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1 Introduction

Tug-of-war between two elastically coupled
molecular motors: a case study on force
generation and force balance

Mehmet Can Ucar and Reinhard Lipowsky*

Intracellular transport is performed by molecular motors that pull cargos along cytoskeletal filaments.
Many cellular cargos are observed to move bidirectionally, with fast transport in both directions. This
behaviour can be understood as a stochastic tug-of-war between two teams of antagonistic motors.
The first theoretical model for such a tug-of-war, the Muller—Klumpp—-Lipowsky (MKL) model, was based
on two simplifying assumptions: (i) both motor teams move with the same velocity in the direction of
the stronger team, and (ii) this velocity matching and the associated force balance arise immediately
after the rebinding of an unbound motor to the filament. In this study, we extend the MKL model by
including an elastic coupling between the antagonistic motors, and by allowing the motors to perform
discrete motor steps. Each motor step changes the elastic interaction forces experienced by the motors.
In order to elucidate the basic concepts of force balance and force fluctuations, we focus on the
simplest case of two antagonistic motors, one kinesin against one dynein. We calculate the probability
distribution for the spatial separation of the motors and the dependence of this distribution on the
motors’ unbinding rate. We also compute the probability distribution for the elastic interaction forces
experienced by the motors, which determines the average elastic force (F) and the standard deviation of
the force fluctuations around this average value. The average force (F) is found to decrease monotonically
with increasing unbinding rate ¢o. The behaviour of the MKL model is recovered in the limit of small &. In
the opposite limit of large ¢o, (F) is found to decay to zero as 1/¢q. Finally, we study the limiting case with
& = 0 for which we determine both the force statistics and the time needed to attain the steady state.
Our theoretical predictions are accessible to experimental studies of in vitro systems consisting of two
antagonistic motors attached to a synthetic scaffold or crosslinked via DNA hybridization.

The MKL model was based on two simplifying assumptions:
(i) all motors move with the same velocity in the direction of

Intracellular cargos such as vesicles and organelles are trans-
ported by cytoskeletal motors." Conventional kinesin and cyto-
plasmic dynein represent two types of cytoskeletal motors that
walk along microtubules in opposite directions.>* Many cargos
are observed to perform a bidirectional movement on the
microtubules with frequent reversals.*® This behaviour reflects
the presence of two antagonistic motors, plus-end directed
kinesin and minus-end directed dynein, on the same cargo.
These motors try to pull the cargo in their preferred direction
of motion, thereby performing a stochastic tug-of-war. The
first theoretical model for such a stochastic tug-of-war was
introduced by Miiller, Klumpp, and Lipowsky (MKL)®*® and
corroborated by the observations of endosome transport in
amoebae® and fungi."’
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the stronger team and (ii) this matching of the velocities sets
in as soon as the cargo is pulled by motors from both teams.
Thus, for two antagonistic motors, the MKL tug-of-war state is
characterized by the following properties. When both motors
are simultaneously bound to the filament, they experience
mutual interaction forces which are of equal magnitude and
opposite direction, in accordance with Newton’s third law. The
absolute value of this interaction force, the so-called cargo force
F.,, is determined uniquely by the characteristic force-velocity
relations of the motors and the condition of velocity-matching
under this force.*® The cargo then moves with this generally
low, but nonzero velocity v., in the direction of the stronger
motor. In the special case of equally strong motors the cargo is
in a stalled state with zero velocity.

In the MKL model, the motion of the motors is described in
a coarse-grained manner, averaging over the discrete steps of
the individual motors. Here, we extend this model by including
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these discrete steps, following the theoretical approach developed
in ref. 11 and 12 for two identical motors that pull in the same
direction. We consider two antagonistic motors which are coupled
to their common cargo via two elastic linkers. We then use the
force balance between the motors and the cargo to derive an
effective elastic coupling between the two motors. With each step
taken by one of the motors, the effective linker is either stretched
or compressed and an elastic force is induced acting on both
motors. The velocity-matching condition can therefore only be
reached, in general, after the motors have taken multiple steps.

When the tug-of-war involves antagonistic motor teams
consisting of several identical motors, the MKL model makes
the additional assumption that the overall load acting on one
team is shared equally by all motors in that team. This assumption
has been previously criticized to represent a mean-field approxi-
mation because it ignores fluctuations in the load sharing."*™** In
order to examine the latter fluctuations, the authors in ref. 13-15
studied such antagonistic motor teams. In contrast to these
previous studies, we focus here on the simplest case of two
antagonistic motors for which load sharing does not play any
role. On the one hand, the case of 1 + 1 motors is useful in
order to elucidate the basic concepts of force balance and force
fluctuations. In fact, as shown below, this case already implies a
nontrivial force balance, with an average interaction force that
depends strongly on the unbinding rate &, of the individual motors
and decays to zero for large &. On the other hand, the study of the
1 + 1 motor system allows us to perform a detailed comparison
between (i) the tug-of-war of two elastically coupled motors that
perform discrete steps and (ii) the tug-of-war of two antagonistic
motors as described by the MKL model.

