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Interface stability, interface fluctuations, and the
Gibbs–Thomson relationship in motility-induced
phase separations

Chiu Fan Lee

Minimal models of self-propelled particles with short-range volume exclusion interactions have been shown

to exhibit the signatures of phase separation. Here I show that the observed interfacial stability and

fluctuations in motility-induced phase separations (MIPS) can be explained by modeling the microscopic

dynamics of the active particles in the interfacial region. In addition, I demonstrate the validity of the Gibbs–

Thomson relationship in MIPS, which provides a functional relationship between the size of a condensed drop

and its surrounding vapor concentration. As a result, the late-stage coarsening dynamics of MIPS at vanishing

supersaturation follows the classic Lifshitz–Slyozov scaling law.

1 Introduction

Phase separation is a ubiquitous phenomenon in nature and is
manifested by the partitioning of a system into compartments
with distinct properties, such as the different particle densities
in the two co-existing phases in the case of liquid–vapour phase
separation. Phase separation under equilibrium dynamics is a
well-investigated physical phenomenon.1,2 Recently, signatures
of phase separation have been reported in non-equilibrium
systems consisting of active particles.3–19 It is therefore a natural
question to ask to what degree we can extend our knowledge of
equilibrium phase separation to the phase separation phenomenon
observed in active systems. In the case of minimal models of active
particles with simple volume exclusion interactions, the phenom-
enon of motility-induced phase separations (MIPS) has received
considerable interest.3,5,8–18 In particular, the idea of an effective
surface tension in motility-induced phase separations (MIPS) has
been advocated.15,18 At the gas–liquid interface in thermal equili-
brium, surface tension results from the pulling of molecules at the
interface due to their attractive interactions.20 In a system of active
particles with purely repulsive interactions, it is unclear how such
‘‘pulling’’ can occur as the particles can only push. To probe what
happens at the interface, I have studied the microscopic dynamics
of the active particles in the interfacial region using a combination
of simulation and analytical methods. Specifically, using mean-field
type arguments, I will demonstrate how pressure balance is
achieved between the condensed phase and the dilute (vapor)
phase, and how the Gibbs–Thomson relationship arises in a system
where a circular condensed drop co-exists with the vapour phase.

Furthermore, by incorporating the stochastic nature of particle
dynamics, I will explain the scaling between the interfacial width
and the system size recently observed in MIPS.18

1.1 Motility-induced phase separation

I will first focus on a minimal model system that exhibits MIPS
in two dimensions (2D)—a collection of self-propelled particles
with excluded area interactions that undergo rotational fluctua-
tions. Specifically, the dynamical equations are
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dt
¼ �1

Z

X
jai

r!riU ri � rj
�� ��� �

þ fa

Z
vi (1)

dyi
dt
¼

ffiffiffiffiffiffiffiffi
2Dr

p
giðtÞ (2)

where i is an integral index enumerating the particles in the system,
vi� cosyix̂ + sinyiŷ with the angle yi (with respect to the x-axis) being
the orientation of the i-particle, gi(t) is a noise term with Gaussian
probability distribution with zero mean and unit variance, Dr sets the
magnitude of the rotational fluctuations, U(�) corresponds to the
potential function for short-ranged area exclusion interactions, Z is
the drag coefficient and fa is the constant active force that drives the
particles in the system. In particular, u� fa/Z is the constant speed of
a particle when it is not within the area exclusion zone of another
particle. Previous numerical work has indicated that phase separa-
tion in this minimal system occurs as u increases, but the actual form
of U is unimportant.8,11,14 For instance, U could be in the form of a
Weeks–Chandler–Andersen potential:21
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This will be the particular form of the potential function utilized in
this work. Also, the time and length units will be set as having a = 1
and Dr = 3. Note that I will focus exclusively on the non-equilibrium
dynamics of the system and therefore translational Brownian
motion is ignored.

2 Flat interface
2.1 Point particles

To understand the microscopic dynamics at the interface, it is
instructive to first look at a system of point particles, i.e., the
interaction potential U is zero. Even this simple system distin-
guishes itself from the equilibrium system in that aggregation
will spontaneously occur in the proximity of a force-absorbing
but frictionless wall (left column of Fig. 1). In other words, the
particles are free to slide and rotate at the wall, but they cannot
penetrate the wall. Further complex patterns are revealed when
one looks at the particles’ orientation distribution as well as the
position distribution (Fig. 1(e)). At the wall, most of the
particles are left-going, as indicated by the high concentration
of orientation at around y C p. This results from the fact that
only left-going particles remain at the wall. Just outside the
wall, the distribution is highly peaked at y just below p/2 and

just above 3p/2, which reflects the particles’ orientation after
they move away from the wall. The orientation anisotropy
decays as a particle moves away from the wall.

