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A self-consistent mean-field model
for polyelectrolyte gels†

Oleg Rud,ab Tobias Richter,c Oleg Borisov,ade Christian Holmc and Peter Košovan*b

We present a novel approach to modeling polyelectrolyte gels, exploiting the analogy between

star-branched polymers and polymer networks as a computationally inexpensive yet reliable alternative

to full-scale simulations. In the numerical mean-field model of a star-like polymer we modify the

boundary conditions to represent an infinite network. We validate the predictions of our new model

against a coarse-grained simulation model. We also validate it against a phenomenological analytical

model which has been previously shown to agree with simulations in a limited range of parameters. The

mean-field model explicitly considers local density gradients and agrees with the simulation results in a

broad range of parameters, beyond that of the analytical model. Finally, we use the mean-field model

for predictions of the swelling behaviour of weak polyelectrolyte gels under different pH conditions. We

demonstrate that the local density gradients are important and that the ionization of the weak

polyelectrolyte gel is significantly suppressed. Under the studied conditions the effective pKA is about

one unit higher than that of the free monomer. This shift in the effective pKA stems from the different

pH values inside and outside the gel.

1 Introduction

The swelling capacity of polyelectrolyte gels is much greater than
that of neutral polymer gels because of the additional osmotic
pressure contributions of small ions confined in the gel and
mutual repulsion of polymer-bound charges. While modeling of
the swelling behaviour of neutral gels can be considered well
understood in terms of the Flory–Rehner theory and the related
later developments,1,2 this is not true for polyelectrolyte gels. On
the one hand, phenomenological analytical theories exist, which
provide relatively simple explanations of the swelling behaviour
in terms of different contributions to the free energy.3–6 These
theories typically assume a homogeneous gel phase in equilibrium
with the bulk solution that can be characterized by a few macro-
scopic parameters. On the other hand, particle-based coarse-grained
models have been used in several simulation studies.7–15

The simulations sample particle configurations and therefore
explicitly account for correlations between different species.
Their disadvantage is that they are much more computationally
expensive when compared to analytical theories. When it comes
to modeling pH-sensitive (weak) polyelectrolyte gels, where the
dissociation of gel segments is a result of chemical equilibrium
determined by solution pH, theoretical and simulation literature
is quite scarce. On the side of simulations, an additional limiting
factor is the necessity to explicitly account for the dissociation
equilibrium. On the theoretical side, it is the lack of suitable
analytical models that would account for the different ionizations
of polyelectrolytes, as compared to free monomers. Therefore the
existing literature employs a number of simplifications, e.g., the
use of ideal ionization equilibrium to describe the ionization
inside the gel6 in the analytical models or fixed ionization which
is assumed to increase linearly with solution pH.16,17 An inter-
esting approach to swelling of nanogels has been proposed by
Jha et al.,18,19 which combines explicit particle simulations with a
density functional approach used earlier for grafted polyelectrolyte
layers.20,21 Using a similar approach, Longo and coworkers14,22

combined coarse-grained simulations with local ionization
equilibria to study the swelling of pH-sensitive hydrogel layers.
Most of the above simulation works have employed a diamond-
like topology for their model networks.7,9–13,15 This is an idealized
representation of the most common experimental situation with
four chains emanating from each node of the network, e.g. in gels
obtained by photocrosslinking. However, model topologies
derived from a simple cubic lattice with six chains attached to
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a node have been used as well.8,14,22 Several other theoretical
works on polyelectrolyte microgels explicitly considered density
gradients across the gel–solution interface.23,24 However, the
above approaches, which require explicit particle simulations,
are computationally rather expensive. Apparently, an inexpensive
method, which would provide a first approximation to the local
density variations inside polyelectrolyte gels and to their ionization
response, seems to be lacking.

In this work we present a novel approach to model the
swelling behaviour of polyelectrolyte hydrogels, based on the
numerical self-consistent field model due to Scheutjens and
Fleer (SF-SCF),25 which has been used for studies of star-like
polyelectrolytes.26–30 We propose that a covalently cross-linked
polyelectrolyte hydrogel can be viewed as a collection of spherically
symmetric star-like polyelectrolytes, mutually connected together
by end segments of the arms, as schematically shown in Fig. 1.

We demonstrate the capabilities of the numerical SF-SCF
approach by comparing results to recent simulation data and to
an analytical model that has been shown to successfully predict
the swelling of polyelectrolyte gels within a limited range of
parameters.13

The newly proposed approach has the advantage that it explicitly
treats the concentration gradients of all the involved species in the
radial direction with respect to the node of the hydrogel network
(the centre of the star in the mean-field representation). Once
validated against the simulation data on strong polyelectrolyte gels,
the SF-SCF approach can be easily extended to predict the swelling
of weak polyelectrolyte gels with pH-dependent ionization and to
poor solvent conditions, where radial variations of the properties
significantly affect the behaviour that result in non-trivial features.
The spherical symmetry approximation used in the model provides
a correction to the most relevant density gradients in the radial
direction, but neglects the angular correlations. At the same
time, it allows us to reduce the three-dimensional problem to a
one-dimensional one, which saves a tremendous amount of
computational cost. In addition, our approach provides a guide-
line to extrapolate the existing theoretical knowledge about star
polyelectrolytes to polyelectrolyte gels.