The theoretical results described below can be scrutinized
by experimental in vitro studies based on recently developed
protocols'®?° to control the number of active motors on
synthetic molecular scaffolds. Evidence for a tug-of-war mechanism
between kinesin and dynein attached to such scaffolds was
observed in ref. 19 and 20. Very recently, it has also been demon-
strated that one can directly crosslink a single, fluo-labeled kinesin
with a single, fluo-labeled dynein via DNA hybridization.”* For
such two-motor constructs, one should be able to measure the
probability distribution for the spatial separation of the two motors
along the filament and, in this way, directly scrutinize the predic-
tions of our theory. Furthermore, as shown below, the distribution
for the motor-motor separation also determines the probability
distribution for the elastic interaction forces and, thus, the average
elastic force (F) between the motors.

This paper is organized as follows. First, we briefly review (i) the
single motor description in Section 2.1, thereby introducing the
single motor parameters used in our model, and (ii) the cargo force
predicted by the MKL model in Section 2.2. Next, the force balance
for a tug-of-war between two elastically coupled motors is consid-
ered and the associated state space for this process is defined in
Section 2.3. We describe the system as a Markov process with
(i) several transient states corresponding to different extensions of
the effective elastic linker and (ii) two absorbing states defined by a
single plus- or minus-end motor bound to the filament. The rates of
the network are determined using single motor parameters
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characterising the stepping and unbinding behaviour. Section 3
reports the results on the steady state probability distributions of 2-
motor runs with both motors attached to the filament, the average
force experienced by the motors, as well as a detailed study of the
limiting case of zero unbinding rates. In the latter case, both the
force statistics and the time needed to reach the steady state are
determined as a function of the elastic coupling strength.

2 Model

2.1 Single motor description

When a motor binds to the filament, it steps along the filament in a
preferred direction. In the absence of an external force F, the motor
moves with its zero-force forward velocity towards the preferred end
of the filament. We use the convention that a resisting force acting
as a load on the motor has a positive sign whereas an assisting
force pulling the motor in its preferred stepping direction has a
negative sign. This convention is used both for plus-directed and
for minus-directed motors. With increasing load force, the motor
velocity decreases until the force reaches the motor’s stall force F; at
which the motor velocity vanishes. Experimental studies provide
strong evidence that the kinesin-1 motor steps backwards for load
forces F > F,.>>** The explicit form of the force-velocity relation for
a single motor can be obtained from fits to experimental data or
provided by piecewise linear relations as in previous theoretical
studies, see e.g. ref. 6, 13 and 15 and Appendix A. Here, we will use a
convenient parametrization of the force-velocity relation as intro-
duced in ref. 11 which has the form

F/F,
Vmin — V0 Vmax Y0 — Vmin
Vmax + Vmin

0 — Vmax Vmin Y0 — Vmax
(Vmax Vo — Vmin)F/R
+ -
Vmin Y0 — Vmax
The parameters vV, and vy, determine the limits of v(F) for
large negative and large positive values of F, respectively. The
zero-force velocity v(F = 0) is given by the parameter v,. In the
following, we use the force-velocity relation in eqn (2.1) for
both motors. The parameters Vg, Vmax, Vmin and Fg can be
specified in order to obtain close approximations for experi-
mentally determined force-velocity relations, e.g. as given in
ref. 22 for kinesin-1 and in ref. 24 for cytoplasmic dynein.
Another single motor property that has been measured for
kinesin as a function of load force®®* is the forward-to-
backward stepping ratio g which is defined as the number of
forward steps divided by the number of backward steps as

observed within a certain time interval. This ratio was found to
depend exponentially on the load force and to be well fitted by*>

v(F) =

2.1)
Vmin — V0

V0 — Vmax

1-F/F,

q(F) =q, with ¢o = 800 and F; =7 pN for kinesin.

(2.2)

For dynein, the corresponding parameters have not been
measured directly but the single motor data on yeast dynein
in ref. 25 and 26 provide the estimates

go=4 and F;=7 pN for dynein.

(2.3)
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Fig. 1 Forward and backward stepping rates, « and f, as a function of load
force F for yeast dynein. The rates are computed via eqn (2.4) and (2.5) with
the force—velocity relationship v(F) and the step ratio g(F) as given by
egn (2.1) and (2.2), using the single motor parameters in Table 1. The
dashed vertical line (red) corresponds to the motor’s stall force Fg = 7 pN.

