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Fracture of a model cohesive granular material

*3 and Arnaud Hemmerlet*?

Alexander Schmeink,® Lucas Goehring
We study experimentally the fracture mechanisms of a model cohesive granular medium consisting of glass
beads held together by solidified polymer bridges. The elastic response of this material can be controlled
by changing the cross-linking of the polymer phase, for example. Here we show that its fracture toughness
can be tuned over an order of magnitude by adjusting the stiffness and size of the polymer bridges.
We extract a well-defined fracture energy from fracture testing under a range of material preparations.
This energy is found to scale linearly with the cross-sectional area of the bridges. Finally, X-ray
microcomputed tomography shows that crack propagation is driven by adhesive failure of about one
polymer bridge per bead located at the interface, along with microcracks in the vicinity of the failure
plane. Our findings provide insight into the fracture mechanisms of this model material, and the
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1 Introduction

Controlling the mechanical and fracture properties of cohesive
porous materials is of interest for applications in various fields of
research and industry, such as rock mechanics,'™ the fracture of
concrete™” and biomaterials,® soil rheology,” geoengineering,®® or
powder aggregation.'®'* Sandstone is a porous rock composed
of cemented grains of sand, for example, and its fracture, induced by
physical, chemical, or biological processes,"** is highly undesirable
when it occurs in man-made structures and sculptures. On the other
hand, hydraulic fracturing of underground gas-saturated sandstone
is used to enhance the recovery of natural gas,’ for instance, in
which case it is not only necessary to induce fracture propagation
within the porous material, but also of primary importance to
control it to limit harmful environmental side-effects.

As a class of materials cohesive granular media can be soft,
like wet sand, or extremely stiff, as porous rocks or sintered
glass often are. A full understanding of the fracture properties
of a cohesive porous medium requires a link between its
macroscopic properties, such as its elastic moduli, yield stress
and fracture toughness, and a microscopic description of its
constituents, including information on the spatial distribution
of its grains, and the strength of the bonds linking them.
Crack propagation in cohesive granular media is a complex
problem, given all the possible routes for breaking a cemented
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mechanical properties of disordered cohesive granular media in general.

aggregate’® "’ (e.g. grains crushing, cement breaking, or bonds
fully or partially detaching) and the discrete nature of granular
materials leading to force chains,'® strain localization," or
catastrophic failure, for example. While corresponding experi-
ments on plasticity and fracture of model systems exist for some
cohesive'®?'? or non-cohesive®*?® granular materials, they are
still rare. However, bottom-up approaches on simple systems are
highly desirable to develop constitutive laws, test numerical
models, and study independently the various processes involved
in the fracture of granular media.

We have recently developed such a model system for investigating
the mechanical properties of cohesive granular materials.*® The
material consists of glass beads held together by rigid bridges of
a solidified elastomer, whose Young’s modulus, Ej, can be easily
varied by changing its composition. The high tunability of this
material allows us to focus on the contribution of the inter-particle
bonds to the elasticity of the composite system, as the stiffness,
strength, size, and spatial distribution of these bonds can be
modified over wide ranges. It is also intended as a model system
for investigations on, for example, hydraulic fracturing and
biological weathering of porous media, for which a precise knowl-
edge of both how a complex material breaks, and its resistance to
fracture, are required. Furthermore, the structure of this material,
which essentially consists of hard spheres connected by tunable
springs, shares similarities with other disordered cohesive granular
media where cohesion is also ensured by soft interactions between
solid particles, such as charged®” or wet”® granulates, powder
aggregates'®'> and green bodies,” and, to some extent,
colloids.***! It can thus provide a toy model for investigations
of the failure properties of this broad class of soft materials.

In the present work we show how the fracture toughness of
this model cohesive granular material can be varied over about
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an order of magnitude by changing the stiffness and volume
fraction of its polymer bridges. We also extract a well-defined
fracture energy of about 10 ] m™~? from fracture testing under a
range of material preparations, and demonstrate with simple
scaling arguments that this energy is proportional to the cross-
sectional area of the bridges broken during crack growth. Using
X-ray microcomputed tomography, we explore further the links
between the macroscopic behavior of the material and its micro-
scopic properties. We show that cracks propagate by the debonding
of only about one bridge, or contact, per bead at the crack interface,
and quantify how much damage occurs within the solid.