2 Models

The target system represented by our models is a hydrogel
network made up by polyelectrolyte chains. All chains consist of
the same number of segments N = 79, and are connected to a
diamond-like network with f = 4 chains connected to each node.
We consider two situations: (i) a strong polyelectrolyte in which
some segments are permanently ionized while others are not;
(ii) a weak polyelectrolyte in which all segments are subject to
the ionization reaction

HA ! A� + H+ (1)

where HA and A� denote the protonated and deprotonated
form of the acidic monomer unit A. We denote by a the fraction
of ionized groups on the chains, such that on average there are
aN charged segments per chain. The gel is in equilibrium with a
bulk reservoir of monovalent salt solution at concentration cb

s .
The salt concentration inside the gel, cg

s, is the result of our
calculation, determined by the equivalence of chemical potentials
of mobile ions in the bulk and in the gel phase. For simplicity of
notation, we refer to the salt as ‘NaCl’.

In the strong polyelectrolyte case we fix the degree of
ionization a = 1, 1/2, 1/4, and 1/8 with regularly spaced charges,
such that one ionized segment on the polymer is followed by
(1/a � 1) non-ionized ones. In the weak polyelectrolyte case, the
reaction in eqn (1) is characterized by an equilibrium constant,
KA. Then pKA and pH are the input parameters of the model,
and a is the result of the calculation. We choose pKA =�log10 KA = 5
as a typical value for monomers containing weak carboxylic
acids, such as acrylic acid.

In the weak polyelectrolyte case, we use as to denote the
probability that the segment with ranking number s (counted
from the network node) is ionized. Then we define the overall
degree of ionization of the gel, a as the average over individual
segments:

a ¼ 1

N

XN
s¼1

as: (2)

Fig. 1 (A) Network of polyelectrolyte chains is considered as the set of stars. The arm ends, representing midpoints of the gel strands, are fixed at a
certain distance, Rstar, from the centre. (B) Representation of the star as random walks on the one-dimensional array of concentric spherical layers with
the end segments pinned in a particular layer given by Rstar. The box size Rbox is chosen such that the volume of the coloured regions in (A) and (B) is
equal. (C) Simulation snapshot showing the simulation model of the gel. Periodic images of the gel outside the unit cell are shown as well to illustrate the
quasi-infinite connectivity of the network.
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Similarly we define the local degree of ionization, a(r), as a
fraction for ionized segments out of all segments at given
distance r from the network node.

For the bulk salt concentration we use the values 0.01 M r
cb

s r 0.2 M in order to cover the range from potable water to
seawater, motivated by the potential application of charged
hydrogels to water desalination.12,31 The analytical calculations
and the numerical mean-field calculations were performed also for
a broader range of values of a and cb

s than those mentioned above.
We use three different models to study the properties of the

gels, each of them employing a different level of approximation.
� The analytical model based on our modification of the

theory of Katchalsky and Michaeli,3,13 hereafter referred to as
the analytical model.
� The coarse-grained simulation model of the Kremer–Grest

type with explicit particles and charges, and implicit solvent,
identical to our preceding publication,13 hereafter referred to as
the simulation model.
� The mean-field model based on the Scheutjens–Fleer self-

consistent field (SF-SCF) model for star-like polyelectrolytes,
and on the analogy between gels and stars, hereafter referred to
as the mean-field model.

Although the above-mentioned models all represent the
same hydrogel, due to the different approximations they differ
in some specific details of the representation. In the following
paragraphs we briefly outline each of these representations,
focusing on the differences. For the analytical model and for
the simulation model we only provide a brief description, and
refer to the preceding publication for additional details.13

2.1 The analytical model

The analytical model of Katchalsky and Michaeli,3,13,32 that we
extended recently to account for finite extensibility of the chains,
is based on the analogy between the swelling of a polyelectrolyte
gel and stretching of an individual strand between two crosslinks.
The end-to-end distance of the strand, Re, and the volume per
chain of the gel, V, are coupled assuming affine deformation:

Re
3 = AV, (3)

where the coefficient A is defined by the topology of the network.
For the diamond network used here (see Fig. 1), A ¼

ffiffiffiffiffi
27
p �

4 � 1:30.
The affine deformation holds well close to the full extension but
deteriorates for less extended chains, which results in systematic
errors of up to 30% in the predicted end-to-end distance.13 The
mechanical equilibrium is found by balancing different con-
tributions to the pressure (each of them being the derivative of
the corresponding free energy contribution):

�@F
@V
¼ Pext ¼ Pel þ Pstr þ Posm þ Pint: (4)

The free swelling equilibrium is attained at the external pressure
Pext = 0, while Pext 4 0 corresponds to a gel under compression,
and Pext o 0 corresponds to a gel under tension. The short-range
interaction contribution is assumed to be negligible under good
solvent conditions, Pint E 0. The electrostatic contribution, Pel, the

osmotic contribution, Posm, and the chain stretching contribution,
Pstr, attain the form:

Pel ¼ �kBT
cp

N

ðaNÞ2lB
3Re

2:5x
ð1þ xÞ � lnð1þ xÞ
� �

; (5)

Pstr ¼ �kBT
cpRe

3aN
L�1

Re

aN

� �
�L�1

R0

aN

� �� �
; (6)

Posm = kBT(2cg
s + acp � 2cb

s ), (7)

where a is the segment size, cp is the polymer concentration in
the gel, lB is the Bjerrum length and L�1(Re/aN) is the inverse
Langevin function to account for finite extensibility. The term
Pel in eqn (4) accounts for the intra-chain electrostatic repulsions.
Parameter x in eqn (5) has been introduced to simplify the
notation:

x ¼ 6

kR0

V

V0

� �1
3
; (8)

where k is the inverse Debye screening length inside the gel,
V0 = R0

3/A is the volume of the corresponding neutral gel, and
R0 = 1.18N0.588 is the end-to-end distance of the corresponding
neutral chain in athermal solvent. The prefactor 1.18 has been
determined numerically for our simulation model.13

