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Chemotaxis is the response of a particle to a gradient in the chemical composition of the environment.
While it was originally observed for biological organisms, it is of great interest in the context of synthetic
active particles such as nanomotors. Experimental demonstration of chemotaxis for chemically-powered
colloidal nanomotors was reported in the literature in the context of chemo-attraction in a still fluid or
in a microfluidic channel where the gradient is sustained by a specific inlet geometry. In this work, we
use mesoscopic particle-based simulations of the colloid and solvent to demonstrate chemotaxis in a

Received 18th January 2017, microfluidic channel. On the basis of this particle-based model, we evaluate the chemical concentration

Accepted 17th March 2017 profiles in the presence of passive or chemically active colloids, compute the chemotactic force acting
DOI: 10.1039/c7sm00123a upon them and propose a stochastic model that rationalises our findings on colloidal chemotaxis. Our

model is also able to explain the results of an earlier simulation work that uses a simpler geometry and
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1 Introduction

Nanomotors are nano- to micro-meter sized machines that use
a local (internal or found in the close environment) source of
energy to move or perform work. The catalytic conversion of a
chemical fuel on catalytically coated colloids was used with success
for different types of motors (metallic rods," polystyrene® and
silica® Janus particles, dimers®*). Chemically powered nanomotors
represent very promising devices for the execution of tasks such
as sensing or cargo delivery in nano- to micro-meter scaled
environments.””” Understanding the response of nanomotors
to chemical concentration gradients, chemotaxis, is critical to
engineer these possible applications.

The experimental characterisation of chemotactic motion can
proceed either via chemical sources that supply the environment
with fuel, at specific “target” locations, or via a flow that allows
the sustainment of the gradient. The first idea was used by
Hong et al. to demonstrate the occurrence of chemotaxis for rod
nanomotors.® The second strategy was used by Baraban et al. in
ref. 9 where the authors studied experimentally the chemotactic
motion of chemically powered nanomotors in a microfluidic
channel and observed a lateral deviation of the nanomotors
when the fuel is input asymmetrically at the inlet of the
cell. The successful modeling and understanding of colloidal
chemotaxis is also relevant for biological systems, with the
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traditional example being the chemotactic behaviour of bacteria.'
The focus on biological chemotaxis has been put forward by
Sengupta et al. who also used a microfluidic channel to observe
the enhanced migration of enzymes across a microfluidic channel
in the presence of a substrate gradient."* More recently, the sorting
of enzymes on the basis of their chemotactic response has been
demonstrated in ref. 12.

Numerical simulations of chemotaxis can either assume an
expression for a “chemotactic force” or reproduce the chemo-
tactic process itself, using a direct simulation of the solvent.
This article starts with the latter approach using Molecular
Dynamics simulation with an explicit solvent in which several
chemical species are represented. We then formulate a continuous
picture for the solvent concentration field and use it to build a
stochastic model that captures the chemotactic behaviour and its
connection to our simulation parameters.

The literature on particle-based modeling of chemotaxis
for nanomotors is rather scarce. Chen et al.™® considered a
simplified system in which a constant chemical gradient is
imposed by the boundaries of the simulation cell. In this work,
we seek to imitate the experimental setup of Baraban et al.’
and to improve the theoretical understanding of this experi-
mentally relevant configuration for chemically powered nano-
motors, albeit using a simpler dimer-type nanomotor instead
of the Janus and tubular microjet motors in the experiment.
Our computational experiments build gradually by starting
with a non-catalytic spherical colloid, then adding a cata-
Iytic property to the spherical colloid and finally using the

This journal is © The Royal Society of Chemistry 2017
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dimer nanomotor. We come back to the results of Chen et al.*?
and extend their conclusions.

In Section 2, we review the mesoscopic simulation model.
The simulational implementation of the experiment of ref. 9 is
laid out in Section 3. The continuous representation of the fluid’s
diffusion profile, including in the situation where chemical
reactions occur on the surface of the colloid, is given in Section
4. There, we also compute the chemical gradient induced forces
on the colloids. The stochastic model for the colloids is presented
in Section 5. We give the results for both modeling strategies in
Section 6 and conclude in Section 7. In Appendix A, we provide
full information on how to access the numerical code to repro-
duce our findings.

2 Simulation model

The solvent consists of point particles with mass m;, position
r; and velocity v;. There is no force acting between solvent
particles, their interaction is instead modeled via cell-wise colli-
sions at fixed time intervals t using the Multiparticle Collision
Dynamics (MPCD) collision rule introduced by Malevanets and
Kapral.'*'*> MPCD has been used successfully to investigate the
dynamics of colloids in microfluidic channels by Prohm et al.,
in the context of inertial focusing,'® or by Nikoubashman et al.
to study the flow of colloids in the presence of obstacles,'” for
instance.

The evolution of fluid particles, in the presence of forces due
to colloids or to the flow-inducing field, is resolved numerically

using the velocity Verlet algorithm*®*®
o de
ri(t+de) =ri(t) +vidt + ( g +f,-(t)% , )
dt
vi(t+di) = vi(1) + zm_(.fi(f) +/i(t + di) + 2mig), (2)

where f; is the total of pair forces on particle i and g is the
external acceleration. The timestep dt¢ for MD is a fraction of
the one for MPCD

T
dr = ,
Nmp

3)

where Nyp is the number of MD steps between successive
MPCD collisions.