2 Materials and methods
2.1 Cohesive granular material

We briefly summarize here the preparation and the main proper-
ties of the model cohesive granular material, which were detailed in
a previous study.”® We use glass beads made of soda-lime glass
(Sigmund Lindner) with a Young’s modulus of 60-70 GPa (as stated
by the manufacturer). We measure the density of the beads to
be 2495 + 5 kg m ™~ and the bead diameter to be 210 & 11 um. The
beads are thoroughly cleaned and dried following the protocol
in Hemmerle et al.>® The dried glass beads are then mixed with
polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning), a cross-
linkable polymer. The liquid polymer perfectly wets the beads, and
forms capillary bridges between them. This process yields a homo-
geneous paste, which can be moulded into any desired shape.
Cross-linking of the polymer phase is then performed by baking the
samples directly in a mold at 75 °C for 14 hours, and results in a
solid cohesive porous material (see Fig. 1a and b).

As sold, PDMS consists of two parts: a viscous liquid or base,
and a cross-linker. By varying the mass ratio of the base to the
cross-linker, between 50:1 and 10:1, the Young’s modulus of
PDMS, E,,, can be controlled from about 20 kPa to 1.5 MPa.****%3
The mechanical properties of the composite material are largely
set by the stiffness of its polymer bridges,*® and its Young’s
modulus E can be tuned from about 200 kPa to 10 MPa, by
varying E;, between its two limits.

The bulk material’s stiffness can also be controlled by changing
the PDMS volume fraction W. Above W = 0.5% capillary bridges
between beads are well defined (see Fig. 1b) and grow in size
with increasing W, until they start to merge into clusters®®>*>*
at the so-called pendular-funicular transition, namely around
W =~ 3%. The results presented here all belong to the pendular
regime, between these two limits. It has been shown previously
that the average cross-sectional area of the bridges, 4, and the
Young’s modulus of the material, E, both scale linearly with W
within the pendular regime.?®

Finally, the packing fraction of the beads was measured in each
cured sample tested here, and was on average ¢, = 58.7 £ 0.8%,
showing no trends with varying E, or W.

2.2 Compact tension tests

Fracture toughness was introduced by Irwin®® as an intrinsic
material parameter quantifying the resistance of a material to
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Fig. 1 (a) Compact tension test specimen with cylindrical holes and pre-
crack notch. When applying a force F to the bars, stress is focused onto the
tip of the notch. (b) In the pendular regime of liquid content, capillary
bridges of PDMS are formed between the randomly packed beads.?® The
curing process solidifies these bridges, yielding a cohesive granular material.
(c) Sketch of the experimental setup for the compact tension tests. While
the stepper motor is moving upwards, the applied force is measured by the
analytical balance and a digital camera is filming the notch opening.

the propagation of a pre-existing crack, or flaw. In the present
case, we measure the Mode-I fracture toughness, Kj., of our
material, which corresponds to the case of a crack pulled open
under normal tensile stress. To this end, we use the standard
compact tension test, following the requirements of the ASTM
Standard E399.>°*” We will briefly describe here the prepara-
tion of the samples used in this fracture test, and how it allows
the measurement of the Mode-I fracture toughness.