In this system, the pressure acting on the wall can be
expressed as

PW ¼ fa

ð3p=2
p=2

wWðyÞ cos ydy
�����

�����; (4)

where the orientation distribution function of the particles at
the wall per unit length is denoted by wW(y). Note that since we
are dealing with a 2D system, the unit of pressure is [force]/
[length].

To further analyse wW(y), one can perform dimensional
analysis to conclude that

wWðyÞ ¼
far1
ZDr

FðyÞ; (5)

where F(y) is a function dependent only on y, and rN is the
particle concentration far from the wall. To obtain the exact
functional form of F(y), one needs to solve a set of two coupled
differential equations under mixed boundary conditions,22 whose
solution consists of a series of Mathieu functions. Unfortunately,

Fig. 1 Steady-state configurations of active particles confined by a force absorbing wall on the left: point particles (left column) and repulsive particles
(right column). (a and b) A snapshot of the system at the end of the simulations with the orientations depicted by the blue arrows. The red circles depicted
in (b) are of diameter a = 1. The wall at x = 0 is perfectly force absorbing (see A.1 for simulation details). (c and d) The histograms show the horizontal
distributions of the particles. (e and f) The colourmaps show the deviation from the mean in the particles’ orientations at different horizontal positions.
The colour scale corresponds to the measure: 2 hiðxÞ � hiðxÞh ið Þ=maxi hiðxÞ where i is the row index and hi(x) is the frequency. The simulation parameters
are: fa = 100, Z = 1, a = 1, Dr = 3, and A = 25/6.
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the expansion coefficients in the series are not analytically
tractable and so an analytical expression is lacking. However,
F(y) can be readily estimated numerically (left column of Fig. 1),
which allows one to obtain the following equation:

PW ¼
fa
2r1
ZDr

ð3p=2
p=2

FðyÞ cos ydy
�����

����� ¼ fa
2r1

2ZDr
: (6)

The second expression is equivalent to the swim pressure23–26 of a
system of active particles in 2D, which I have obtained here
numerically.

2.2 Repulsive particles

Remarkably, much of what we have seen in the point particle
case remains true when we add mutually repulsive interactions
to the particles. When a force absorbing but frictionless wall
constitutes the left boundary of a semi-infinite system, phase
separation occurs where the condensed phase is located close
to the wall (Fig. 1(b)). Inside the condensed phase, the orienta-
tion is isotropic (Fig. 1(f)). The reason behind the isotropy is
that the impeded motility of the particles make them stay for a
duration much longer than the orientation decoherence time
C1/Dr. However, note that the particles’ locations are not
frozen in time as shown by the black particles in Fig. 1(b),
which were the first column of particles next to the wall at the
beginning of the simulation. As a particle moves further to the
right, it first encounters a layer of left-going particles (shown by
the bright red patch centred at x C 17 in Fig. 1(f)). This
represents the accumulation of particles with an orientation
highly centred at around y C p, analogous to the accumulation
of active point particles at the wall, except that the particles are
now spread over a range of x positions due to volume exclusion
interactions. Further rightwards, we encounter a pattern of two
escape trajectories away from the interfacial region indicated by
the two red-yellow branches emerging from the red patch. As a
particle moves further away to the right, the orientation
becomes isotropic again. From this discussion, it is clear that
in the bulk of the condensed and vapour phases, the corres-
ponding orientation distributions are both isotropic, while in
the interfacial region separating them there is a high level of
orientation anisotropy.

Let us now calculate the force exerted on the wall by the
active force of these particles. Since in the condensed phase,
the orientation is isotropic, the pressure felt by the wall due to
these active forces is

P
ðaÞ
W ¼

arc fa
2p

ð3p=2
p=2

cos ydy

�����
����� ¼ arc fa

p
; (7)

where rc is the concentration in the bulk condensed phase. Due
to the orientation isotropy, the expression here scales like fa

instead of fa
2 in the point particle system (eqn (6)). Besides the

active force contribution, the wall will also feel additional
forces arising from the repulsive interactions, which, we will
see, constitute an important contribution in achieving a pressure
balance in the interfacial region in MIPS (Section 2.4).