With V0 as the reference state, we define the swelling ratio as

Q = V/V0. (9)

The salt concentration in the gel, cg
s, which is needed as an

input for the calculation of Posm in eqn (7), and of the Debye
screening length in eqn (8), couples the swelling equilibrium
and salt partitioning:

cgs ¼
acp
2

� 	2
þ cbs

 �2

C

� �1=2

� acp
2
; (10)

C ¼ exp
cp

2 c
g
s þ acp


 � 6a2NlB
kR0

2ð1þ xÞ

 !
: (11)

With C = 1 eqn (10) reduces to the Donnan equation for partitioning
of charged solute across a semi-permeable membrane. The Donnan
equilibrium explicitly considers electroneutrality but otherwise
assumes ideal behaviour of the solute. Deviations from the ideal
behaviour due to interactions between the polymer and small ions
are comprised in the term C. In the numerical implementation, we
calculate the external pressure via eqn (4) for a series of values
of Re to obtain the pressure–extension relation. Interpolating
between these values, we obtain the gel swelling ratio at the
desired pressure, e.g. Pext = 0 for free swelling equilibrium.

2.2 The coarse-grained (CG) simulation model

Here, we restrict ourselves to a brief summary, since this model
is identical to the one used in our previous publications,12,13

where a full-detailed description can be found. Similar models have
been used by other authors to study polyelectrolyte gels.9–11,33–35 In
this work, we extended our earlier simulation results beyond
the Manning condensation threshold36 to a = 1.0. In brief,
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the gel network consists of polymer chains interconnected in a
diamond topology via the finite-extensible nonlinear elastic
potential, with excluded volume modeled by a purely repulsive
Weeks–Chandler–Andersen potential. Charged segments, their
counterions, as well as salt ions are modeled explicitly as
charged particles with excluded volume, while solvent is treated
as a dielectric continuum with the relative permittivity er = 80.
Equilibrium with the salt reservoir is ensured by insertion/deletion
of salt ions in a semi-grand canonical Monte Carlo manner. The
effective particle size and bond length are set to a E 0.35 nm,
which ensures that the linear charge density at full ionization is
lB/a E 2, where lB E 0.71 nm is the Bjerrum length in water at
300 K. The same ratio of lB/a yields the concentration dependence
of the chemical potential of the coarse-grained salt solution which
is consistent with experimental data on NaCl up to cb

s E 1 M.13

We carry out a series of molecular dynamics simulations
with the Langevin thermostat for fixed sizes of the simulation
box to obtain the pressure–extension relation and interpolate to
find the gel volume at a given pressure.

2.3 The numerical mean-field model

Here we exploit the idea originally suggested to us by A. Polotsky,
that a gel can be viewed as a collection of interconnected star-like
polymers under tension, as illustrated in Fig. 1. As discussed below,
this provides some advantages over the traditional depiction as a
collection of linear chains.

Our mean-field model of a crosslinked gel is derived from
the model of a star-like polyelectrolyte,27 based on the Scheutjens–
Fleer self-consistent field (SF-SCF) approach described in more
detail in Section 2.4. The star is placed in the centre of the
spherical coordinate system, and spherical symmetry is assumed,
explicitly accounting for the radial gradients in the densities and
neglecting all angular correlations.

To map the star to the gel, we use f = 4 arms, each of which
has half the length of the strand connecting two nodes of the
network, N/2. The key aspect of representing the gel as a star consists
of fixing the end segment of each arm at a particular distance,

Rstar = Re/2, (12)

where Re is the extension of the corresponding gel strand. We
then fix the radius of the simulation box to

Rbox = (Ap/12)�1/3Rstar, (13)

in order to preserve the volume per chain given by eqn (3), as
illustrated in Fig. 1.

Besides the star we introduce salt ions, Na+, Cl�, and water.
The bulk concentrations of the salt ions and the H+ ions are
fixed in the outermost layer of the box, which defines the
boundary condition for the semi-grand canonical calculation.
The concentration of OH� ions is determined by explicitly
considering the autoprotolysis reaction of water. The salt
concentration in the gel is then obtained as the total number
of salt ions in the box, divided by the box volume:

cgs ¼
3

4pRbox
3

ðRbox

r¼0
4pr2cgs ðrÞdr; (14)

where r is the distance from the centre of the box. In the same
manner we define the concentration of H+ ions in the gel, cg

Hþ .
In order to get the pressure from the mean field model,

we use the partial open Helmholtz free energy, defined as
Fpo ¼ F �

P
i

Nimi. This quantity is analogous to the Grand

potential for open systems. The main difference is that our
system is open to all particles but the macromolecule, which is
fixed at the centre, hence the term partial open. We calculate
pressure as a numerical derivative using the seven point
stencil37

Pext ¼
@Fpo

@Vbox
¼ @Fpo

@Rbox

@Rbox

@Vbox
: (15)

Finally, we determine the swelling ratio from the mean-field
model by linear interpolation between the values of Rstar which
are closest to Pext = 0 using

Q ¼ Rstar

Rref
star

� �3

; (16)

where Rref
star corresponds to the free swelling equilibrium of the

same star but with a = 0.