As mentioned above, the pre-cured paste of beads and liquid
PDMS is malleable and can be formed into any shape. Therefore,
we baked samples directly in molds of the compact tension
geometry. These test samples consist of notched rectangular
blocks with two circular holes on each side of the notch, as
shown in Fig. 1a. Two metallic bars of diameter 10 mm are
placed in the holes of the samples. The geometry of the compact
tension tests ensures that when these bars are being pulled apart
the stress in the sample is focused onto the tip of the notch and
leads to a pure Mode-I fracture opening.*® In other words, the
geometry allows for the measurement of the fracture toughness
of the specimen’s material, by creating a well-defined condition
of tension around a crack tip. It should be noted that the fracture
toughness is measured directly on the notched specimens,
without any further pre-crack (as is sometimes made). As the
tip of the moulded notch is sharp when compared to the size of
the beads, the shape of the pristine sample tip is less imposed
by the geometry of the mold, and more by the microscopic
organization of the disordered material around it. The geometry
here is thus sampling a comparable flaw size distribution to what
would be measured with a pre-crack. However, while this method
avoids the damage that cutting a pre-crack into the relatively
brittle material would inevitably produce, the less well-defined
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geometry of the notched specimens may explain some of the
scatter in our observations. The dimensions of the specimens
used here are kept fixed. As measured from the axis of tension
defined by a line joining the two bars, we use a notch of length
a = 20 mm and the sample extends a distance » = 40 mm (see
Fig. 1a). The initial crack mouth opening length is S, = 3 mm
and the thickness of the samples B = 20 mm. Due to the method
of moulding the specimens, B may vary from its nominal value
by +5%, and it is therefore measured and accounted for
individually for each specimen.

In our setup, the specimen rests on an analytical balance, and is
held down by a 2 kg weight connected to the sample via one bar
through the bottom hole (see Fig. 1c). Tension was applied to the
sample by a stepper motor connected to the other bar, and which
moved upwards in discrete 100 pm steps. After each such step the
scale was monitored by a LabView program, until the restoring force
had reached an equilibrium value. Only then was the next tension
step made, leading to an average notch opening speed between
2.0 um s ' and 7.7 um s, depending on the sample tested. These
conditions ensure that the deformation is quasi-static, in which case
it has been shown that the mechanical response of the material is
largely independent of the strain rate.>

A digital SLR camera is focused on and observes the crack
mouth opening, whose length S is later obtained by image proces-
sing using Matlab. The applied force F is measured with a resolu-
tion of 50 mN, while the mouth opening displacement S — S, is
measured with a resolution of 50 pm. A typical force-displacement
curve consists of three parts: (i) onset, where the effective strain of
the mouth opening, 6 = (S — So)/S,, is between 0 and 0.1, and which
corresponds to progressive contact between the bars and the
sample, followed by (ii) a linear elastic response, and (iii) a plateau
or peak force at failure (see Fig. 2). Each averaged value presented
here is the result of at least three replicates of such a test.
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Fig. 2 Force-displacement curves for several replicates at different base
to cross-linker ratios of the polymer, from 50:1 to 10:1. Fis the restoring
force measured on the balance, i.e. the force applied on each bar, and
(S — So)/So the relative crack mouth opening displacement. Smaller mixing
ratios result in stiffer polymer bridges and therefore stiffer samples and
higher critical forces at failure.
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In the compact tension test geometry the external stress
applied to the specimen by the bars will be focused onto the tip
of the notch. The divergence of stress there can be character-
ized by the Mode-I stress intensity factor Kj, which is a function
of the restoring force F and the geometry of the sample,

he g (0) m

where f(a/b) is a geometric factor well-approximated by a
fourth-order polynomial as specified in the literature.*®*”>°
At some specific force, a fracture will start to grow from the tip
of the notch. The critical stress intensity factor at fracture
initiation, Ky, is the fracture toughness, and is a property that
characterises a material’s generic resistance to breaking.

The distribution of stresses within the sample is highly non-
uniform, due to the presence of the notch. Nevertheless, the
Young’s modulus of the sample can also be estimated from
the linear part of the force-displacement curves via the semi-
empirical equation

E= ﬁq(g) 2)

where g(a/b) is another specified geometric factor.*®*”*°

This method for obtaining E is less straightforward than in
standard uniaxial tests, but both methods provide a satisfying
agreement, as will be shown in Fig. 3a and presented in the
Results section.