2.3 Locating the interface

The concentration variation across the two phases shown in
Fig. 2(a) is similar to a typical equilibrium phase separation.
What distinguishes MIPS is the high orientational anisotropy
between the phases (Fig. 2(b) and (c)). As for equilibrium fluids,
the location of a sharp interface between the two phases can be
defined somewhat arbitrarily.27 In the case discussed here,
since the pronounced minimum of hvxi � hcos yi is easy to
locate (indicated by the red broken line) and its location also
marks the onset of the increase in Qyy � �hcos(2y)/2i (the yy
component of the nematic order parameter Q),28 which sig-
nifies the escape of particles from the condensed phase, it is a
convenient choice for the interface location. In other words,
this convention implies that right outside the interface of the
condensed phase, there is a layer of particles travelling prefer-
entially along the interface, as indicated by the peak in Qyy

(Fig. 2(c)). The active forces of these escaped particles are
potentially the cause of the emergence of a negative surface
tension according to its mechanical definition.18 The definition
of the interface location has of course no physical significance,
but this does provide a working definition useful for the sharp
interface model discussed below.

2.4 Interface stability

2.4.1 Pressure balance at a sharp interface. In this section
we will see how pressure balance can be achieved in MIPS. Note
that the discussion in this section amounts to a simplified
exposition of that in ref. 23 and 29. Its presentation here is for
the self-containedness of this paper and will help in under-
standing the approximations used in the later sections.

Fig. 2 (a) Particle concentration as a function of x. The same figure as in
Fig. 1(d). (b) The mean horizontal component of the particles’ orientations
hvxi vs. x (+ symbols, left y-axis), and rqxr vs. x (J symbols, right axis).
(c) The yy component of the nematic order parameter Q vs. x, where Qyy�
�hcos(2y)/2i so that a high Qyy signifies that the orientations of the
particles are preferentially pointing up or down. Similar to equilibrium
fluids, defining the location of a sharp interface is somewhat arbitrary.27

The working definition proposed here is that the interface is set to be at the
pronounced minimum of |hvxi|.
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I will start by discussing a sharp interface model. In this
drastically simplified model, let us imagine that the phase
separated system is partitioned by a sharp interface where in
the vapour phase, the concentration is low enough for the
system to behave like a system of active point particles, and in
the condensed phase, the orientation distribution is isotropic.
One can imagine such a system by first rotating Fig. 1(e) by 1801
and then collating it to Fig. 1(f) on the left. As calculated before,
the pressure exerted by the vapour phase on the sharp interface is
fa

2rv/(2ZDr) (eqn (6)); this pressure is balanced by the pressure
exerted by the condensed phase: arc fa/p + Pr, where the first term
comes from the active force (eqn (7)) and the second denotes the
pressure arising from the repulsive force due to the area exclusion
interactions. In other words, pressure balance is achieved if

arc fa
p
þ Pr ¼

rv fa
2

2ZDr
: (8)

For the simulation parameters used in Fig. 1 (with the units set by
a = 1 and Dr = 3), arc fa/p C 30, Pr C 230 and rv fa

2/(2ZDr) C 330.
We thus see that in the simulated system, the L. H. S. and the
R. H. S. of eqn (8) are of the same order of magnitude, indicating
that the pressure balance conditions are qualitatively satisfied. In
addition, we see that much of the active force coming from the
vapour phase is used to compress the condensed phase via the
pressure Pr. Note that although eqn (8) provides a pressure
balance condition for the system, it does not mean that any
system satisfying this condition is stable as it may still be unstable
against fluctuations. This is not dissimilar to equilibrium fluids
where pressure balance together with chemical potential balance
is needed to achieve phase stability.

The pressure balance condition in eqn (8) already allows for
crude estimation of the minimal active force required for MIPS.
I assume for simplicity that at the onset, (i) the condensed
phase is not very compressed and so we can ignore Pr,

30 and
(ii) the concentration ratio between the condensed phase and
the dilute phase (rc/rv) is of order 1, which leads us to the
minimal force requirement below for MIPS:

fmin
a � 2aZDr

p
: (9)

The above condition comes from the pressure balance condi-
tion at the interface alone. Interestingly, eqn (9) reproduces the
same scaling as obtained by Redner et al. via a different
approximation.11 The result also supports the notion that the
Péclet number (Pe), usually defined as Pe p fa/(aZDr) in this
context, is a key control parameter in MIPS.11,31

From this sharp interface model, we can now see why the
condensed phase with a high density of active and repulsive
particles can remain stable against a backdrop of dilute
concentration of active particles – the active particles in the
vapour phase impact an active pressure that scales as fa

2

directed towards the normal of the interface, while the countering
active pressure from the condensed phase scales as fa.
The quadratic dependence on the active force is due to the fact
that only particles pushing against the interface remain at the
interface, while particles oriented away from the interface leave.

The escaping particles thus open up space for other particles that
serve to push against the interface. From this perspective, the low
concentration in the vapour phase is paramount for the stability
of MIPS, otherwise the particles oriented away from the interface
may be unable to leave effectively.