At fixed time intervals 7, the fluid particles are sorted in a
lattice of cubic cells of side a, whose origin is shifted randomly
to ensure Galilean invariance,?® and their velocities are collided
cell-wise according to

v/ =ve + Qe(v; — V) (4)

where the prime denotes the post-collision value, ¢ is the cell
containing particle i, Q: a rotation operator of angle @ in R®
around a randomly chosen axis and v; is the centre-of-mass
velocity of the cell. The transport properties of a MPCD fluid
can be computed analytically, see ref. 21, 22 and references
therein. The simulation parameters are given in Table 1.
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Table 1 Simulation parameters for the chemotactic cell. The parameter
files for reproducing the simulations are available publicly, see Appendix A

Parameter Symbol Value
Number density n 10
Solvent particle mass m 1
MPCD fluid density p 10
Cell size a 1
MPCD time step T 0.5
MD steps per MPCD step Nmp 50
Cell dimensions Ly, Ly, L, 90, 60, 15
Buffer length Lyuter 20
Temperature ksT 1/3
Acceleration g 0.001
MPCD collision angle (2] 2.6
Reaction probability )4 1
Colloid radius o 3
Unit interaction energy ea 1

One technique to obtain a Poiseuille flow is to impose a
constant acceleration field in the simulation cell,*® in combi-
nation with periodic boundary conditions in the direction of the
flow (x) and stick boundary conditions in the direction trans-
verse to the flow (z). In ref. 19 and 24, this technique was applied
to MPCD fluids. In the y direction we use specular boundary
conditions for the fluid, so that the flow velocity profile v,(z)
bears no dependence on y. We implement stick boundary
conditions for the flow in the z direction with a combination
of bounce-back collisions and ghost particles at the boundary
MPCD cells.”® The ghost particles also set the temperature
at the wall. In this work the walls also provide a sufficient
thermostatting action to compensate for the flow-induced
heating and no bulk thermostatting is used. We have verified
that the temperature of the fluid remains stable after a transient
period at a value that is about 3% in excess of the temperature
set at the walls.

The colloids evolve according to the velocity Verlet algorithm,
similarly to the solvent particles, but do not participate in the
collisions and are not subject to acceleration field g. In the case
of dimer nanomotors, the distance between the two spheres is
held constant using the RATTLE algorithm.>®

The coupling with solvent particles is done via the shifted
and truncated Lennard-Jones 12-6 potential of the form

gij ? gij °1 1/6
48,‘/ — ——= += for rij < agjj X 2
rij ri) 4 (5)

0 else

Vi =

where ¢; denotes the strength of the potential and ¢; denotes
the radius of the colloid. i and j represent the species of the
solvent and colloidal particles and r; is the distance between
them. The variation of ¢;, depending on what type of solvent
and colloid interact, leads to a net force in the presence of
chemical concentration gradients. This will be made explicit in
Section 4. ¢; for interactions with the solvent of type A is set to 1
and defines the energy scale. In the following, all quantities are
expressed in simulation units with length a of the unit cell,
mass m of the solvent particles, energy ¢4 and time \/a?m/ea.
As the interaction between all colloids and solvent particles
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of species 4 is equal, the first subscript to ¢, is dropped in
the following.

Confinement of the colloids in the z direction is obtained by
a purely repulsive Lennard-Jones 9-3 potential of the form

3V3 wall.i ’ wall,i :
Vi:swall,i{%_<(aza_u’) *<62—1H> >+ 1}7 (6)

where z is here the distance to the closest horizontal wall. The
same potential is applied in the y direction to avoid hypothetical
crossings of the lateral wall during a simulation.

MPCD fluids are well suited to describe chemical reactions
influenced by catalytic surfaces®” or in the bulk.>® At the surface
of a catalytic colloid C, the reaction

A+C - B+C (7)

converts fluid particles of type A (the fuel) to fluid particles
of type B (the product). The reaction occurs when the fluid
particles cross the interaction region of the colloid and is
executed with a probability p € [0,1], when the fluid particles
exit in the interaction region to avoid any discontinuity in the
energy.”’

All simulations were performed using the open-source
RMPCDMD software.”**°

3 Cell design

The inspiration for the design of the microfluidic cell comes
from the experimental work on the chemotaxis of nanomotors
by Baraban et al.®° There, a channel is fed with fluid at a fixed
flow rate via three inlets. As only an inlet contains a chemical
species of interest, i.e. the fuel for the nanomotors, the lateral
distribution of species is inhomogeneous. The effect of the
resulting gradient is a chemotactic behaviour that is observed
by monitoring the deviation angle of the nanomotors with
respect to a straight line motion.

