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The role of optical projection in the analysis of
membrane fluctuations†
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The spectral analysis of thermal fluctuations, or flickering, is a

simple and non-invasive method widely used to determine the

mechanical properties of artificial and biological lipid membranes.

In its most common implementation, the position of the edge of a

cell or vesicle is tracked from optical microscopy videos. However,

a systematic disagreement with X-ray scattering and micromechanical

manipulation data has brought into question the validity of the

method. We present an improved analysis protocol that resolves these

discrepancies by accounting for the finite vertical resolution of the

optics used to image fluctuations.

The spectroscopy of shape fluctuations is a general technique
to infer the mechanical properties of soft and biological matter.
Specifically, fluid membranes are very soft and analysis of shape
conformations allows one to characterise physical properties
and aspects of the biochemical activity: the ‘‘flickering’’ of giant
unilamellar vesicles (GUVs) and red blood cells (RBC) is a classic
example.1 In flicker spectroscopy, the equatorial fluctuations of
GUVs are imaged through video microscopy and reconstructed
by image analysis, yielding a power spectrum that is then compared
to a theoretical model to retrieve the membrane tension s and
the bending rigidity k. The latter is an intrinsic property of the
membrane that affects its dynamics and structure, as well as
morphology, motility, and endocytosis in living cells.2 Flickering
experiments are widely used to assess the differences in the

membrane rigidity of various lipid compositions, since only a
basic microscope is needed, the sample preparation procedures
are well established and direct manipulation of the membrane
can be avoided. However, the absolute value of k measured via
flickering is systematically larger than those obtained by X-ray
scattering, direct manipulation of GUVs and active driving,3 as
reported in Table 1 for 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC). Here we show that this discrepancy arises from the
inadequacy of the theoretical models currently used to fit
experimental data. Specifically, these ignore the finite focal depth
of the setups used to image the membranes, which ultimately
projects some out-of-focus fluctuations onto the imaging plane.
We introduce a theoretical model that accurately accounts for
these projections, and test it on experimental data collected with
a fast scanning confocal microscope, in which the focal depth is
precisely set.4 When compared with standard flickering analysis
on DOPC vesicles (that gives k = 28 � 3kBT), we observe a 30%
reduction in the measured values of k and find an excellent
agreement with the alternative experimental methods. Our
technique can be applied to any optical microscopy setup, once
the focal depth is known; a proof-of-concept analysis of a phase
contrast imaging experiment is reported in the ESI.†

A fluctuating GUV can be described as a quasi-spherical
shell S � R[1 + u(y,j)]r̂, where (y,j) are the spherical angular
coordinates, u(y,j) is a small deviation about a sphere of radius

Table 1 Measurements of the bending rigidity k (in units of kBT) for DOPC
lipid membranes from different experimental techniques, including the
estimate of the present work and the previous literature values (shown as a
weighted average of the estimates from each cited work)

Experimental method k/kBT

Flicker spectroscopy of GUVs
Literature values10,11 28 � 3
Present work – no optical projection 27 � 1
Present work – optical projection 19 � 1
Active driving of GUVs10 21 � 3
Pulling membrane tethers12,13 20 � 4
X-ray scattering on bilayer stacks14–17 18 � 2
Micropipette aspiration of GUVs18–20 20 � 2
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R, and r̂ is the radial unit vector (see Fig. 1a). The free-energy of
the vesicles is described by the Helfrich Hamiltonian, which
depends on k and s.5 By expanding this Hamiltonian to second
order in u, written in the basis of the spherical harmonics Y m

n as
uðy;jÞ ¼

P
n¼0

P
jmj�n

Um
n Y

m
n ðy;jÞ, with Um

n the mode amplitude,

one can express the time-averaged mean square fluctuation
amplitudes as follows:6