2.4.2 Force balance in an interface of finite width. Let us
now go beyond the previous sharp interface picture and see
what happens within the interfacial region from the view point
of particle dynamics. Ignoring fluctuations, the stability of the
interface means that if a particle happens to be lying at the
interface it will, on average, remain put. In our minimal model,
a particle can only move due to two reasons: (i) its own active
force driving it to move in the direction dictated by its orientation,
and (ii) a repulsive force that pushes it away from its neighbours if
it is less than a unit distance away from them. While the second
force is common in both active and passive (equilibrium) systems,
the active force is unique to non-equilibrium systems. Consider
now a particle located at x0 inside the interfacial region, i.e., where
hvx(x0)i is varying (Fig. 2). Since hvx(x0)i o 0, the active force will
on average drive this particle to the left. Moreover, there are
repulsive forces coming from the neighbouring particles on the
right hand side fr(x0 + Dx). For the particle to remain still, the sum
of these forces must be countered by the repulsive forces coming
from the left. Therefore,

fr(x0 � a/2) = fahvx(x0)i + fr(x0 + a/2). (10)

Since the repulsive forces come from the repulsive potential
function U, let us replace the repulsive force by the pressure
Pp(x) (subscript p for passive) resulting from the corresponding
system with the same particle configuration and interaction
potentials, but with the active force omitted. Since fr(x) C aPp(x),
eqn (10) leads to

fahvx(x0)i C a[Pp(x0 + a/2) � Pp(x0 � a/2)] (11)

’ a2
dPpðx0Þ

dx
: (12)

In principle, Pp(x) depends on the exact configuration of
particles in the system, but if one adopts the simplifying
assumption that the passive pressure depends solely on the
particle concentration, one can then increase Pp(x) with respect
to concentration r(x):

Pp(x) = c0 + c1r(x) + c2r(x)2 + O(r3). (13)

For equilibrium fluids, this is of course the virial expansion,
where c0 = 0 and c1 = kBT.27 Since our system is fundamentally
not in equilibrium (no translational Brownian motion, i.e.,
kBT = 0), there is no guarantee that the same would apply here.
But let us assume that such an expansion is possible in our
system, and that Pp develops purely due to the repulsive
interactions between particles. We thus expect that c0 = 0 = c1

because as the concentration goes to zero, there would not be
any pairwise interactions. Therefore, the first non-trivial term
in the expansion is c2r

2. Note that c2 4 0 since Pp arises purely
due to the repulsive interactions. One could also incorporate
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active pressure into the analysis as, for example, done by
Winkler et al.32

Here, to order O(r2), eqn (12) then leads to

fa vx x0ð Þh i ¼ 2a2c2rðxÞ
dr x0ð Þ
dx

: (14)

Remarkably, the simulation result shown in Fig. 2(b) indeed
seems to vindicate eqn (14).

3 Circular interface

We have seen in the previous section how pressure balance is
achieved at a flat interface. However, previous 2D simulation
studies have shown that similar to equilibrium phase separa-
tion, if the condensed phase in MIPS does not span the system
size, the condensed phase is circular. Here, we will see how the
curvature of the interface affects the particle dynamics at the
interface, and its consequence in terms of the coarsening
dynamics. We will first study the emergence of the Gibbs–
Thomson relationship using dimensional analysis.

3.1 Gibbs–Thomson relationship: dimensional analysis

In equilibrium phase separation, the Gibbs–Thomson (GT)
relationship dictates that the concentration fR right outside a
droplet (of the condensed phase) of radius R is

fR ¼ f0 1þ n
R

� �
; (15)

where f0 is the supersaturation concentration, i.e., the thresh-
old concentration beyond which phase separation occurs, and

n ¼ 2gv
kBT

is the capillary length with g being the surface tension

and v being the volume of the molecule. Since the concen-
tration in the vapour phase outside a big drop is lower than that
outside a small drop, a diffusive flux is set up which transfers
the material from the small droplet to the big droplet. This is
the Ostwald ripening mechanism that dominates the phase
separation kinetics at the late stage for systems with a small
supersaturation.33

I will now discuss why the GT relationship would arise
naturally in our active system. In the minimal MIPS system
considered, the only parameters in the dynamical equations are
the free roaming speed u = f/Z, the rotational diffusion coeffi-
cient Dr, and the length scale of the short range area exclusion
interaction a. Denoting now the vapour density far from a drop
of radius R by rR*, and the density inside the drop (the
condensed phase) by rc, then by dimensional analysis we have

rR
�

rc
¼F

u

Dra
;

u

DrR


 �
; (16)

where F is some unknown scaling function dependent on its
two dimensionless arguments. If we now assume that F is
regular with respect to the second argument in the sense that a
Taylor series expansion exists (around u/DrR = 0), then the ratio

above can be re-expressed as

rR
�

rc
¼ H þ K

u

DrR
þ O

u

DrR


 �2
 !