To reproduce the experimental features in a simulation, we
have setup a thin channel with a forced flow in the program
chemotactic_cell of the RMPCDMD software that is illustrated
in Fig. 1. A simulation snapshot in Fig. 2 shows the Poiseuille
flow, the concentration field for the fluid species A and the

I—buffer

Fig. 1 Schematic description of the simulation cell for chemotaxis in a
flow. There are two inlets on the left. In the buffer (leftmost region), solvent
particles are set to species A for 0 < y < L,/2 and F else. Lennard-Jones
9-3 potentials confine the colloids close to z = L,/2. The colloid are initially
placed in the Finlet and constrained to a fixed y and z track. This constraint
is released when x > ¢.
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Fig. 2 Simulation snapshot for a dimer nanomotor simulation. The confin-
ing plates are made of transparent blue. The dimer is made of a catalytic (red)
bead and of a non-catalytic (blue) bead and its centre-of-mass trajectory is
shown as a white line. Here, the nanomotor is attracted toward the front of
the cell (lower values of y) and displays a corresponding reorientation. The
instantaneous concentration field of A solvent particles around z = L,/2 is
shown in pseudocolor.

trajectory of a dimer nanomotor. To avoid reproducing the inlet
channels at a large computational cost, we assign the solvent
species to be either A (the fuel) or F (a neutral fluid species)
arbitrarily, depending on the lateral position of the particles.
The total number of particles in the simulation is constant
and particles are not created or destroyed but “recycled” when
they re-enter the simulation cell due to the periodic nature
of the x boundary. The region of the cell where the forced
attribution of species is applied is called the buffer and is
located in the region 0 < x < Lyygrer- In the following text of the
paper, the trajectories from the mesoscopic simulations are
shifted in x by —Lpyugrer to match the coordinate system of the
stochastic model.

Although the simulations are three dimensional, the motion
of the colloids is limited around the centre of the cell in the
z-direction by the confining walls.

The flow between two plates is of the Poiseuille type with
maximal velocity vg, and average velocity v,y = 2/3 Vaow. We
report the characteristic numbers of the flow in Table 2. For the
work of Baraban et al.,’ we use the values found in the article
for the flow rate (140 pL per hour), the width (200 pm per inlet,
there are three inlets) and temperature (300 K). The height
of the channel was confirmed by email to be 30 pm. For the
properties of water, we use reference data from the NIST**
(retrieved January 11, 2017: density pyacer = 996.56 kg m ™, and
ViScosity fwater = 8.54 x 10~ Pa s) and take the diffusion co-
efficient Dy, = 2 x 107 m” s™* that is a reasonable approxi-
mation for both water’®> and hydrogen peroxide.*® For the

Table 2 Characteristics of the microfluidic channel and of the fluid flow,
both in the experiment of ref. 9 and in our simulations

Number Simulation Experiment
width (L,) 60 600 um
Height (L,) 15 30 pm
Average flow velocity v,, 0.063 2.16 mm s~ '
Maximum flow velocity Vmax 0.095 3.24mms *
Pe 14 32

Re 0.48 0.076

This journal is © The Royal Society of Chemistry 2017
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MPCD fluid properties, we refer to the review by Kapral.”
The viscosity is

_ kgTrp (Sn —(n—1+e")(2—cos® —cos 2@))

2m (n—14e")(2—cos® —cos20) ®)
+ m (n—=14+e¢"(1 o)
8 n e cos @),
and the self-diffusion coefficient is
kgTt 3n
D= —1).
2m ((n —1+e™)(1 —cosO) ) ()

We have verified that the velocity profile obeys the theoretical
prediction®

z(L. —z) pgllz(L. —z)
(L:/2)° 81 (L/2)*

V(2) = Vmax (10)

We have aimed for a similar fluid regime with respect to the
experiment, that is a high Péclet number (Pe) flow, as our
estimate for the concentration profile relies on Pe > 1 (see
Section 4 and ref. 34). A value as high as for the experiment
could not be obtained, but the important feature is that the
transport by the flow dominates the one by diffusion in the
x direction. The Reynolds number Re should remain moderate
for the laminar regime to hold.

The Péclet, Reynolds, and Mach numbers for the flow are
computed as

Pe = L,v,,/D,

Re = Veowl,/1,

and

Ma = 4

b
Vsound

SkgT .
where vsound = \/g% s the speed of sound.'® The maximum

Mach number is obtained for the maximum velocity of the flow

L 2
P8 0.095 and is Ma ~ 0.13.

Vmax =
Besides the geometry of the cell, the simulation protocol differs
slightly from its experimental counterpart. The colloid moves on a

. L, L. . s
track at fixed y = 7J + yshire and z = 7 This restriction is lifted

when the x position of the colloid (centre of mass) has passed
Liutter plus its own radius. This allows for a systematic comparison
of the chemotactic drift across repeated runs without suffering
from possible disturbance from the resetting of particles in the
inlets. The shift ygir in the y direction ensures that solvent
particles in the interaction range of the colloid are only of species
F and not influenced to a change of species in the buffer region.

4 Density profiles and surface
interaction

In this section, we compute the stationary concentration field
¢,(r) for the different chemical species in the cell and the
resulting chemotactic force on the colloids.

This journal is © The Royal Society of Chemistry 2017
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We approximate the evolution of c,(r) by a 1D diffusion
equation where the spatial direction of the flow is proportional
to time, i.e. X = vgowt, and the diffusion process acts in the
transverse direction y. This approximation has been tested
experimentally in ref. 34 and is only valid close to z = L,/2.
Close to the boundaries z = 0 and z = L, of the cell, a different
transport regime is taking place. Here, we neglect the variations
in the z direction for the computation of the concentration c,(r)
in the absence of catalytic particles.