Um
n

�� ��2D E
¼ kBT

kðn� 1Þðnþ 2Þ nðnþ 1Þ þ �s½ �; (1)

where n and m are the integer mode numbers with n Z 2 and
|m| r n, �s = sR2/k� 2H0R + 2H0

2R2 is the reduced tension, H0 is
the mean spontaneous curvature, kB is the Boltzmann constant, and
T is the temperature. The decay time of each mode is given by:6

tn ¼
R3 Zin

ðnþ 2Þð2n� 1Þ
nþ 1

þ Zout
ðn� 1Þð2nþ 3Þ

n

� �

k n� 1ð Þ nþ 2ð Þ nðnþ 1Þ þ �s½ � ; (2)

with Zin and Zout as the viscosities of the fluid found inside and
outside of the vesicle, respectively.

Membrane fluctuations are recorded by microscopy imaging
in 2D, normally around the equatorial plane. Thus, experimental
data have been typically compared with mode amplitudes
obtained by projecting the modes in eqn (1) onto the plane
y = p/2; see ref. 7 and the ESI† for a full derivation. However, due
to finite depth of focus, the experiments cannot isolate the
signal from the equatorial plane alone. What is actually observed is a

projection over the strip of membrane that lies within a focal region
near the equator, as shown in Fig. 1(a); this strip can support a
spectrum of surface modes that are partially averaged out in projec-
tion. This averaging effect is expected to be particularly strong for
modes q \ 1/D, where D is a non-dimensional parameter given by
the ratio of the focal depth of the microscope to the vesicle radius R.

In the case of fluorescence microscopy, where the membrane
is assumed to be uniformly labelled with fluorophores that emit
isotropically (see Fig. 1b), we idealise the acquired optical signal
as a convolution of the membrane shape with a Gaussian of
width equal to the focal depth. Namely, light arriving from
height z above (or below) the focal plane has intensity scaled by

GðzÞ ¼ exp � 1

2
z2ðRDÞ�2

� �
. Thus, the projected intensity field on

the equatorial plane is

Iðr;jÞ /
ð
dOG r0 cos y0ð Þd r� r0 sin y0ð Þ

d r0j0 sin y0 � rjð Þd r0 � R 1þ u y0;j0ð Þ½ �ð Þ;
(3)

where
Ð
dO �

Ð1
0 dr0r02

Ð p
0dy

0 sin y0
Ð 2p
0 dj0, r and j are the polar

coordinates, and d is the Dirac delta function. Experiments
detect I(r,j) and locate the apparent membrane contour as
the first radial moment rDðjÞ ¼

Ð1
0 rIðr;jÞdr

�Ð1
0 Iðr;jÞdr.

Deviations of rD(j) are analyzed in Fourier space, where they
are written as mq(t) and are non-dimensionalised by R. By defining
�mqðtÞ � t�1

Ð t
0
dt 0mq tþ t 0ð Þ to account for microscope exposure

time t, the mean square amplitude can be exactly computed

�mqðtÞ�mq�ðtÞ
� �

¼
X
n�q

Ln;q
2 Uq

n

�� ��2D Etn2
t2

1� e
� t
tn

h i2
; (4)

where Ln;q ¼
Ð 1
0doP

q
nðoÞfDðoÞ 1þ ð�1Þnþq½ �, with Pq

n(cos y) � Yq
n

(y,j = 0), and fD(o) is defined by

fD ¼
o2 þ 2D2

D2
e
1�2o2

4D2

pI0
1

4D2

� � �

o2 þ D2

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� o2
p erf

1

D
ffiffiffi
2
p

� �
e
1�o2

2D2

pI02
1

4D2

� � ffiffiffi
p
2

r ; (5)

where erf is the error function, and I0 is the modified Bessel
function of the first kind of order zero.8 A complete derivation of
eqn (4) and (5), and the comparison with the standard formula
(which is recovered in the limit D - 0) is provided in the ESI.†