We now use the force-velocity relationship v(F) and the
forward-to-backward stepping ratio g(F) together with the step
size ¢ to define the forward stepping rate of a single motor by

_WF) _q(F)
(F) = A G (2-4)
and its backward stepping rate by
_v(F) 1
BF) =—7= q =T (2.5)

which implies «/f = g and « — = /v."" The force-dependence of
the two stepping rates o and f is illustrated in Fig. 1 for yeast
dynein. At the stall force F = Fy, the two stepping rates are equal,
implying that forward and backward steps are equally likely.
For F > F, backward steps are more likely than forward steps
and both stepping rates decay monotonically with increasing
force. For F < Fj, on the other hand, forward steps are more
likely than backward steps but the individual stepping rates
are nonmonotonic as a function of F. In fact, the backward
stepping rate f for dynein exhibits a pronounced maximum at
the load force F = 3.21 pN, arising from the relatively small
value g, = 4 of the forward-to-backward stepping ratio. For
kinesin, on the other hand, which is characterized by a much
larger value of g,, no such maximum of f is found.

A motor bound to a filament unbinds from this filament with
a constant unbinding rate in the absence of external forces. We
denote this zero-force unbinding rate of a single motor by &.
When a force acts on the cargo, the motor-filament bond is more
likely to break. Although the unbinding process is very complex
on a molecular scale, it can be approximately described as an
escape process of a particle in a potential well. According
to Kramers’' theory,”” the force-dependence of the motor’s

unbinding rate is then approximately exponential and given by
6(F) = 8o exp(|F|/Fa), (2.6)

where Fy is the detachment force, another force scale that char-
acterizes each motor type. Here and below, the force F represents
the tangential force component acting parallel to the long axis of
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the filament, with the previously mentioned sign convention that F
is positive when it acts against the preferred stepping direction
that the motor has in the absence of force. Note that ¢(F) is taken to
depend only on the absolute value |F|, and not on the direction of
the force which implies that resisting and assisting forces increase
the unbinding rate by the same amount. This simplifying assump-
tion is not crucial, however, because, as we will see below, assisting
forces are almost never generated by a tug-of-war.

In the following, we use this single motor description for two
different types of motors, kinesin and dynein, which represent
the best studied examples for processive plus-end and minus-
end directed motors. We will use the notation F= and F for the
stall and detachment forces of these two motor species. Our
sign convention for F implies that both stall and detachment
forces are positive. In addition, this convention also implies
that a positive force acting on the plus-end directed motor
points towards the minus end of the filament whereas a
positive force acting on the minus-end directed motor points
towards the filament’s plus end. Furthermore, because of the
opposite directionality, the force-velocity relationships v*(F)
and v (F) for the plus- and minus-directed motors have the
form v'(F) = +v(F) and v~ (F) = —v(F) with v(F) as in eqn (2.1).

2.2 Cargo force in the MKL model

Before we consider the tug-of-war between elastically coupled
motors, we will first summarize the main properties of the tug-
of-war in the MKL model which provides a useful reference
process. As described in Appendix A, the latter process is
characterized by instantaneous velocity matching between the
different motors. The corresponding matching condition can
be visualized by plotting the two force-velocity relations for the
individual motors in the same (F,v)-diagram.® The intersection
point of these two relations provides the matching condition
for the MKL tug-of-war as illustrated in Fig. 2 for the case in

W(F)
v E—
V()
(FCa 7vCa)
———— F
s Fg

A
Fig. 2 Matching condition for the velocities of two antagonistic motors as
used in the MKL tug-of-war model: force—velocity relations as given by
egn (2.1) for a plus (green) and a minus (red) motor with zero-force
velocities v§ > 0 and vi; < 0. The intersection point (F, v) = (Fea, Vea) Of
the two force-velocity relations defines the velocity-matched state in
which both motors move with the same velocity v, and experience the
same single motor force as provided by the cargo force F = Fc,. In this
example, the stall force F{ of the plus motor exceeds the stall force Fy of
the minus motor which implies v, > 0, i.e. both the cargo and the two
antagonistic motors move towards the plus end of the filament.

This journal is © The Royal Society of Chemistry 2017
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which the stall force F; of the plus motor exceeds the stall force
Fy of the minus motor.

In general, the intersection point (F, v) = (Fc,, V¢a) of the two
force-velocity relations defines the velocity-matched state in
which the cargo and the motors move with the same velocity v.,
and the two motors experience the same single motor force,
namely the cargo force F = F.,. The cargo force is always positive
because it is located between the stall forces F; and F; of the two
motors, both of which are positive by definition. Thus, according
to our sign convention for single motor forces, the cargo force acts
as a resisting force on both motors: it represents the absolute value
of the two opposing forces that the cargo exerts simultaneously
onto the plus and onto the minus motor.