Fixing z = L,/2 and identifying the time and the x coordinate
results in

D

OxCy(X,y) = 3.1»2% (x,) (11)

flow

The separate inlets for the A and F chemical species translate
into the initial condition c4(0,y) = ¢,@(L,/2 — ¥), c5(0,y) = 0 and
cA0,y) = coO(y — Ly/2) for x = 0 (equivalently ¢ = 0). The solution
to eqn (11) is

ca(x,y) =co (1 - %erfc (;%)) (12)

(13)

(14)

¢cr(x,)) = o — calx)
CB[x’y) =0
where erfc is the complementary error function. In the absence
of a catalytically coated colloid, the value of ¢z remains zero at
all times. The average number density is a constant,

S elen) =,

o

(15)

in the low Mach number conditions here.

In the remainder of this section, we use coordinates centered
on the colloid. The spherical coordinates are defined by the
following relations

X =rcos@sinf

y=rcosf

(16)
z=rsing@sin0

and are represented in Fig. 3.

The presence of a catalytic colloid is taken into account in
eqn (11) by a radiation boundary condition (RBC) on the surface of
the colloid, at radius R. The boundary condition is applied at the
limit of the interaction region, i.e. R = 2"°c, where the continuum
diffusive picture breaks down and where the chemical reactions
are triggered. The RBC identifies the flux of chemicals with the
consumption of the catalytic reaction, at the surface of the colloid.
It was developed by Collins and Kimball*® and rederived later by
other authors.***” The RBC at radius R in the absence of external
gradient, for the species 4, is

RkpO,cs = koCa, (17)
where kp = 4nRD is the diffusion-limited rate constant and

ko = pR*+/8nkg T /m is the chemical rate.*® p is the reaction prob-
ability defined in Section 2 and m is the mass of a fluid particle.

Soft Matter, 2017, 13, 3532-3543 | 3535
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X

Fig. 3 The spherical coordinates centered on the colloid.

4.1 Surface interaction

Following the work of Riickner and Kapral,”” we sum the inter-
action potential V,., between a colloid of species x and the fluid
particles of species o over the interfacial region to obtain the
potential energy. Differentiation with respect to the colloid’s
coordinate gives the force on the colloid:

F= Z Jdrca(r)V_‘ Vea(P). (18)

In all the subsequent derivations, we rely on the solution of
the diffusion equation in the bulk of the fluid. Within the
interfacial region, the interaction with the colloid modifies
the concentration c, by the Boltzmann weight.>” Eqn (18) then
reduces to

ﬁ J dl‘Jdl‘Cl (Rf)e_ﬁV“(r) Trar Vlc,at (’)
r=R

o

3]

o r=R

(19)

dre, (RF) f,‘Jdre_ﬁ Vealr) g, Viea(r),

where f§ = (ksT) " and 1, is the unit vector pointing in the radial
direction. Integrating by parts yields

— 2 ~T
F=3y AWJI‘:Rdrca(Rr) P, (20)
where we have defined
R
Ay = J drr(e_ﬁV"*“(’) - 1), (21)
0

Within this framework, it is sufficient to compute surface
integrals over the colloids to compute the force acting on them.
The use of eqn (20) in the literature is however limited to situations
where there is no external chemical gradient.

4.2 Single passive colloid

For a single passive colloid of type N, we use the solution (12)-(14)

together with eqn (20).
2

Fy = B(AN,A - AN,F)J

dre(RA)T,,
=R

r=

(22)
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Locally around the colloid, we use a first-order expansion of
¢, in the lateral direction.

2
Fy, = E(AN’A — AN{F)J dr(c4(0,0) + ARcosf)cos O (23)
r=R

8n
= (Ay4— Ayr)iR
3 [))( N,A N,F)/L )
where 1 = 0,c4(x,y). The explicit dependence of Fy, and A on the
coordinates is omitted for brevity.

(24)

4.3 Single active colloid

To take into account the catalytic activity of a colloid, the diffusion
eqn (11) is solved with the radiation boundary condition (RBC).
Eqn (17) expresses the flux that originates from the chemical
activity of the colloid, which is the only contribution to the flux in
the situation where the RBC was derived. The total radial flux is
the sum of the reaction-induced flux from eqn (17) and of the

diffusive fluxt 4nR>D1, - Ve, = Rkpi.cos 0.

Rkp0,¢4 = koca + Rkp/ cos 0 (25)

We make the following ansatz for the concentration field c,:

2
c4 :co+c1§+cz (§> cos 0 + Arcos 0. (26)
Eqn (26) is a solution of the diffusion equation and matches the
boundary condition (25). The first three terms come from a
truncation of the Legendre polynomial expansion of a diffusion
profile with a spherical catalytic sink. The last term is needed to
reflect the presence of the external gradient. We obtain the
coefficients by inserting eqn (26) in eqn (25):

co = ca(x,»)
= —Lc
= ko + kp 0 s (27)
ko
=——JR
2= Tk + 2kn

where we have used for ¢, the solution (12). The value of 4 is
obtained by differentiating eqn (12) with respect to y.

