium positions of soft capsules
while immersed in a Poiseuille flow through a quadratic
channel. We find that most particles assemble along the
diagonal of the channel. The softer the particles are the closer
they move towards the channel center. Their final equilibrium
distance depends on the particle deformability, its radius
and the channel Reynolds number. By introducing the
Laplace number as ratio of elastic force to the intrinsic viscous
force scale, the equilibrium position for different Reynolds
numbers collapse on a single master curve. The equilibrium
distance is thus independent of the flow velocity. Additionally,
we also identify such a date collapse for different particle
radii.

In contrast to the equilibrium distance we find that
the deformation of the capsules strongly depends on the
Reynolds number. The deformation of the off-centered capsules
increases with decreasing Laplace number although the capsules
migrate in areas with a smaller shear gradient. Very soft capsules
assemble at the channel center and have a symmetric parachute
shape.

The lift-force profiles of deformable capsules behave pretty
much the same as those of rigid particles, where the lift force
scales as flift p Re2(a/w)3. For deformable capsules, we find
deviations from this scaling law only for high Reynolds number
(Re = 100) and large particles (a/w = 0.3). We were not able to
identify a similar scaling involving the Laplace number. For
decreasing La, the stable equilibrium position moves towards
the channel center and the maximum value of the lift force
decreases until only a stable fixpoint in the channel center
remains.

Finally, we demonstrated that the particle equilibrium posi-
tion can be controlled by an external force along the channel
axis. For almost rigid particles (La = 500) we confirmed previous
results,27 but found a new behavior for soft particles. While
rigid particles migrate towards the channel center when they

are slowed down, moderately soft particles with La E 12.5
migrate towards the channel center both for positive and
negative control forces. For even lower La the capsules behave
opposite to rigid particles as they move towards the channel
wall when slowed down. Interestingly, we observe that all
graphs with different Laplace numbers intersect in one point
at a non-zero control force.

Cancer cells are softer than healthy cells.2 Using an external
control force, enhances the sensitivity to separate them based
on the lateral locations they assume in microchannels. Thus,
our new theoretical insights might prove useful in developing
new biomedical devices to probe and separate cells based on
their size and deformability.

A Appendices
A.1 Determining the equilibrium distance

To determine the equilibrium distance of the elastic capsule
from the channel center, we considered two different methods
as described in Section 3.1 (Fig. 13).

A.2 Green strain tensor

Skalak et al.55 introduced a model for the strain energy of the
membrane of a red blood cell. It is formulated in the framework
of finite strain theory, which investigates the deformation of a
body relative to a reference configuration. We denote the
reference coordinates by -

x and the coordinates of the deformed
state by -

y. In the coordinate system, where the local Jacobi

Fig. 13 Equilibrium distance from the center as a function of the Laplace
number determined by two different methods. (a) Particles are placed in
the flow and migrate freely to their equilibrium position; (b) the equilibrium
distance is extracted from the stable fix points of the lift-force profiles.
Both plots agree quite well.
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matrix qyi/qxj is diagonal, the extension ratios l1 and l2 are
given by

l1 ¼
@y1
@x1

and l2 ¼
@y2
@x2

: (A1)

Now, deformations can be described by the Green strain tensor,
the components of which are defined as

e11 ¼
1

2
l12 � 1
� �

and e22 ¼
1

2
l22 � 1
� �

: (A2)

Furthermore, the authors introduced the strain energy function
Es of eqn (7) to calculate the Piola–Kirchoff stress tensor

Sij ¼
@Es

@eij
(A3)

where Sij is the tension in the membrane in terms of the
reference coordinates -

x. The Piola–Kirchoff stress tensor is
related to the Cauchy stress tensor by

s ¼ 1

l1l2
Skl

@yi
@xk

@yj
@xl

(A4)

The strain energy is a scalar function and invariant under all
local rotations of the two-dimensional membrane about the
normal. Thus, it can only depend on the invariants of the Green
strain tensor, which are written as

I1 = 2(e11 + e22) = l1
2 + l2

2 � 2 (A5)

I2 = 4e11e22 + I1 = l1
2l2

2 � 1. (A6)

A.3 Lift force profile for stiffer particles

For soft particles we obtain a deviation from the scaling with
the particle radius, flift p (a/w)3, already at small radii (Fig. 9).
As its origin we suspect the deformability of the capsules.
Indeed, by increasing the particle stiffness, we obtain an
agreement with the scaling law up to a particle radius of
a/w = 0.4 (Fig. 14).

A.4 Equilibrium distance for external control force

Fig. 15 shows the equilibrium distance plotted versus the
control force for different Laplace numbers and Reynolds
numbers. The curves for different La intersect in one point.

This is valid for all Reynolds numbers. With increasing Re the
intersection point moves towards higher forces while the
equilibrium distance only varies little.

As demonstrated in Fig. 16, the graphs for the equilibrium
distance plotted versus control force is independent of the
channel length L, the resolution of the lattice-Boltzmann
grid. Only for rigid particles (La = 500), one observes
small deviations, when the particles are located close to
the walls.

Fig. 14 Inertial lift force flift along the diagonal in units of rn2(a/w)3 for
different particle radii for almost rigid particles.

Fig. 15 The equilibrium distance deq plotted versus control force fctrl for
different Laplace numbers La and Reynolds numbers Re = 5, 25, 50, 100
for particle radius a = 0.2w.
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