2.3 X-ray microcomputed tomography

X-ray microcomputed tomography scans (GE Nanotom) were
performed on samples with a cross-sectional area of 5 x 5 mm?
and thickness of 4-5 mm, cut from one side of the fractured
interface of two specimens after completion of their fracture
tests. Tomograms were acquired with a tungsten target and
acceleration voltage of 120 keV. A scan consists of a set of 3400
projections with a resolution of 2288 x 2288 pixels, and a voxel
size of 1.7 um. The high resolution of the scans allows us to
clearly distinguish the PDMS bridges from the beads, and
therefore to study the fracture mechanisms at the microscopic
scale. In Section 3.3 we report the number of intact and broken
bridges as manually measured in these tomograms for popula-
tions of equal numbers (117 beads), and the errors given there
are the standard errors of the mean.

3 Results & discussion

The high tunability of the model material allows us to study
how the fracture properties of cohesive granular media depend
on their microscopic details. In particular, we investigated the
influence of the PDMS stiffness and volume fraction on the fracture
toughness of the material, K;.. In a first series of measurements
we varied the ratio of base to cross-linker in five values between
10:1 and 50: 1, while the polymer content W was kept constant
at 2.3%. Next, the Young’s modulus of the polymer was
kept constant at E, = 1 MPa, while we varied W in six steps
between 0.5% and 2.7%. Finally, we investigated the fracture

This journal is © The Royal Society of Chemistry 2017
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Fig. 3 (a) The Young's modulus of the test specimens, E, increases along

with the Young's modulus of the polymer E. Solid line: fit of the compact
tension data with a linear relation between E and E,. (b) The fracture
toughness K. is measured as a function of the Young's modulus of the
specimen E. Black dots show individual results for various E and open blue
circles are weighted means for all measurements at the same E,, with
standard deviations shown as error bars. Solid red line: best fit of the data
using eqn (3), yielding Ge = 10.4 + 0.5 m™2.

mechanisms at the scale of the beads using X-ray microcom-
puted tomography and linked these microscopic results to the
macroscopic description of failure.

3.1 Changing polymer composition

When varying the PDMS composition, the Young’s modulus of
the bridges, E,, is being changed, which will consequently
modify the stiffness and strength of the composite material.
Here we determine how the Young’s modulus E and the fracture
toughness K. of samples vary with E;,, and present this result in
Fig. 3. We find that by changing E,, from 0.02 to 1.5 MPa, E varies
across two orders of magnitude (10°-10” Pa) and K;. changes by
about one order of magnitude (1 — 18 kPa+/m).

In Fig. 3a, we compare our data for E from compact tension
tests with those from our previous study measuring E in
unconfined uniaxial compression.>® We see that the values of

This journal is © The Royal Society of Chemistry 2017
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E for both testing methods are close, except for E, > 0.6 MPa,
for which the results in compact tension are two to four times
higher than the results from uniaxial compression. Given that
the inhomogeneous stress field of the compact tension test is
more susceptible to non-linear effects, due to the stress diver-
gence at the notch tip, this agreement is satisfying.

Thus, we find that we can tune the stiffness of the material by
varying E,, while keeping all other parameters constant, including
the statistical description of the microscopic geometry. For
example, here the bead and bridge size distributions, as well
as the connectivity of the bridge network, remain identical from
one sample to another. In order to explain these results, we now
present the measured K. as a function of E, and compare it
to predictions of linear elastic fracture mechanics (LEFM).
In LEFM, the fracture toughness K. is related to both the
specimen’s Young’s modulus E and its critical strain energy
release rate G., which is the energy consumed, per unit of
interfacial area, by the new surfaces generated by fracture:*>*®

K. = /G.E. (3)

Our data are in good agreement with eqn (3), and the assump-
tion that G. does not depend on Ep, as shown in Fig. 3b. This
independence of G. and Ej, will be discussed further in Section 3.4,
where we compare the fracture energy with the microscopic
damage that occurs along the crack surface. A fit of eqn (3) to
our data allows us to extract a well-defined fracture energy of
G, =10.4 + 0.5 ] m~? for the material, at a constant W = 2.3%.
This is of the same order of magnitude as typical fracture
energies of sandstone or porcelain, for example.*'™*3