2.4 The Scheutjens–Fleer self-consistent field
implementation

In the Scheutjens–Fleer self-consistent field method, SF-SCF,25,38

the free energy is expressed as a function of the density profiles of
all the system components, i.e. polymer segments, free ions, and
the solvent. This method has been described many times in the
literature. Therefore we only point out the essential parts of it and
refer the reader to the existing literature for further details.25,27,29

The one-dimensional spherical approximation employed here
reduces the three-dimensional problem to a one-dimensional
spherically symmetric problem, which greatly reduces the number
of iteration variables and speeds up the search for the optimum
solution. Assuming spherical symmetry, the central segment of the
star is placed at the centre of a system of M concentric shells (layers)
of constant thickness a = 0.35 nm, which also defines the effective
size of the monomer and of all other species in the system. The
mean-field potential ux(z) experienced by segments of type x in layer
z can be expressed as

uxðzÞ ¼ ux
0 ðzÞ þ nxecðzÞ þ kBT

X
y

wxy jyðzÞ
D E

; (17)

where e is the elementary charge, nx the valency of segment x.
The term ux

0(z) is the Lagrange field due to the incompressibility
constraint,25 and the second term accounts for the electrostatic
interactions. The last term accounts for the short-ranged inter-
actions by means of the Flory–Huggins parameter w. The notation
hj(z)i stands for the density averaged over layers adjacent to z.
The suitable value of w is determined by quantitative comparison
with the simulations as explained in Section 3.1.1. The local
electrostatic potential, c(z), is obtained by solving the discretised
Poisson equation in the spherically symmetric system, with the
density profiles of all charged species as input parameters. As is
implied by eqn (17), angular density gradients within a given
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layer are neglected, while density gradients in the radial direction
are explicitly considered in the potentials. All components in the
system follow the Boltzmann distribution with respect to the
potentials, and therefore the statistical weight of finding component
x in layer z is given by

Gx(z) = exp(�ux(z)) (18)

The SF-SCF formulation introduces a propagator scheme, which
allows us to compute the density profiles from the given potentials,
taking into account the connectivity of chain-like molecules and all
their possible conformations which satisfy the given constraints – in
our case it is fixation of the first segment at z* = 1. Then the
propagator scheme is as follows:

Gx(z,s|z*,1) = Gx(z)hGx(z,s � 1|z*,1)i (19)

Gx(z,s|N) = Gx(z)hGx(z,s + 1|N)i (20)

where Gx(z,s|z*,1) denotes the statistical weight of a segment
with ranking number s in layer z for a conformation with
segment 1 in layer z*, and Gx(z,s|N) is the statistical weight of
segment s in layer z for a conformation which starts with
segment N in any layer. With the initial conditions Gx(z,N|N) =
Gx(z) and Gx(z*,1|z*,1) = Gx(z*) eqn (19) and (20) can be solved
recursively. The volume fraction profiles, jx(z,s), then follow as

jxðz; sÞ ¼ Cx
Gx z; sjz�; 1ð ÞGx z; sjNð Þ

GxðzÞ
(21)

where Cx is the normalization constant. The volume fractions
of each species are related to molar concentrations as c =
j/(1000NAa3) mol dm�3.

For weak polyelectrolytes it is necessary to consider different
states of the ionizable species (polymer segments and water
molecules). Then the above equations are modified such that
the fraction of species of type j in state k is given by39

aj,k(z) = ab
j,k(z)Gj,k(z)/Gj (z) (22)

where ab
j,k(z) is the corresponding fraction of species j in state k

in the bulk, i.e., in the absence of any field. Because the ionized
and non-ionized states have different charges, they experience
different potentials and attain different statistical weights in
each layer. At the same time, the local concentrations of ionized
and non-ionized polymer segments are coupled by the relation

aðzÞ
1� aðzÞ ¼

KA

cHþðzÞ
(23)

where a(z) is the local degree of ionization in layer z. Similarly,
the autoprotolysis of water, determined by its ionic product,
Kw = 10�14 mol2 dm�6, is considered locally within each layer:

cH+(z)cOH�(z) = Kw (24)

In this way, the local variations of pH and polymer ionization
are explicitly included in the mean-field model.39,40

The solution of the set of equations starts from an initial
guess of the density profiles, which yield the respective potentials
and the statistical weights. Application of the propagator scheme
provides a new set of density profiles. The self-consistent solution

is reached when the old and the new volume fractions match
within a pre-defined accuracy threshold. The final set of density
profiles and potentials yield an accurate prediction of the free
energy within the mean-field approximation, which consists of
replacing explicit inter-particle interactions with a mean-field
potential as given in eqn (17). Due to the variational principle,
the mean-field free energy is an upper bound to the true free
energy with all correlations included. This difference is inherent
to the involved approximation and is not related to the above
mentioned accuracy threshold.

The SF-SCF formulation is a discrete analogue of the continuous
Edwards diffusion equation.41,42 The discrete version implemented
on a set of concentric shells (‘‘the lattice’’) with lattice spacing a
allows for the full enumeration of all the chain configurations
starting in the first layer and ending in the layer number given by
Rstar, see figure Fig. 1B. This automatically accounts also for finite
chain extensibility. The discretised lattice has an important
consequence for our depiction of the gel as a collection of stars,
sketched in Fig. 1. The SF-SCF approach requires that both Rbox

and Rstar are integer multiples of lattice spacing a. If we choose
Rstar to be an integer multiple of a, then Rbox obtained from
eqn (13) usually is not an integer multiple of a. Therefore we
always perform two calculations, with Rbox rounded to the nearest
lower and the nearest higher integer multiple of a. These provide
us with an upper and lower estimate of the desired result.
Therefore, although the SF-SCF calculation can be performed to
an arbitrary accuracy, the discretization limits the accuracy of the
representation of the gel. All results that we report are arithmetic
means of the two calculations, while the error bars represent the
upper and lower bound to indicate discretization artifacts.