; (17)

where H and K are now just dimensionless functions of the first
argument (u/Dra), i.e., R-independent. In terms of rN*, eqn (17)
can be re-written as

rR
� ¼ r1

� 1þ ~n
R


 �
þ O

u

DrR


 �2
 !

; (18)

where ~n � Ku

HDr
, which may be termed as the effective capillary

length. In the large R limit, eqn (18) becomes exactly the GT
relationship in eqn (15). This analysis provides an intuitive
reason why one would naturally expect the GT relationship to
emerge as the drop radius increases in MIPS.

3.2 Gibbs–Thomson relationship: numerics

I will now test eqn (18) by simulating a coarse-grained model of
MIPS. Let us first consider what happens to an active particle in
the condensed phase at a curved periphery (Fig. 3(a)). For such
a particle, I assume that it occupies a zone of radius ã (shown in
red) sandwiched by two zones occupied by two neighbouring
particles (light blue). Note that since the concentration at
the interface may not reach the level of optimal packing
concentration (C0.91), ã should be greater than the particle’s

Fig. 3 (a) A schematic of the interfacial condition at a curved interface of
curvature R�1. The particle is assumed to occupy a zone of diameter ã and
the particle can leave the droplet if its orientation is within the escape
range of 2sR indicated. (b) A schematic showing a droplet (blue) in the
condensed phase of the radius R located at the origin co-existing with the
dilute medium (vapour phase). An active particle (red circle) with orienta-
tion y (blue arrow) is located at the position (r, j). The angle c is equal to
the difference between the orientation y and the azimuthal coordinate j.
(c) A snapshot of a simulated system with 1000 active point particles
(red dots with orientations indicated by blue arrows) in an annular system
with inner radius R = 100 and outer radius R + Lr = 150.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
N

ov
em

be
r 

20
16

. D
ow

nl
oa

de
d 

on
 1

1/
6/

20
25

 6
:5

1:
01

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm01978a


This journal is©The Royal Society of Chemistry 2017 Soft Matter, 2017, 13, 376--385 | 381

diameter a. Indeed, Fig. 2(a) suggests that the concentration is
around 0.72 at the interface, which indicates that ã C 1.2.
To incorporate the effects of the neighbouring particles on the
pink particle, I assume that as a result of the caging effect, the
particle can only move out of the droplet if its orientation is
within the 2s range depicted. Based on the diagram shown in
Fig. 3, a simple trigonometric exercise leads to

sR ¼
p
4
þ 3~a

2R
þ O R�2

� �
: (19)

As expected, a lower curvature leads to a smaller escape range
(smaller sR).

To analyse how the variation in the escape orientation
range affects the phase separated system at the steady-state,
I have considered here a system with one condensed drop of
radius R co-existing with the vapour phase (Fig. 3(b)). I have
denoted the particle distribution function in the vapour phase
by pR(r, j, y), where the first two arguments correspond to the
particles’ locations and the last argument corresponds to the
particles’ orientations. Due to rotational symmetry, one can
eliminate one angular argument by introducing the variable
c � y � j,34 and study instead the reduced distribution

function zRðr;cÞ �
Ð 2p
0 pRðr;j;jþ cÞr cosjdj. On the drop’s

periphery, the corresponding reduced distribution function is
denoted by wR(c). Since the periphery is assumed to be infinitely
thin, wR is only a function of c and is therefore dimensionless.
In addition, I have assumed that drops of all sizes have the
same interior concentration rc, wR(c) and are thus related to the
rc as follows:

Ð
dcwRðcÞ ’ 2~aRrc.

To study the distribution functions, I assume again that the
vapour concentration is low enough that pairwise repulsive
interactions can be ignored, and simulate the dynamics of
active point particles, i.e., non-interacting active particles, in
an annular geometry of inner radius R and outer radius R + Lr

(Fig. 3(b)). As in the linear case, the particles’ orientations are
randomised if they reach the outer circular boundary, while if
the i-th particle reaches the inner boundary, its positions will
remain fixed until its orientation is within the escape range,
i.e., until ci is between sR and sR. The simulation results
are shown in (Fig. 4). Away from the interface, it is observed
that the concentration rapidly reaches a stationary value

rR
� � 1

r

Ð
dczRðr;cÞ for, say, r 4 R + 20 (Fig. 4(a)). As expected

from previous discussion, the vapor concentration rR* decreases
with R since a flatter interface leads to a narrower escape range,
which leads to a smaller outflux of particles from the condensed
phase. Fig. 4(b) shows that rR* decays to rN* (the vapour
concentration as R - N) like R�1, which, as we have seen,
is consistent with the Gibbs–Thomson relationship in equili-
brium systems.