3.2 Changing polymer content

The polymer content W influences the size of the capillary
bridges in the material, giving us another possibility to vary
the mechanical properties of the system. Tests were conducted
with a constant £, = 1 MPa (a composition ratio of 14:1) and
six different W, all below the pendular-funicular transition at
W ~ 3%.%° By varying W between 0.5% and 2.7%, we can tune
Ki. in the range of 3 — 14 kPay/m. As shown in Fig. 4, there is a
clear linear relation between the fracture toughness and the
polymer content, K. ~ W. However, it will be more practical
to consider K. in relation to the area of the broken bridges,
rather than their volumetric fraction. The mean cross-sectional
area, A, of the bridges was found to grow linearly with W in
Hemmerle et al.?® (see inset in Fig. 4). This implies that there is
a linear relation between the fracture toughness of the material
and the cross-sectional area of the bridges Ki. ~ A.

Two processes are driving the change in the fracture tough-
ness when varying the size of the bridges. First, Hemmerle et al.
have shown that within the pendular regime E ~ 4, i.e. that the
Young’s modulus of the material varies linearly with the cross-
sectional area of the bridges within it.>® According to eqn (3),
K. will thus increase with A, through the change in the material
stiffness. Secondly, the critical strain energy release rate, G, is
an energy per unit area of the cracked interface of the material
and will therefore depend on its microscopic details, such as

Soft Matter, 2017, 13, 1040-1047 | 1043
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Fig. 4 Fracture toughness K. as a function of polymer content W. Black
dots show individual results and open red squares show the weighted
means calculated for all K. that share the same W; error bars give standard
deviations. All W lie in the pendular regime, where the liquid polymer forms
isolated capillary bridges between the glass beads. We find a linear scaling
relation between the two quantities, K. ~ W. Inset: Measurements
by Hemmerle et al.>® show that the average bridge cross-sectional area,
A, also scales linearly with W.

the distribution of bridge sizes along the crack path. Larger
bridges will require a higher energy to break, and consequently
will lead to a higher macroscopic G.. We can now estimate this
relationship between G. and A, using our experimental mea-
surements of the scaling relations between the different para-
meters. The relations E ~ Ej, (Fig. 3a) and E ~ A allow us to
write E ~ AE,. Further, assuming that, as in Section 3.1, G.
does not depend on Ep, we can then rewrite eqn (3):

Kie ~ \/ AE,G.(A), (4)

from which we deduce that, if we observe that K. ~ A, then
G. ~ A. This result shows that the fracture energy of the
cohesive granular material, measured at the sample scale,
connects to the geometry of the bonds along the crack path,
and more precisely to their cross-sectional area.

3.3 Microscopic fracture mechanisms

The macroscopic fracture energy of our cohesive granular medium
is directly linked to the structure of its inter-particle bridges.
We will now examine this correspondence from a microscopic
point of view and, in particular, link the macroscopic fracture
energy of the material to the energies involved in breaking the
bonds between particles. It remains to be determined, for
example, if fracture is caused by the failure of the bridge
material or by debonding at the bridge/particle interface, and
whether all the fracture energy goes into propagating the crack
plane or if it is also consumed by additional damage within the
bulk of the material. To this end we used X-ray microcomputed
tomography (LCT) to look at, and below, the fractured surfaces.
The difference between the X-ray absorption coefficients of
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Fig. 5 (a) Fractured interface observed by X-ray uCT, here shown as a 2D
slice extracted after reconstruction of the tomogram. The black arrow
indicates possible partial debonding of a bridge which is still connected to
two beads. (b) 3D volume visualized after segmentation of the tomograms
by manual thresholding using ImageJ.*® Disconnected bridges are clearly
visible at the surface of the beads. (c) Illustration of the two different
modes of bridge failure.

glass and of PDMS allows us to distinguish between air, beads
and bridges in tomograms (see Fig. 5a).