3 Results and discussion
3.1 Model validation: strong polyelectrolyte gels

3.1.1 The pressure–extension relation. As a starting point,
we calibrate the excluded volume interactions in the mean-field
model such that its predictions of the pressure as a function of
chain extension (gel swelling) for the neutral gel quantitatively
agree with the simulation model. As deduced from Fig. S7 in
the ESI,† the quantitative agreement is obtained with w = �1.5.
With this calibration our model is ready to be used for the
prediction of the swelling of charged gels. Fig. 2 shows the gel
pressure as a function of chain extension, comparing the three
different models for a selected set of system parameters (see the
ESI† Fig. S4 for analogous results for other parameter sets). At
a = 1/4, both the analytical model (dashed line) and the mean-
field model (empty points connected with lines) reasonably well
reproduce the simulation results (full points). This description
holds also for lower a. The agreement between the simulations
and both the analytical and the mean-field model improves
at lower cb

s . An increase to a = 1/2, which is the Manning
condensation threshold (lB = a/a), results in poorer agreement.
While the analytical model fails to reproduce even the qualitative
trend from the simulations, the mean-field model succeeds
qualitatively, but at the quantitative level overestimates the
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pressure and predicts higher chain extension at free swelling
equilibrium (Pext = 0). The analytical model exhibits an undulation
close to Pext = 0, which is not indicated by the simulation data.
Beyond the Manning condensation threshold, at a = 1, the
undulation predicted by the analytical model grows out of the
plotting bounds. This is mainly due to the electrostatic pressure
term, which loses its validity in this range of parameters. If this
term is omitted, the predicted pressure–extension curves retain the
qualitatively correct shape, but lose quantitative agreement in the
whole range of parameters. In contrast, the mean-field prediction
is qualitatively correct, but further deteriorates in quantitative terms.
Interestingly, at higher a, we observe pronounced differences in
performance of the models with varying cb

s (see the ESI† Fig. S4 for
the corresponding plots). At a = 1/2 the analytical model works well
for short chains, and quantitatively outperforms the mean-field
model at N = 39. It exhibits initial signs of failure at higher N and
high cb

s, although at high cb
s it still works comparably well with the

mean-field model. At a = 1 the analytical model fails qualitatively in
the whole range of studied parameters, while the mean-field model
exhibits the same behaviour as for low a: overall qualitative
agreement and improving quantitative agreement with increasing
N or cb

s. The improvement of the mean-field approach with
increasing N can be understood in terms of discretization effects,
which are more pronounced at small N. The addition of salt screens
the direct interactions between neighbouring groups on the chains,
which we have identified in previous work as the key component of
the discrepancy between the mean-field and explicit particle
treatment.29 Therefore it is not surprising that the mean-field
model improves with increasing cb

s. In our previous work we have
shown that for star polyelectrolytes the agreement between mean-
field predictions and simulations improves with an increasing
number of arms.29 In this context f = 4 arms in a star is the lower
limit for the mean-field prediction to be actually applicable. A
higher value of f would presumably lead to better agreement
between the mean-field and the simulation model; however, such
connectivities are not commonly encountered in polymer gels.

Fig. 3 shows the salt partitioning, expressed as the ratio of
salt concentration in the gel to that in the bulk, as a function of
the total concentration of charged groups bound to the gel, acp.
Following the simple Donnan prediction, the ratio cg

s/cb
s should

be a universal function of acp, independent of other parameters.
The Donnan prediction does not explicitly account for any inter-
particle interactions (except for electroneutrality), and in this
respect plays the role of the ideal gas approximation. Deviations
of the simulation data (empty points in Fig. 3) from the Donnan
theory provide a measure of non-ideality, which is well captured
by the analytical model at low cb

s and low a (see also ESI† Fig. S5
for additional data). This agreement deteriorates with increasing
cb

s and a. In particular at a = 1 and high cb
s the analytical model

fails even at the qualitative level, predicting that initially cg
s/cb

s

increases (see also ESI† Fig. 5), which is not observed in the
simulation data. This failure is presumably related to the convex
shape of the predicted pressure–extension curves in Fig. 2 in the
same range of parameters. On the other hand, the mean-field
model again retains its qualitative agreement throughout the
whole range of parameters. The rather big estimated error in the
mean-field model, which increases with a, stems from discretization,
as discussed in Section 2.4. Within the accuracy limits set by the
discretization, the mean-field model agrees with the simulation
results and with the analytical model up to a = 1/2 and higher
salt concentrations. At the lowest salt concentrations and
a = 1/2, the mean-field model systematically underestimates cg

s,
and is outperformed by the analytical model. At a = 1, the mean-
field model provides poor quantitative predictions, but qualitatively
the predicted trend does not contradict the simulation data as
it occurred in the case of the analytical model. Last but not
least, we should mention that at the highest cb

s the uncertainty
due to discretization becomes bigger than the difference

Fig. 2 Pressure–extension curves for a gel with strand length N = 79, salt
concentration cb

s = 0.1 M, and three different degrees of ionization: a = 1/4
(green), 1/2 (blue) and 1 (red). Empty points connected with lines represent
the mean-field results, full points of matching shape and colour are the
simulation results, and the dashed lines of matching colour are the
corresponding predictions of the analytical model.