The experiments are performed on GUVs prepared by means
of electroformation as in ref. 9, with DOPC and the fluorescent
lipid Texas Red 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanol-
amine (DHPE) in proportions of 99.2% and 0.8%, respectively.
Videos of the equatorial fluctuations of GUVs are collected on a
Leica TCS SP5 II scanning confocal microscope, using a HCX-PL-
APO-CS 40.0	 oil immersion objective with numerical aperture
NA = 1.30. The focal depth is defined by the pinhole size of the
microscope, which allows us to experimentally obtain the value
of D by fitting the intensity profile along the z-direction to a
Gaussian form of standard deviation RD. The position of the
equatorial contours in every frame is determined with sub-pixel
precision by correlating the radial intensity profile with a template.

Fig. 1 (a) Schematic diagram of a fluctuating vesicle. Here, the focal plane
of the microscope is shown in light blue, while the green slab depicts the
region within the focal depth D (hereinafter, non-dimensionalised by the
mean vesicle radius), where the surface modes are averaged in projection.
Here, j A [0,2p) measures the azimuthal angle, while y A [0,p] measures the
zenith angle or latitude. (b) Sketch of a scalar field I(r,j), corresponding to
the membrane density (mass, or intensity for fluorescent GUVs) projected
onto the focal plane from within the focal depth (red is high density, blue is
low). The solid black line represents the first radial moment of I(r,j),
written rD(j). (c) Confocal fluorescence images of a GUV of mean radius
R = 10.2 mm at increasing values of D, as fluorescence is captured from a
greater area of membrane. The radial distribution reflects the underlying
membrane flickering. The scale bar is 5 mm.
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By Fourier transforming the contours and averaging over
B2000 frames, we extract the mean-squared amplitude of the
equatorial modes Fq(D), which can be directly compared with
the model (eqn (4)); see ESI† for full experimental details. Note
that a cutoff condition in the mode spectrum, q t Q, arises due the
finite temporal resolution of the microscope, particularly the rate at
which the illumination spot is raster-scanned across the field of
view. With our setup we typically obtain Q E 20 (see ESI†). The
accessible wave number is also limited by the spatial resolution of
the setup to q t qw = R/W, where W is the lateral width of the
diffraction-limited illumination spot.

Using eqn (4), the best-fit values of k and �s to the experimental
spectrum Fq(D) are found by means of a maximum posterior
estimate,21 assuming a uniform prior and that the measurement
errors are independent and Gaussian; namely, we seek to minimise

wD
2ðk; �sÞ ¼

Xqmax

q¼qmin

�mqðtÞ�mq�ðtÞ
� �

� FqðDÞ
	 
2

Sq
2ðDÞ ; (6)

where Sq(D) is the standard error in the mean associated with Fq(D).
Here, qmin and qmax define the lower and upper bounds of the fitting
range, respectively, with the former chosen to be qmin = 3. Due to the
rapid convergence to zero of Ln,q

2, the sum in eqn (4) is truncated
at the mode n = q + 30. On the other hand, the upper bound of the
fitting range is selected as one that maximises the posterior
probability P(qmax|DD) based on data DD = {Fq(D)}q. This can be
numerically computed, but further analytical progress can be
made by expanding wD

2(k,�s) to second order around the best-fit
values of k and �s, which yields the following expression:

P qmaxjDDð Þ / e�wmin
2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det Hminð Þ
p Yqmax

q¼qmin

1

SqðDÞ
; (7)

where wmin
2 = min[wD

2(k,�s)], and Hmin is the Hessian matrix of
eqn (6) evaluated at the best-fit values. We also impose that qmax

must be greater than the crossover qc � R
ffiffiffiffiffiffiffiffi
s=k

p
,‡ and less than

the cutoffs qw and Q. In other words, the optimal fit is achieved

when wD
2(k,�s) is minimal and simultaneously its upper bound

qmax A (qc, min(qw,Q)] maximises the probability in eqn (7). If
qmax lies outside the interval discussed above, then the dataset
DD is rejected. See ESI† for details, code and example files. The
maximum posterior estimate can be applied to datasets D

containing spectra from N different vesicles imaged with different
D. In this case, since s is not a material property of the bilayer, the
posterior probability becomes an (N + 1)-dimensional function
P(k, �s1,. . .�sN|D), with a different �sc for each c-th vesicle. As in
eqn (6), we assume a uniform prior and that the measurement
errors are independent and Gaussian; thus, maximising this
posterior probability function is equivalent to minimizing wD