We cut from each of two specimens a section of the fractured
interface after completion of a compact tension test, and analyzed
them using pCT (see Methods, Section 2.3). The samples were
prepared with the two extreme polymer stiffnesses used in this
study, namely E}, = 0.02 MPa and E;, = 1.5 MPa. Their constant
W = 2.3% allows us to focus on any influence of the stiffness of
the bridges on the fracturing process. We see in Fig. 5a that two
types of bridges can be observed on the beads located at the
fractured interface: bridges connected to only one bead, further
called broken bridges, and bridges still connected to two beads,
further called intact bridges. The potential mechanisms of bridge
failure in our system are similar to the processes involved in the
failure of adhesives,”****> and include two types of failure
(see Fig. 5¢). One possibility is that a bridge could detach from
the surface of one of the beads, leaving no trace of polymer
(adhesive failure). In this case one of the two beads will lose all
sign of any bridge, while the other one will keep a broken
bridge. Another possibility is that fracture occurs within the
bridge (cohesive failure). In this case the two affected beads will
each retain a part of the broken bridge. In the following, we
show that the main mechanism of fracture propagation is
adhesive failure of the polymer bridges, as suggested by the
curved interfaces of the broken bridges in Fig. 5. We measure
then the number of bridges which need to detach to propagate
the crack, and finally determine how fracture changes the
microstructure of the samples.

First, we measure the average number of bridges per bead in
the bulk of the material, Ny, which is also known as the wet

This journal is © The Royal Society of Chemistry 2017
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coordination number for wet granular materials.”” We find that
Ny =7.4 £ 0.1, with no significant difference between the softer
and the stiffer samples. This is slightly higher than the typical
value of 6-7 bridges per bead observed with glass beads wet by
aqueous solutions at similar packing fractions,***”>*® although
there may be some dependence of this number on the prepara-
tion protocol.*®

Next we count, for each bead located along the crack interface,
the number of intact bridges connected to the bead, Nj, and the
number of broken bridges present on its surface, N,. We measured
N; = 5.6 £ 0.15 and N, = 0.9 £ 0.1 on average, with again no
significant difference between the two samples. For each bridge
breaking via adhesive failure, i.e. by debonding of the polymer
from the bead surface, one of the two initially connected beads will
retain the whole bridge while the other bead will lack any remains
of it. Looking thus for the deficit of bridges on the interface to the
bulk, we deduce that Ny — N; — N, = 0.9 & 0.15 bridges per bead
broke by adhesive failure and remained attached to the bead,
while the same number would have left with the opposite side of
the interface. This number being equal to Ny, we can further
conclude that essentially all the broken bridges we observe origi-
nate from debonding events, meaning that cohesive failure is
negligible (occurring for not more than 5% of the broken bridges,
considering the error bars).

In its present form, our experimental setup does not allow
access to the dynamics of crack propagation. For example, it
remains to be seen if a crack propagates as a clear front, with only
the bridges at the crack tip debonding as the crack advances.
Another possibility would be the presence of a process zone ahead
of the crack, where a certain number of bridges would have to
fail for the crack to extend further. We can see in the tomograms
that some bridges have partially detached in the first two layers
below the fracture surface. An example of this is pointed out by the
black arrow in Fig. 5a. Such damage supports the hypothesis that a
small process zone exists around the propagating crack front.
Interestingly, the average number of intact bridges on beads along
the crack path, N, is slightly below z. = 6, the critical coordination
number in disordered 3D spring networks associated with the phase
transition between floppy and rigid systems.>® When approaching
this transition, mechanical properties of amorphous solids changes
dramatically, with, for example, a loss of stability due to a vanishing
shear modulus.’®”" Fracture propagation in our material could
then originate from a local loss of stability within the process
zone. In other words, bridges would detach ahead of the crack
tip, until the number of intact bridges in this region reaches z..
This local area would then become suddenly soft and fragile,
and eventually fail, propagating the crack further.