It is important to mention that (i) in the absence of a gradient,
the coefficients in eqn (27) lead to the standard solution of a
spherical sink and (ii) in the absence of chemical activity, the
solution (12) is recovered to linear order.

To obtain the solution for cz, we observe that the reactive
flux of A particles absorbed at the surface of the sphere equals
that of B particles, except that the currents flow in opposite
directions. The solution to the diffusion equation with these
opposite flows on the surface is

¢ (R)2
Cgp = —Cl—— C2| — | COS 0.
r r

+ The flux is multiplied by the surface of the sphere 4nR” as this is how the RBC is
expressed in the literature.

(28)

This journal is © The Royal Society of Chemistry 2017
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Fig. 4 Coordinate system for the dimer nanomotor.

To compute the force in eqn (20), we set Ag = Ac 4. Using eqn (15),
we find that the chemotactic force on the active colloid C is

8

Fc,= —ﬁ(ACB —Aca)ea (29)

4.4 Dimer nanomotor

A dimer nanomotor is made of two spheres linked rigidly, with
distance d between their centre of masses. One (C) is catalytic and
acts as a sink for A-species solvent particles and a source of B-species
solvent particles, creating locally a gradient centered on C.

For the dimer nanomotor, the concentration fields depend
on the presence of the catalytic sphere of the motor in the same
way as for the single active sphere and we reuse eqn (27) and (29).
The force must be evaluated also on the non-catalytic sphere
N where the spherical symmetry does not hold. We evaluate this
expression numerically as

L2 _ -
Fy = 3 Z AN‘deQ’ sin 0'do’c, (R 1, (30)
where the prime denotes the spherical coordinates around the
N sphere of the dimer, as illustrated in Fig. 4.

The forces on C and N are summed to obtain the centre-of-
mass (com) force:

Fcom,x = FN,x
. (31)
Fcom,y = FC,y + FN,y
The torque on the dimer is
s 4. = S =
g = E(rc — Feom) A Fo + E(rN — Teom) N Fy
(32)

:dﬁA@%—EQ

The motion of the dimer is studied via its centre-of-mass position
in the x-y plane and its inclination ¢ with respect to the x axis.

5 Langevin dynamics for the colloids

For the spheres, the evolution of x and y (here, coordinates in
the laboratory frame of reference) is given by the overdamped
Langevin equations.*’

%= vaow + VIDE, 53)
y = Ev(x/‘;ﬂomy) + @51 (34)
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where v, is the average velocity due to the flow at z = L,/2, &, and
¢, are normal distributed white noise, D is the diffusion coeffi-
cient of the colloid and y its friction. For the single spheres, we use
y = 4mno, the slip hydrodynamics friction, and D = kgT/y.

For the dimer, we use the following Langevin equations for
the centre of mass and orientation

F
X — Vilow cos¢p —sing y_|‘“ + \/2_DH6H
( y ) - (sin¢> cos ) Fi, sops, )
pas
b=T VD (36)
where the projected forces F and F, are
Fj = (Feom.x €08 ¢ + Feom,y sin ¢) )

Fi = (—Feom $in ¢ + Feom, cos ¢)

and 7 is the torque defined in eqn (32). The rotation operations
in eqn (36) and (37) are due to the difference in friction parallel
and transverse to the axis of the dimer.

The diffusion coefficients for the dimers are obtained by
performing equilibrium simulations in a cell of dimension
L =(32, 32, 15) and with no chemical reaction, all other simulation
parameters are taken equal. The cartesian and angular velocity
distributions for the dimer are shown in Fig. 5.

The dimer is an anisotropic colloid with axial symmetry.
Accordingly, we compute separately the diffusion coefficient
parallel (II) and transverse (L) to its axis as

D, = j:o@(r) T (0))dr,

(38)

where ( is Il or L, following ref. 39. The projected velocities are

defined by
v = (V- a)a
L (39)
L=V
30
T [

10

ol
—0.04 -0.02 0.00 0.02 0.04 —-0.04 —-0.02 0.00 0.02 0.04
Vy Vy

30 1001
80

60

P(v,)
P(9)

404

10
20

—-0.04 —0.02 0.00 0.02 0.04

Vz ¢

—-0.01 0.00 0.01

Fig. 5 The cartesian and angular velocity distributions for the dimer in the
equilibrium simulations. The blue bars form a histogram over the simulation
data and the full orange lines are the Boltzmann distributions at kgT = 1/3.
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with # the unit vector in the direction joining the two spheres.
The angle ¢ measures the deviation of # in the x-y plane with
respect to the unit vector 1,. The results of these simulations
are D; =2.0 x 10 > and D, = 1.5 x 10 >. The rotational motion
is characterised in the same fashion, using the velocity auto-
correlation of angle ¢: (¢(t)$(0)) with the result D, =1.4 x 10 %,
We determine the friction coefficient using the fluctuation-
dissipation relation

kgT

Dy = .
{ 7

(40)

The rotational time D,”* ~ 7100 is such that in the chemotaxis
simulations the dominant angular behaviour reflects the rotational
drift. The contribution of rotational diffusion is nevertheless
visible in the spread of angles in Fig. 10.