Fig. 3 The gel to bulk ratio of salt concentration, cg
s/cb

s , as a function of
the concentration of bound charges in the gel for a system with strand
length N = 79, salt concentration cb

s = 0.1 M, and three different degrees of
ionization: a = 1/4 (green), 1/2 (blue) and 1 (red). The black solid curve
displays the Donnan prediction as a reference. The empty symbols show
the results of the mean-field calculations, full symbols of matching shape
and colour are the corresponding simulation results, and the dashed lines
of matching colour represent the corresponding analytical predictions.
Error bars of the mean-field results have been omitted for clarity. See the
ESI† Fig. S5 for the same plots with error bars.
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between simulation results and the Donnan prediction, which
makes the mean-field results useless.

At the qualitative level, the mean-field model captures all the
trends that emerge from the simulation data, in particular the
variation of salt content and the pressure–extension relation
with the crosslink length, N, the degree of ionization of the
polymer, a, and the salt content of the bulk solution, cb

s .
At the quantitative level, the mean-field model underestimates

the salt content in the gel, and consistent with that it under-
estimates the pressure inside the gel, and hence overestimates the
swelling ratio. This discrepancy produces a systematic deviation
which is consistent throughout the whole parameter range. The
pressure–extension relation predicted by the SF-SCF approach
remains consistent with the simulations (apart from the above-
mentioned systematic deviation) even at high cb

s or high a,
where the analytical model fails. At high a the analytical
model predicts a non-monotonic pressure–extension relation,
while both the mean-field model and the simulations predict a
monotonic dependence.

3.1.2 Swelling of the strong gels. In Fig. 4 we show the
swelling ratio of the gel as a function of the degree of ionization
and for various salinities of the bulk solution. At low a the
analytical model very well matches the simulation results, while
the SF-SCF model tends to underestimate the swelling. With
increasing a both models follow very well the trend of the
simulation results. Around and beyond the Manning condensation
threshold, a = 1/2, the analytical model fails to qualitatively
reproduce the pressure–extension curves from the simulations,
and the predictions of Q(a) from the analytical model cannot be
considered reliable. Therefore we plot the corresponding curves
in Fig. 4 only in the range where the qualitative agreement is
still retained. This is expected since the Katchalsky model does
not account at all for the counterion condensation. In contrast,
the mean-field model overshoots the predicted value of Q from
the simulations but does not lose qualitative agreement. The
spherically averaged mean-field model cannot fully account for
the counterion condensation either, but it explicitly accounts for
the radial correlations between the local densities of charged
polymer segments and the counterions. If we consider predictions
of Q by different models as a function of salt concentration at fixed
a (see ESI,† Fig. S2), it turns out that both the analytical model and
the numerical mean-field model reproduce comparably well the
gel collapse with increasing cb

s. The agreement is not quantitative
but, as discussed in our previous publication,13 it can be partly
attributed to the failure of the assumption of affine deformation.

3.1.3 Density profiles. The advantage of the mean-field
model is that it explicitly considers inhomogeneous distributions
of all species in the radial direction with respect to the nodes of the
gel network (centre of the star). Two examples of such profiles are
shown in Fig. 5 for the case of moderate salinity, and two different
degrees of ionization. Additional profiles for other studied systems
can be found in the ESI,† Fig. S3. The density profiles of
monomers and counterions at a high degree of ionization,
a = 1, both follow the power law decay r(r) B r�2, theoretically
predicted for strongly charged star-like polyelectrolytes.26,43 On
the other hand, the profiles of weakly ionized gels, a = 1/4,

follow the same power law at low salinity, while at high salinity
they are close to the r(r) B r�4/3 decay of neutral star-like
polymers.43–45 Comparing the profiles of counterions and
coions, we observe, that up to cb

s E 0.1 M, the charge density
in the whole gel is dominated by the counterions of the polymer,
while the salt concentration (given by the concentration of
coions at a given point) is much lower. Only at cb

s \ 0.1 M the
situation reverses, and the charge density is dominated by the
salt, apart from the region close to the node. Comparing
the profiles from the simulations (data points in Fig. 5) with
the mean-field predictions (corresponding lines in Fig. 5) we
notice nearly quantitative agreement in the case of polymer
segments and counterions. This agreement deteriorates at very
short distances from the node, where the excluded volume
contribution is overrated by the mean-field. A more significant
disagreement shows up at r 4 Rstar, where the mean-field
density of monomers sharply drops. Consequently, the mean-
field counterion density near Rstar drops more dramatically than
in the simulation data. The range and magnitude of this drop
might seem to be insignificant on the logarithmic scale. However,
when we realize that it represents a major part of the total gel
volume, we may conclude that the systematic underestimation of the
salinity inside the gel by the mean-field approach stems from the
same roots. Apparently, the drop in the counterion concentration in
the distant part of the mean-field profile is due to the missing
charged polymer segments beyond Rstar, while in a real gel the
segment density beyond Rstar is nearly constant, passing through
a shallow minimum and then increasing again at separations
where the nearest-neighbour node can be found.