3.4 Fracture energy

The energy dissipated at the microscale during crack propaga-
tion must be equal to the macroscopic critical strain energy
release rate measured with the fracture tests, and we will explore
this equivalence here. We have seen that fracture of the material
occurs almost exclusively via detachment of the bridges from the
beads’ surfaces, and not from internal failure of the PDMS. This
result agrees well with a comparison of the fracture energies
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involved in the two cases: while the (interfacial) energy required
to peel PDMS off from glass is only about® Iyan ~ 7 ] m~2, the
energy needed to propagate a Mode-I crack in PDMS is at least an
order of magnitude higher® I'.,, =~ 250 ] m 2. To compare
these fracture energies to the critical strain energy release rate,
G, of the composite material, we need to estimate the surface
covered by the detached bridges. For both samples used in the
pCT analysis we counted the number of beads belonging to
the interface over the projected area of 2.58 mm x 2.58 mm.
We found similar results for the two samples, the average being
n=22.0 % 0.2 beads per mm” of interface. Using the mean cross-
sectional area of the bridges®® A = 2960 um” at W = 2.3%, the
surface of PDMS detaching per unit area of the crack is then
about 12% of the interfacial area. For a brittle crack propagating
without plasticity, the macroscopic energy release rate G. would
be simply the interfacial energy of the material, and originate
only from the detachment of the bridges at the new interface
created by the crack. We would then expect G. ~ 0.12] 4, wWhile
here G, ~ I',qn. This again suggests that some plastic deforma-
tion occurs during fracture. Plasticity in this case may originate
from detachment of bridges in the process zone, as mentioned
before, or possibly from microcracks around the main crack, as
is seen the similar case of drying colloidal films.*" While several
broken bridges can be seen in the tomograms, it is impossible to
estimate their proportion with the present experimental techni-
que, since it is expected that most of them will recover their
initial positions after deformation (but remain detached from
the bead surface).

We have seen in Sections 3.1 and 3.2 that G. is independent
of the stiffness of the polymer phase, but is directly propor-
tional to the area of the polymer bridges. This, in turn, suggests
that G. depends on the geometry of the bridges only, and not on
the cross-linking or compliance of the bridge material. The
influence of PDMS cross-linking on its adherence has been
studied previously using tack tests, by which the adhesion force
is measured after a probe has been pushed onto a PDMS film
with a certain force and for a certain time.**"® Nase et al. have
shown that for a slow probe speed of 1 um s~ ', the debonding
energy of PDMS on steel depends only weakly on its cross-linking
degree, except for full cross-linking where the adherence energy
can be about 3 times smaller.>* Galliano et al. have found that
this difference decreases significantly with the force applied
prior to separation and the separation speed.’” However, it
should be noted that the geometry of tack tests is far from our
configuration, where, additionally, the PDMS is cured directly on
the surface of the glass beads.

In summary, our results suggest that the critical strain energy
release rate, G, of our granular cohesive material is linked to the
geometry of the bridges only, and is largely independent of the
cross-linking of PDMS, and hence E or E,,.

4 Conclusion

We have demonstrated that the fracture toughness of a model
cohesive granular material can be tuned over about an order of
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magnitude via two control parameters, namely the volume
fraction and Young’s modulus of the bridges that bond the
cohesive material together. Moreover, the repeatability of the
data shows how one can aim for a specific fracture toughness of
the material, and prepare it accordingly.

By varying the elasticity of the medium, but keeping its
geometry fixed, we found a well-defined critical strain energy
release rate for the material, which is comparable to that of
sandstone. By then varying the polymer content of the medium,
we further showed that this energy release rate scales linearly
with the cross-sectional area of the polymer bridges between its
grains. The link between the macroscopic and microscopic frac-
ture mechanisms was also investigated by X-ray microcomputed
tomography, from which we have seen that the material fails via
debonding of about one bridge per bead along the crack interface.
The macroscopic fracture energy is about ten times higher than
the work required for this process, suggesting (along with broken
bridges around the crack plane), that there is a modest amount of
plastic damage during fracture.

These results are important for the future use of this material to
study fundamental fracture processes in granular materials, for
example by hydraulic pressure, root growth, or bioweathering. More
generally, the simple structure of the model material, a disordered
packing of hard spheres connected by soft bonds, makes the scaling
relations between its mechanical and geometrical properties,
determined here, of interest for applications involving the
fracturing of other disordered cohesive granular media, such
as consolidated soils, colloidal materials, ceramics (green
bodies) or powder aggregates.
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