6 Results

6.1 Passive sphere

Here, we place a single sphere at the entry of the cell, in the
upper y inlet surrounded by solvent particles of species F. When
&4 # &n,p the y component of the force due to the chemical
gradient is non-zero.

A typical trajectory for the passive sphere is represented in
the x-y plane in Fig. 6. The main component is a displacement
to the right under the influence of the flow, to which thermal
fluctuations are superimposed. For this trajectory, ey r = €4 SO
there is no chemotactic behaviour.

Upon changing &y r, a lateral force is exerted on the colloid
due to the combination of the asymmetry of ¢, and cr with
respect to the colloid and of the difference in surface inter-
action between the colloid and the A and F solvent species. This
situation is one of the passive diffusiophoresis.

The results for passive spheres are summarised in Fig. 7 for all
chosen values of ¢y . For the central panel ey r = ¢4 = 1, the sphere

40 0
-2
35 -
: — -4
> 304
-6
25 1 -8
20 : : : —10
0 5 10 15 20

X

Fig. 6 Example mesoscopic simulation of a passive sphere with &y r = 1.
The black line denotes the trajectory of the colloid that starts on the left at
the entrance of the cell and follows the flow to the right. The motion of the
colloid is constrained to y = L,/2 + ysnire until the release point x = o
(denoted by a black circle), after which it is influenced by the chemotactic
force. The pseudocolor background indicates the strength of the gradient
Ax.y) = 0ycalx.y).
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moves in x down the flow (i.e. from left to right in the figure)
and undergoes diffusive motion in y. For ey r < &4, wWe have
Ana — Anr < 0 and we expect from eqn (24) a lateral force
whose sign is opposite to gradient A. As c¢4(x,y) decreases for
increasing y, 4 < 0 and the chemotactic force is upward, as
confirmed by the panels ey = 0.25 and &y = 0.50. Conversely,
for ex r > &4, the chemotactic drift is negative. This is shown for
enr =2 and ey =4 in Fig. 7.

Fig. 7 reports the results for both the mesoscopic model
and the stochastic model. Given the fluctuating nature of the
colloid dynamics, we have repeated the simulations 16 times
and denote by a shaded area one standard deviation below and
above the average results. We observe that the average trajectories
are similar and also that the spread of trajectories is similar.

This first result on passive chemotaxis provides here the
simplest context for the experimental setup and allows a possible
calibration of the quantity Ay, — Ay without any dependence
on reaction rates.

6.2 Active sphere

We now turn to the chemotactic behaviour of an active sphere.
The injection setup is the same as that for the passive sphere
but now ¢c r = ¢4 and the mechanism that creates a systematic
lateral motion for the passive sphere, that is proportional to
Aca — Ac,r, is effectively zero.

What occurs, instead, is that the local gradient in ¢, generates
an asymmetric distribution also for cz that, together with a
nonzero value for Acp — Ay, creates an original combination
of passive and active diffusiophoresis. Using eqn (29) and obser-
ving that ¢, > 0 (as 4 < 0 everywhere in the simulation), we
expect a downward chemotaxis for Acz — Aca < 0 (i.€. ecp < €a)
and an upward chemotaxis for Agz — Aca < 0 (i.e. ¢y > €4). We
explore the effect of changing ¢;5 in Fig. 8 that confirms this
direction for the chemotaxis of the active colloid. As for the
passive sphere, the comparison between the mesoscopic and
the stochastic models is positive.

Even though the situation of the active sphere is simpler than
the experiments on nanomotors of ref. 9, it already contains a
complex ingredient: the chemotactic force is entirely caused by the
self-generated concentration field around the colloid. Thanks to
the derivations in Section 4, we understand how the asymmetry of
the imposed concentration fields of A and F lead to an asymmetry
in the concentration of B that gives rise to chemotaxis.

6.3 Dimer nanomotor

For the dimer nanomotor, we track in the simulations the
centre-of-mass position 7o, and the orientation ¢. The release
from the injection track occurs here as soon as both spheres
have exited the buffer region and the initial orientation is ¢ = 0.

We have chosen, for the simulation parameters, that
= &n, for all solvent species o. This is at variance with
4,13,27,40 Where

éc
simulations of the prototypical dimer nanomotor
Eca = écp = € # &np. Preliminary tests showed that in this
situation the trajectories are pathological in the sense that
there was no “gentle” deviation of the orientation ¢ and that
no systematic tendency could be found. For nanomotors in a

This journal is © The Royal Society of Chemistry 2017
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Fig. 7 Ensemble trajectories for the passive sphere simulations. The orange (blue) line is for the average position of the colloid in the mesoscopic
(stochastic) simulations and the corresponding filled area indicates + one standard deviation across realisations. There are 16 realisations for every set of
parameters and simulation type.
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Fig. 8 Ensemble trajectories for the active sphere simulations. Organisation as in Fig. 7.

bulk environment with no a priori gradient in the chemical

concentrations, this choice would be irrelevant.