3.2 pH-Sensitive gels

3.2.1 Pressure–extension curves and salinity. Having
established the range of reliability of our mean-field model in
the previous section, we now demonstrate its capabilities for
the predictions of the swelling of weak polyelectrolyte gels with

Fig. 4 The swelling ratio of the strong gel as a function of a at various salt
concentrations. In this figure, the colour code distinguishes different salt
concentrations in the bulk. Full points display simulation data, lines show
the numerical mean-field results, and dashed lines represent the analytical
predictions.
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variable ionizations which depends on the local properties of
the system. For this purpose we choose a gel with all segments
being weak acids with pKA = 5. With pH \ pKA, the ionization
of such a weak polyelectrolyte gel should vary with the
monomer position in a similar manner as it does in a star-
like polyelectrolyte in solution.25,27–29 In addition, its degree of
ionization should vary with compression, as is shown in Fig. 6.
At pH = 7 = pKA + 2 we observe a E 0.9 at full chain extension,
which slowly decreases down to 0.6 upon compression. Note
that at this pH, a low-molecular acid would be fully ionized at
almost any concentration. At lower pH values we observe the
same trend: a at full extension decreases with pH, and for a given
pH the ionization decreases further with compression until
eventually, at pH = 4, we get a E 0 throughout the whole range.

This variation of a with chain extension has a pronounced
effect on the pressure–extension curves, shown in Fig. 7. With
decreasing pH the curves become less steep (the gels are softer)
at a given value of Re, and consequently the free swelling
equilibrium is attained at a lower chain extension and a lower
degree of ionization. Interestingly, if we compare the pressure–
extension curves at a given pressure (free swelling equilibrium,

P = 0) rather than at a given compression, it turns out that the
more ionized gels are softer than the less ionized ones. The
trend in the pressure–extension curves with decreasing pH is
qualitatively similar to the trend with decreasing ionization in
the strong polyelectrolyte gels (Fig. 2). The difference becomes
apparent by comparing the data for weak gel at pH 5.5 and a
strong gel at a = 0.35. This is the average value of a for the weak
polyelectrolyte gel at free swelling equilibrium (zero applied
pressure). For the strong polyelectrolyte this was realized by
making all segments ionized with a valency of 0.35. In the weak
case a decreases with compression, which makes the pressure–
extension curve less steep compared to that of the corresponding
strong gel.

Predictions of the SF-SCF model for the salinity inside the
weak gels exhibit only weak deviations from the Donnan
prediction, very similar to the strong case (see the ESI,† Fig. S1).
Since the Donnan prediction is a universal function of acp, the fact
that in the weak gel a varies with compression does not
significantly change the situation. However, as deduced from
the discussion of the strong case, the actual deviations from the
Donnan model should be stronger than those predicted by the
SF-SCF model.

3.2.2 Density profiles and local properties of weak gels.
Unlike in a strong polyelectrolyte gel, in a weak one the degree
of ionization is a locally varying property. Fig. 8 reveals that the
local degree of ionization, a(r), is very low near the node (low r),
and monotonically increases with r. This leads to a different
distribution of charges in the weak case, and therefore density
profiles of the ionized polymer segments at a given value of
Rstar are different from those of the strong gel at the same a and
Rstar (see also ESI,† Fig. S6 for density profiles of all species in
the weak gels). In particular, the density profile of the H+ ions,
shown in Fig. 8, follows the same (Boltzmann) distribution as
the salt cations, Na+: c(r) B exp(�c(r)/kBT), where c(r) is the
local electrostatic potential (see the plot in the ESI† Fig. S6).
However, they differ in the pre-factor, which is proportional to
the bulk concentration of H+ and Na+, respectively. From Fig. 8
one can see that up to r = Rstar the profile of H+ ions approximately

Fig. 5 Density profiles from simulations (points) and from the SF-SCF
method (lines) at intermediate chain length and salt concentration, at the
two extreme ionization degrees: a = 1/4 (top panel), and a = 1 (lower panel).
Different particle types (monomers, counterions, coions) are distinguished
by colour. The two gray lines with slopes �4/3 and �2 show the scaling
prediction for the neutral star and a highly charged star, respectively. See
the ESI† Fig. S3 for plots with other combinations of parameters.

Fig. 6 Degree of ionization of the weak polyelectrolyte gels as a function
of chain extension at a fixed salt concentration of cb

s = 0.01 M and for
different pH values.
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follows the profile of the ionized monomers. Beyond Rstar the value
of cH+(r) in our model slowly decays to its bulk value at Rbox. This is
the same situation as discussed in the strong case (Fig. 5): beyond
Rstar our model predicts a decrease of the counterion concentration
down to its bulk value, while the simulation results show that it
should be roughly constant in this range. Irrespective of the
above-mentioned artifact, Fig. 8 reveals that both cH+(r) and a(r)
inside the gel significantly differ from their bulk values. Because
the magnitude of the difference is probably underestimated,
all pertinent deviations predicted by our model should be
considered as a lower bound to the actual ones.

3.2.3 Titration curves and local pH. Fig. 9 shows that the
increase in the swelling ratio of the weak gel with increasing pH
follows the trend of increasing ionization of the gel. In the first
approximation, the degree of ionization of a weak acid follows
the ideal titration curve

1/a = 1 + 10pKA–pH. (25)

Polyelectrolyte chains generally exhibit deviations from this
ideal behaviour, and their ionization is suppressed.29 A comparison
with the ideal titration curve of the free monomer in Fig. 9 reveals
that the ionization of the gel is shifted about one unit towards
higher pH values. At the mean-field level, this shift can be explained
by the different cH+ concentrations in the gel and in the bulk. For
this purpose, let us define the ‘‘Local pH’’ inside the gel as

‘‘Local pH’’ ¼ � log10 c
g
Hþ


 �
(26)

where c
g
Hþ is the average concentration of H+ inside the gel, defined

in analogy with eqn (14). As follows from eqn (23), the ideal titration
curve is satisfied locally within each individual layer, if the local pH
is used instead of the bulk pH. However, because a and the local pH
are coupled by a non-linear relation, if we plot the average a over the
whole box as a function of the average pH inside the gel in Fig. 9,
this curve does not fully coincide with the ideal titration curve.