4 Fluctuating interface

I have so far ignored fluctuations in the interfacial profile.
In reality, the interface of course fluctuates, which is already
discernible from the spatially constrained system shown

in Fig. 1(b). In particular, previous simulation results point to
the scaling law:18

wL
2 B L, (20)

where wL is the steady state interfacial width:

wLy �
1

Ly

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðLy

0

~hðyÞ2 � �h2
� �

dy

s
(21)

with %h being the average position of the interface. Here, the
symbol h̃(y) denotes the location of the interface, i.e., the
location of the peak of hvxi (Fig. 2). To understand the scaling
observed, let us consider the effects of the interface curvature
on the particle exchange dynamics. Although the previous
section focuses only on a circular interface, i.e., the curvature
is positive, one can easily extend eqn (19) to allow for a concave
interface as well (Fig. 5). The physical motivation behind the
formula is the same, a particle at a highly convex portion of
the interface will have a wider escape orientation range (red
particle in Fig. 5) than a particle at a highly concave interface
(green particle).

Since the fluctuations ultimately come from the fluctuating
dynamics of particle exchange at the interface, we need to
model the steady-state dynamics of h̃ stochastically. The simplest
equation of motion (EOM) for the interface that incorporates both
the effects of stochasticity and curvature-modified outflux is

@ ~h

@t
¼ 2ab1ðyÞ � 2a0 1þ bkðyÞð Þb2ðyÞ; (22)

where a denotes the rate of particles coming at the interface, and
thus contributing to the growth of h̃, while a0(1 + b0k(y)) denotes
the rate of the particles escaping, with the effect of the local
interface curvature (k(y) = q2h̃/qy2) taken into account. The noise
terms are bi(x) which are Markovian, spatially independent and
are either 0 or 1 with equal probability. Since the interface does
not move in the steady state by assumption, a has to be identical
to a0. From now on, I will focus exclusively on the hydrodynamic

Fig. 4 (a) The variation in the vapour concentration rRðrÞ �
1

r

Ð
dczRðr;cÞ

away from the interface of droplets with sizes R = 20, 60, 100. The
concentration decays rapidly from the interface and reaches a stationary
value rR* a short distance away from the interface. (b) rR*/rN* vs. R. The
curve decays to 1 like R�1, which is consistent with the Gibbs–Thomson
relationship (eqn (18)). Blue crosses represent the simulation results and
the red curve depicts the function 1 + 1.84R�1. Note that the constant rN*
is estimated numerically from the Gibbs–Thomson relationship. See A.2
for simulation details.
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limits (large temporal and spatial scales). So let us coarse grain h̃
by defining a new coarse-grained height function h(y):

hðyÞ � 1

‘

ðyþ‘=2
y�‘=2

~h y0ð Þdy0 (23)

where a { l{ Ly and l is large enough that
Ð yþ‘=2
y�‘=2bi y

0ð Þdy0 become

Gaussian as a result of the central limit theorem. The EOM of
h(y) is then

@h

@t
¼ a g1 þ

1

2
� ð1þ bkÞ g2 þ

1

2


 �� 	
(24)

¼ a
bk
2
þ bkg2 þ g1 � g2ð Þ

� 	
(25)

where gi are now Gaussian noises such that

hgi(y,t)i = 0 (26)

giðy; tÞgj y0; t 0ð Þ
� 


¼ a

4‘
dijd t� t 0ð Þd y� y0ð Þ: (27)

In the long-wavelength limit, the fluctuating term abkg2 B
q2h/qy2 - 0 and so the only relevant fluctuations come from
the Gaussian fluctuations a(g1 � g2). Therefore, in the hydro-
dynamic limits, eqn (25) is exactly the Edwards–Wilkinson
model,35 with the effective surface tension given by ab/2. Note
that the effective surface tension here is always positive, which
is a requirement for having a stable interface. As such this
effective surface tension is distinct from the mechanical defini-
tion of surface tension, which has been shown to be negative in
MIPS.18 As mentioned in Section 2.2, the negative tension
around the interface is likely to be caused by the particles
escaping from the condensed phase that are now travelling
close to being parallel to the interface. Consistent with our
definition of the location of the interface (Fig. 2), these escaped
particles are not considered to be part of the condensed phase
and are thus ignored in our discussion of the interfacial
fluctuations. In other words, the effective surface tension
derived here is distinct from the mechanical definition of the
surface tension discussed by Bialké et al.18