Both the lateral deviation in the x-y trajectories and the
angular deviation for ¢ are reported in Fig. 9 and 10 and are
consistent between the mesoscopic simulations and the stochastic
model. This confirms the adequateness of the combined force-

B 10
X

15

20

0

5 10
X

15

20

the dimer axis, but also from the net lateral force on the centre

of mass whose direction we can infer from eqn (27), (29) and

torque evolution given by eqn (35) and (36) as both the direc-

tions in y and in ¢ are reproduced. The origin of the lateral
deviation can be understood as coming not only from the
redirection of the self-propelling force, that is oriented along

6.4 Comparison to earlier simulation work

(31). To our knowledge, this is the first time that the continuum
force computation of ref. 27 is extended to compute the lateral
force on a nanomotor and the resulting torque on the dimer
nanomotor.

Aside from the geometric considerations that are specific to the
microchannel, the stochastic model that we have designed can

35

341

331 M

>

32

311

0] =025 €c5=0.50 €5 =1.00

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

X X x

Fig. 9 Ensemble trajectories for the dimer nanomotor simulations. The centre-of-mass position is used. Organisation as in Fig. 7.
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Fig. 10 Ensemble trajectories of the dimer nanomotor simulations. Here, the orientation ¢ with respect to the x axis is shown. Organisation as in Fig. 7.
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accommodate other situations. We use it to test, in a qualitative
sense, the observations of ref. 13: we re-use the diffusion
coefficients that we have obtained with our cell geometry and
fluid parameters but change the type of gradient and the
interaction type of the motor to match those of the earlier
paper, which we call the “constant gradient” model. In
ref. 13, Chen et al. designed a cell in which the gradient of

the chemical species A and F is constant,t ie. c4(x,y) = le
y

L,—y
y
and the interaction parameters ¢ between the C sphere and
both solvent species are identical, ec4 = écr = & SO that
there is no chemical gradient force on the C sphere (explicitly,

AC,A = AC,B = AC,F)-

The main findings of Chen et al. are

e The average orientation of the nanomotor is toward y = 0,
even though by a small amount (see the inset of Fig. 4(c) of
ref. 13).

e The average trajectory of the nanomotor is toward y = L,
(see Fig. 7(a) of ref. 13).

We will show here that these results depend strongly on the
choice of parameters for the interaction between the colloid
surfaces and the solvent via three observations: the distribution
of trajectories y(t), the distribution of angles P(0), and the
distribution of position P(y).

We have performed stochastic simulations with ¢, 4 = &7 =
¢c,. = 1 (for all solvent species « and colloid species x) and ey z =
0.25, L, = 30, L, = 15. A harmonic wall with spring constant
kwan = 10 prevents the exit of the colloid and is turned on for
y < 2o0ry > £, — 2. The nanomotors were started in the
x direction, as in ref. 13, to avoid an a priori bias. The results are
displayed in Fig. 11. The distribution of y(¢) trajectories in the
upper panel shows a large spread, from which we cannot
conclude a dominant chemotactic behaviour. Examining P(y),
we see however that there is an average accumulation of particles
close to y = 0. The angular distribution P(0) does show a bias
toward y = 0 (equivalently 0 = n), as in ref. 13.

Until now, there was no chemically-induced force on the C
sphere. To assess the importance of this choice, we perform
another set of simulations ¢cp = ¢y that are shown in Fig. 12.
This parametrisation is the one used for our main results of
Sections 6.1-6.3. From eqn (29)-(32), we know that the torque on
the nanomotor will be influenced by this choice. This is reflected in
the angular distribution P(6) in Fig. 12 that now displays a strong
orientation toward 0 = 0 (i.e. the nanomotor is oriented toward y =
Ly). As a result, there is no competition between a downward-facing
nanomotor and the greater velocity for upward-facing nanomotor
orientation that is observed in ref. 13 and the distribution of y(f)
trajectories is narrow, showing a strong chemotactic behaviour.
This is confirmed by the distribution of positions P(y).

and cp(x,y) =p in the absence of chemical reaction,

i For clarity, we reuse the species labels and orientation of the gradient used in
the present work. This should be kept in mind when comparing with the work of
Chen et al. where the gradient is along x and the species are labelled F for the fuel
(here, A), S for the inert fluid (here, F) and P for the reaction product (here, B).
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Fig. 11 Simulations of the constant-gradient setup with ey = 0.25.
Averages are performed over 40 realisations for 2.5 x 10* < t < 10 x
10 (neglecting the start of the simulations for about 3 typical rotation
times 1/D,). From top to bottom, the panels show the area between
W(t)) — aylt) and (y(t)) + a,(t), the distribution of angles 0 with respect to
the y axis and the distribution of y.

To conclude this comparison, we have observed competing
effects of orientation and propulsion, leading to different chemo-
tactic behaviours. The distribution of angles, for instance,
depends strongly on the parameters chosen for the colloid-
fluid interaction: for the interaction choice of Chen et al., ec 4 =
&c,r = €c,p, We also find an average orientation toward y = 0, but
for the other choice that we used the average orientation is
toward y = L,. The overall chemotactic behaviour will however
also depend on the diffusive and propulsive properties of the
dimer.

Although further research on the experimental characterisa-
tion of the surface properties of the nanomotors is needed, our
stochastic model provides an interesting tool to relate these
properties to the effective chemotactic behaviour of nanomotors.