As discussed in detail in our previous publication,29 the shift
and deformation of titration curves of star-branched weak
polyelectrolytes have two important contributions: (1) inter-arm
correlations, which lead to higher cH+(r) and lower a(r) inside the

gel as compared to the bulk; (2) intra-arm correlations due to
neighbouring groups along the chain. The one-dimensional
model of a polyelectrolyte star well accounts for the first but
underestimates the second contribution. The latter cannot be
explained in terms of the (average) local pH in the gel and
becomes important especially at a 4 1/2 when the distance
between the nearest ionized groups along the chain becomes
smaller than the Bjerrum length. Therefore, our mean-field
model should reasonably well describe weak polyelectrolyte gels
at low a but it underestimates the shift of the titration curve at
high a.

Fig. 7 The pressure–extension curves for the weak polyelectrolyte gels at
a fixed salt concentration and different pH values. The data for the strong
gel correspond to the same a as the weak gel at pH 5.5 and Pext = 0.

Fig. 8 Density profiles of polymer segments (top), H+ ions (middle) and
the degree of ionization of the polymer (bottom) for weak polyelectrolyte
gels at free swelling equilibrium, fixed salinity and various pH values.
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4 Conclusions

In this work, we introduced a numerical mean-field model for
the swelling of polyelectrolyte gels, based on the analogy
between gels and star-like polymers. This model employs the
Scheutjens–Fleer self-consistent field approach and assumes
spherically symmetric density profiles around the node of the
gel network, in analogy with the central segment of star-like
polymers. We validated this new model, comparing its predictions
with our earlier simulation results and with the analytical model
for strong polyelectrolyte gels. Below the Manning condensation
threshold, the mean-field model provides quantitatively more
accurate predictions of gel swelling than the analytical model.
Beyond the condensation threshold the analytical model fails even
at the qualitative level, while the mean-field model retains a
qualitative agreement with the simulations. For the prediction of
salt concentration in the gel, the simulation data exhibit positive
deviations from the ideal-gas Donnan approximation. While both
models capture the general trend of the deviations, the analytical
model tends to overshoot them and the mean-field model tends to
underestimate them.

Next, we demonstrate a straightforward extension of the new
mean-field model to weak polyelectrolyte gels and provide
predictions of their swelling as a function of pH. In the weak
case, the local coupling between the conformation and ionization
is included in the mean-field model and proves to be essential to
capture important effects. The degree of ionization of the weak gel
changes with compression, and therefore the pressure–extension
curves at a given pH are less steep than those for the strong gels at
a fixed degree of ionization. The Donnan-like partitioning of the
mobile ions between the gel and the bulk also applies to H+ and
OH� ions. This results in a lower pH inside the gel than in the
bulk, and in the suppressed ionization of the gel as compared
to the free monomer. This can be interpreted in terms of
effective pKA which is about one unit higher than that of the
single monomer. Within the mean-field approximation this

suppression of ionization is dominated by the difference between
the local and bulk pH, but there is also a clear contribution from the
inhomogeneous distribution of charges. The latter is presumably
underestimated by the mean-field and should be even more
significant in a real system. Some of the above effects were neglected
in earlier analytical theories which assumed a homogeneous density
inside the gels.

In terms of computational effort, the mean-field calculations
are more expensive than solving the analytical model. However,
in both cases one calculation of the pressure–extension curve
completes within few seconds, so that it can be performed
interactively. In contrast, the explicit simulations, which provided
our reference data, require several days per each data point on the
pressure–extension curve. From this point of view, the new mean-
field model provides a promising and cheap alternative for the
reliable prediction of the swelling of polyelectrolyte gels in cases
where local density gradients are important, simple analytical
approaches fail, and explicit simulations are too demanding even
at the coarse-grained level.
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Verlag, New York, 1993, vol. 109.
5 Y. Huang, I. Szleifer and N. A. Peppas, Macromolecules, 2002,

35, 1373–1380.
6 A. A. Polotsky, F. A. Plamper and O. V. Borisov, Macromolecules,

2013, 46, 8702–8709.
7 S. Schneider and P. Linse, Eur. Phys. J. E: Soft Matter Biol.

Phys., 2002, 8, 457–460.
8 Z.-Y. Lu and R. Hentschke, Phys. Rev. E: Stat., Nonlinear, Soft

Matter Phys., 2003, 67, 061807.

Fig. 9 Left axis: Degree of ionization of the gel, a, as a function of pH in
the bulk (squares), and the same quantity as a function of the local pH in
the gel (circles). The red solid curve displays the ideal titration curve for
comparison. Right axis: Equilibrium swelling ratio, Qeq, (stars), as a function
of pH. Inset: Local pH in the gel as a function of pH in the bulk.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Fe

br
ua

ry
 2

01
7.

 D
ow

nl
oa

de
d 

on
 7

/1
2/

20
24

 7
:1

2:
00

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6sm02825j


3274 | Soft Matter, 2017, 13, 3264--3274 This journal is©The Royal Society of Chemistry 2017

9 S. Edgecombe, S. Schneider and P. Linse, Macromolecules,
2004, 37, 10089–10100.

10 B. A. Mann, R. Everaers, C. Holm and K. Kremer, Europhys.
Lett., 2004, 67, 786–792.

11 B. A. Mann, C. Holm and K. Kremer, J. Chem. Phys., 2005,
122, 154903.
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