2 �
SDScwD

2(k,�sc), where each individual qmax is given by the max-
imum of eqn (7).

By imaging three GUVs with radii between 6–17 mm at
various pinhole sizes, the fluctuation spectrum associated with
each D yields an individual estimate for k and s. A systematic
decrease in the inferred value of k is found when the data is
fitted with the model in eqn (4) in comparison with the
‘‘standard’’ model that considers only equatorial fluctuations,
i.e. D = 0 (see Fig. 2a). Using a maximum posterior estimate
based on the data of all the vesicles imaged at different D, we
find k = 19 � 1kBT (Fig. 2b), in perfect agreement with literature
values obtained with X-rays and micromanipulation techniques
(see Table 1). In contrast, by fitting all spectra with the
conventional model (D = 0), we find that k = 27 � 1kBT, a value
compatible with the literature estimates of k obtained by
conventional flickering analysis (see Table 1).

Large discrepancies in the inferred surface tension values
are also to be expected. To illustrate the dependence of the
inferred values of k with the focal depth, the conventional
fitting procedure is repeated at arbitrary non-zero values of D
for all of the spectra in D, yielding an interpolated curve
depicted by the green line in Fig. 2b. This shows how increasing
the focal depth can result in an apparent increase in k if its
effects are not properly analysed.

Fig. 2 (a) Fluctuation spectrum for a GUV (R E 10.2 mm) imaged via confocal fluorescence microscopy, with D = 0.07 and tE 1.2 ms, on a log–log scale.
Lines are the best-fit for the ‘‘standard’’ model (i.e. incorrectly assuming D = 0, red), and eqn (4) with D = 0.07 (blue). Both fits are of similar quality, but
their best-fit values are significantly different, see the inset table (same colors). Dashed lines give their extrapolation outside the fitting range. The error-
bars are standard errors in the mean, scaled up by a factor 10 to improve visibility. Inset plot shows the residuals Re(q), normalised to the standard
deviation. (b) Values of k from the analysis of three GUVs of radii 6.4 mm (purple), 10.2 mm (black), and 16.7 mm (red), observed at different values of D. The
blue dashed line is the estimate of k from the entire dataset D, found by maximizing the posterior probability P(k,�s1,�s2,�s3|D), where �sc is the
corresponding reduced surface tension of c-th vesicle. This yields k = 19 � 1kBT (the blue band is the 95% confidence interval). The green curve shows k
inferred by fitting the data D at fixed D. Large errors arise if D is not accounted for correctly; the value k E 27kBT, found at D = 0, corresponds to the use
of the ‘‘standard’’ model to fit the experiments. The correction is also important for GUVs of varying radius, even when imaged with same optics.
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In conclusion, a new methodology is developed for the
analysis of flickering data that can accurately account for the
finite focal depth of the optical imaging setups. Thus, this resolves
a systematic inconsistency in the estimated values of bending
rigidity, bringing flickering into full quantitative agreement with
other methods such as X-ray scattering and micromanipulation
techniques. Neglecting this correction leads to a systematic and
size-dependent error which is unfortunately present in all
(hundreds) published papers. Using our approach, flickering
analysis is now competitive in terms of accuracy with the
aforementioned methods, allowing the user to exploit its several
advantages in terms of easiness of use and simplicity, as it relies
on general purpose and easily accessible equipment, it is non-
invasive, and can be integrated into microfluidic devices.
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