7 Conclusions

We have proposed a particle-based simulation setup, based on
Multiparticle Collision Dynamics and Molecular Dynamics, to
study the chemotactic motion of passive and active colloids.
The concentration field that drives this motion is sustained by
the flowing input of the cell, via two inlets, as is done in the
experiment described in ref. 9.

This journal is © The Royal Society of Chemistry 2017


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7sm00123a

Open Access Article. Published on 26 April 2017. Downloaded on 10/22/2025 9:42:39 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

251

201

159 !
0 2000

4000 6000

t

8000 10000

0.0 0.5 1.0 15 200 255 30

0.0

0 5 10 15 20 25 30
y

Fig. 12 Simulations of the constant-gradient setup with ¢yp = 0.25 and
ecs = 0.25. Averages are performed over 20 realisations for 2.5 x 10* <
t < 10 x 10* Panels as in Fig. 11.

We then constructed an approximate solution for the chemical
concentration profile in the microfluidic channel in the presence
of an active colloid and built a stochastic model with a micro-
scopic expression for the systematic force. This model provides a
sound basis for the microscopic origin of chemotaxis, ie. it
explains why the colloids move towards higher or lower values
of the coordinate y. Upon extending this model to a two-sphere
dimer nanomotor, we also gain an understanding of why the
nanomotor changes its orientation via a systematic torque. We
have thus improved on the formal understanding of the chemo-
tactic motion in the microfluidic channel.

Our stochastic model, adapted to the setup with a constant
concentration gradient by Chen et al. reproduces the obser-
vation that the nanomotor tends to orient opposite to the
gradient. While Chen et al. observed a net positive chemotaxis,
this is not the case in the present work. The reason is that the
interplay between orientation and propulsion depends on the
geometry of the motor and on the choice of parameters. This
reasoning is supported by changing the surface interaction also
for the C bead, resulting in a cooperation of orientation and
propulsion leading to positive chemotaxis. The specific change in
&c,p, that is not used in the simulation literature but introduced
here in Section 6.3, allowed us to probe a regime of well-defined
positive chemotaxis and demonstrates that the class of simulation
models introduced by Riickner and Kapral®” possesses a very rich
phenomenology.

This journal is © The Royal Society of Chemistry 2017
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It is interesting to note that our stochastic model requires
only the input of the surface interaction parameters 4, , and of
the diffusion coefficients of the dimer. In principle, it could be
extended to other forms of the interaction potential or rely on a
characterisation of A, , that does not reveal the full functional
form of this potential, and also to other motor geometries.
While we have chosen Ay, = Ac,, for all solvent species « for
this first investigation of the model, there is room for possible
qualitative changes with other choices, as we have witnessed for
the constant gradient configuration.

The overall speed of the motor, as it was the case in earlier
simulation studies for dimer nanomotors, only depends on
Ana — /IN’B.27 The torque, on the other hand, depends also on
Aca — Acp. A difference in these quantities, and thus in the
surface properties of both sides of the nanomotor, could be
revealed in a controlled manner in experiments and this reinforces
the importance of the microfluidic channel configuration for
chemotactic studies.

The present work can be extended to other types of motors,
notably the Janus nanomotors that are used in ref. 9 and for
which colloidal assemblies have already been used in meso-
scopic simulations.*" This line of research is promising to test
in silico the behaviour of different motor geometries. Using
models suitable for the chemo-mechanics of enzymes, at a meso-
scopic level,”>™* could provide very fruitful advances for under-
standing the recent works on enzyme chemotaxis,"""> especially
given the fact that multiple inlet microfluidic devices originate
from studies on bacterial chemotaxis**> and have been used for the
enzyme studies.""?

Appendix
A Computational reproducibility

In this appendix, we review how the present work can be repro-
duced. The software and parameter files are all available publicly
under open-source licences. We have prepared supplementary
material that contains the relevant parameter files for the meso-
scopic simulations and the code for data analysis and archived
them with Zenodo,§ available as ref. 46.

All mesoscopic simulations are performed using the open-
source software package RMPCDMD?**?° for the simulations
of passive and active colloids, developed by the authors with
Mu-Jie Huang and Peter Colberg. The output of RMPCDMD
consists of HSMD* files that contain the full trajectory for the
colloids, the thermodynamic observables and the correlation
functions (velocity autocorrelation functions and mean-squared
displacement).

All stochastic simulations are performed using Python, NumPy
and Cython in a Jupyterq notebook. The analysis of both types of
simulations and the execution of the stochastic model simula-
tions are done in the notebook colloidal chemotaxis.ipynb,
except for the constant gradient model that is implemented
in a separate Cython module stochastic_nanomotor.pyx and

§ https://zenodo.org/
9 http://jupyter.org/
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driver program run_cg_nm.py. The equilibrium simulations for
the dimer are analysed in the notebook diffusion.ipynb.

The references for the software are the following: NumPy*®

is used for all numerical work in the analysis of the meso-
scopic model and overall for the stochastic model, SciPy*® is
used for computing the erf function and for numerical inte-
gration, matplotlib® to generate the figures, Mayavi®* for Fig. 2,
h5py®® to read simulation data, Cython® to accelerate the nano-
motor stochastic simulations, gfortran®* to build the RMPCDMD
code.
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