Given that our stochastic model is equivalent to the Edwards–
Wilkinson model, the temporal and steady-state dynamics of
interfacial width are known to follow the scaling form:

wLðtÞ ¼ LaFEW
t

La=b

� �
(28)

for some scaling functions FEW(�) (Fig. 6). In a 2D system where
the interface is a line, a = 1/2 and b = 1/4.35,36 As shown in Fig. 6,
these expectations are confirmed with direct simulation of a
discretised version of the original EOM in eqn (22). This model
thus provides an analytical argument supporting the steady state
scaling wL(t - N) B L1/2 recently observed numerically.18

To summarise this section, I have incorporated the caging
effect as discussed in Section 3 into the modelling of the
stochastic dynamics of particle exchanges at the interface.
The model equation is then shown to be equivalent to the
Edward–Wilkinson model in the hydrodynamic limits. In parti-
cular, the emergence of the effective surface tension term
(abk/2) from the particle dynamics at the interface also explains
why the interface is flat when both phases span the system, and
circular when one phase does not span the system.

5 MIPS in 3D

I have so far analysed the interfacial properties in MIPS in 2D
using a combination of analytical and numerical methods.
Here I will extrapolate the obtained results to MIPS in 3D.

5.1 Flat interface

Utilizing the sharp interface model for MIPS in 3D, the pressure
balance equation in eqn (8) becomes

arc fa
2p
þ pr ¼

rv fa
2

6ZDr
; (29)

Fig. 5 Schematic depicting a wavy interface where the condensed phase
is depicted in blue. The location of the interface (purple) is given by the
function h̃(y). Due to the caging effect from neighbouring particles, the red
particle at the interface will have a higher chance of escaping compared to
the green particle because the escape orientation range (grey area) is
bigger.

Fig. 6 Interface fluctuations as measured by the interface width

wLðtÞ �
PL
i¼1

~hiðtÞ � �hðtÞ
� �2

. The curve collapse of systems with difference

linear dimension L upon rescaling is predicted using the EW model. Inset
plot: The interface width at the final time wL(tf) shows a linear dependence

with
ffiffiffiffi
L
p

, where L is the system size. Blue crosses represent the simulation
results and the red line is a guide for the eyes. See Appendix A.3 for
simulation details.
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where on the R. H. S. the active force contribution corresponds
to the swim pressure of active particles in 3D in the vapour
phase,23 and on the L. H. S., the first term comes from the
active contribution to the force assuming again that the orien-
tation is isotropic in the condensed phase. With regards to the
minimal active force required for MIPS, using the approxima-
tions that fr is negligible and that rc/rv C 1, we arrive at

fmin
a � 3aZDr

p
(30)

which is very similar to the expression in 2D (eqn (9)).

5.2 Spherical interface

The dimensional analysis presented in Section 3.1 also includes
spherical drops in 3D. Therefore, if the assumption that the
escape range decreases with the curvature of the drop, then the
Gibbs–Thomson relationship should emerge in the large drop
limit (eqn (18)). In particular, we again expect the MIPS
coarsening kinetics to be equivalent to the equilibrium scheme
at low supersaturation.15,33,37

5.3 Interface fluctuations

For MIPS in 3D, the interface is two dimensional and so there
are two principal curvatures. If we adopt the natural assumption
that the escape range now depends on the mean curvature, then
the theoretical analysis presented in Section 4 applies in 3D in a
straightforward manner. As a result, keeping only the linear terms
will again lead to the Edwards–Wilkinson model in the hydro-
dynamic limits.

6 Discussion and outlook

In this paper I have investigated the microscopic dynamics of
active particles in the interfacial regions in MIPS using a
combination of simulations and analytical arguments, and
demonstrated (i) how interface stability is achieved, (ii) why
the GT relationship emerges in MIPS, and (iii) how interface
fluctuations scale with the system size. Therefore, I have shown
that all the observed ‘‘surface tension’’ related phenomena
found in MIPS result from the microscopic dynamics of the
active particles. More specifically, I have demonstrated that
pressure balance in MIPS is achieved because of the orientation
anisotropy in the region, which leads to a high active force
directed towards the condensed phase. By incorporating the
caging effects of neighbouring particles in the peripheral of
a condensed drop, I have shown how the Gibbs–Thomson
relationship emerges naturally in MIPS, which dictates that
the larger the condensed drop, the smaller the vapour concen-
tration outside the drop. If the supersaturation level is small,
the GT relationship leads to diffusive transfer of active particles
from small drops to larger drops. As a result, the late-stage
coarsening kinetics in an active phase-separating system
should follow the temporal scaling as in equilibrium phase
separation: i.e., the average droplet size in the system hR(t)i
scales as15,33,37 t1/3. In addition, the droplet size distribution
should approach asymptotically the universal size distribution

obtained by Lifshitz and Slyozov.33 Lastly, motivated by the
same caging effects, I have proposed a stochastic model that
describes the interfacial fluctuations in MIPS. In this model,
the probability of particles leaving the interface is assumed to
be dependent on the interface curvature. An analytical argument
was then provided to show that the proposed model belongs to
the same universality class as the Edwards–Wilkinson model.

There are a number of future research directions that are of
interest. For instance, phase separation may play a role in
cytoplasmic re-organisation during asymmetric cell division.38,39

How the activity in the cytoplasm due to the many motor proteins
contributes to such re-organisation via phase separation awaits
more attention. Moreover, the fact that active phase separation
occurs naturally raises the question of the existence of the critical
point as in the equilibrium case. The critical transition in
incompressible active fluids has recently been shown to give rise
to a novel universality class.40 Furthermore, if a critical transition
exists in MIPS, will the critical exponents be identical to those in
the equilibrium case which belong to the Ising universality class?
This question awaits further investigation.

Appendix A Simulation details
A.1 Particle dynamics simulation

For the simulation results reported in Section 2 (Fig. 1 and 2), I
numerically integrate the Langevin equations for each particle
in the bulk of the system of size Lx � Ly by using the following
updated equations:

ytþDti ¼ yti þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DrDt

p
gti (31)

rtþDti ¼ �1
Z

X
jai

rriU rti � rtj

��� ���� �
þ fa

Z
cos yti ; (32)

where gt
i are Gaussian distributed random variables with zero

mean and unit variance, and U is given by the Weeks–Chandler–
Andersen potential shown in eqn (3). The periodic boundary
condition is enforced in the y, direction; while in the x direction,
if xt+Dt

i o 0, then it is reset to zero, and if xt+Dt
i 4 Lx, then xt+Dt

i = Lx

and yt+Dt
i is an angle chosen at random.

The parameters of the simulations are: Dt = 10�5, a = 1, Z = 1,
fa = 100, Dr = 3, and A = 25/6 for repulsive particles and A = 0
for point particles. The system has width Lx = 50 and height
Ly = 10 sin(p/3), with 300 particles initialized in the configu-
ration of a hexagonal lattice (with spacing 1) next to the left
boundary, and random orientations. Two hundred million time
steps are evolved to equilibrate the system and then data are
collected in the subsequent two hundred million time steps.

A.2 Point particles in an annular geometry

For the simulation results reported in Section 3 (Fig. 3), the
system is now annular with inner radius R and outer radius
R + Lr. The same updates as in eqn (31) and (32) are included for
the point particles in the bulk of the system. Concerning the
boundary conditions, if rt r R then the particle becomes part of
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the condensed drop periphery, and the orientation follows the
update:

ytþDti ¼ yti þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DrDt

p
gti ; (33)

while the position remains the same until ct � |yt � jt| o sR

(Fig. 3(b)), in which case the particle leaves the condensed
phase. If rt+Dt

i 4 R + Lr, then rt+Dt
i = R + Lr and yt+Dt

i is an angle
chosen at random.

For distinct annulus geometry, the density rR(r) is normalised
by rc, which is the density of particles at the inner circular wall.
This is based on the assumption that rc is the same irrespective of
drop sizes.

The parameters of the simulations are: Dt = 10�3, Z = 1,
fa = 100, Dr = 3, and A = 0. The system has 1000 particles initialized
with random orientations and positions. Twenty million time
steps are evolved to equilibrate the system and then data are
collected in the subsequent twenty million time steps. Simulations
are performed for R = 20, 40, 60, 80 and 100, while Lr is always 50.

A.3 Fluctuating interfaces

To simulate interface fluctuations according to eqn (22), I
discretise the interface (a line) into L sites with height values
hi where i = 1,. . .,L. Periodic boundary conditions are enforced.
The updates are performed as follows:

ht+Dt
i = ht

i + [1 + b(ht
i�1 + ht

i+1� 2ht
i)]g̃

t
i � [1� b(ht

i�1 + ht
i+1� 2ht

i)]g̃
t
i,

(34)

where g̃t
i are either 0 or 1 chosen with equal probability, and

b = 0.1. The system sizes simulated are L = 160, 200, 240, 280,
320 and 360. The total number of time steps simulated for each
system size is 5L2/2.
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and T. Speck, Phys. Rev. Lett., 2013, 110, 238301.
14 J. Stenhammar, A. Tiribocchi, R. J. Allen, D. Marenduzzo

and M. E. Cates, Phys. Rev. Lett., 2013, 111, 145702.
15 R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J. Allen,

D. Marenduzzo and M. E. Cates, Nat. Commun., 2014,
5, 4351.

16 A. Y. Grosberg and J. F. Joanny, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2015, 92, 32118.

17 J. Stenhammar, R. Wittkowski, D. Marenduzzo and
M. E. Cates, Phys. Rev. Lett., 2015, 114, 18301.
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