2.3 Elastic coupling between the motors

We now consider one kinesin and one dynein motor pulling on
the same cargo particle via elastic linkers as illustrated in Fig. 3.
We use the Cartesian coordinate x parallel to the filament to
describe the positions of the motors and the cargo along this
filament. The coordinate x is chosen to increase towards the plus
end of the filament. Thus, each motor-cargo configuration is
described by the positions Xy, Xay, and xc, with Xqy < Xea < X
Furthermore, to discuss the elastic forces acting between the
motors and the cargo, we will first define these forces with respect
to the coordinate x which implies that we temporarily use a
different sign convention for these interaction forces compared
to the single motor forces. Thus, in the following paragraph, the
elastic interaction forces are taken to be positive when they
point towards the plus end of the filament and negative when
they point towards the filament’s negative end.

Elastic forces between the cargo and the motors. The linkers
between the motors and the cargo are described by harmonic
springs with spring constant x and rest length L. The kinesin
motor then exerts the force

Fiica = K(Xxi — Xea — Ly) (2.7)

onto the cargo. Likewise, the dynein motor exerts the force

Fayca = —K(Xca — Xay — L) (2.8)

onto the cargo. We now assume that, for given positions x; and
Xay, the elastic forces balance each other on timescales that are
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short compared to the timescales of the single motor transi-
tions. This elastic force balance implies Fyjca + Fayca = 0 and
Xea = 3(Xxi + Xqy)- Eliminating the cargo position x., from the
expressions in eqn (2.7) and (2.8), we obtain the forces

Fiica = 36(X — Xay — 2Ly) = K(xg — Xay — Lo)  (2.9)

and

de,ca = %K(xki — Xay — ZLH) = y — LO), (210)

—K(xki — Xa

which depend only (i) on the coordinate difference x;; — xqy of the
two motor positions and (ii) on the effective spring parameters

K = k/2 and L, = 2L,. (2.11)
Introducing the combined spring extension
AL = Xki — Xdy — Lo, (2.12)

the force that the kinesin exerts on the dynein becomes

Fki,dy = Fki,ca = KAL7 (213)

while the force that the dynein exerts on the kinesin has
the form

Fcly,ki = —KAL, (2.14)

as required by Newton’s third law.

Identification with single motor forces. In order to use
the single motor description as described in the previous
subsection, we now return to our original sign convention for
the force F acting on a single motor. As a consequence, the
single motor force is given by

F=F= —Fq for kinesin, (2.15)

which is positive when the force Fq \; points towards the minus
end of the filament, and by

F= de = Fki,dy for dynein, (216)

which is positive when the force Fi; 4y points towards the filament’s
plus end. Newton’s third law as given by Fijq, = —Fayi then
assumes the simple form Fy; = Fgy = F.

State space for tug-of-war with elastic coupling. Kinesin and
dynein have the same step size / ~ 8 nm, see references in
Table 1. We further assume that the motor pair can attain a

o

(0) @)
' " /N
FT T T T T F

F():O K mfmFK_ —nFK~F+
Fig. 3 Different states (j) withj = 0, 1, m and n of two antagonistic motors corresponding to different extensions of the elastic linkers between the
motors and the cargo. The kinesin motor (blue “heads”) and the dynein motor (green "wheels”) prefer to move towards the (+)- and (—)-end of

the microtubule, respectively. In state (0), the motor linkers are relaxed and do not generate elastic forces. When the motors perform steps leading
to a state (j) withj > 0O, the spring becomes stretched and generates the elastic force F; = jF. As explained in the main text, the single motor forces F,; and
Fay acting on kinesin and dynein are defined in such a way that Newton'’s third law assumes the simple form f; = Fy; = Fq,. In state (1), for example, both the
kinesin and the dynein motor experience the single motor force Fy = Fx. In state (m), the force F,,, = mFx ~ Fg, i.e. itis comparable to the stall force Fg of
the minus motor. At this stall force, the minus motor steps forward and backward with equal probability. In state (n), the force F,, is close to the stall force
of the plus motor, which can now step forward and backward with (almost) equal probability.
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relaxed state with AL = 0. It is then convenient to introduce the
dimensionless spring extension

J=AL/t with —] <j <], (2.17)
where j = J represents the maximal stretching and j = —J the
maximal compression of the spring.

Each motor behaves as a stochastic stepper with force-
dependent forward and backward stepping rates «(F) and f(F), as
given by eqn (2.4) and (2.5). Following the approach in ref. 11 for
two identical motors, we now introduce a discrete state space with
states () labeled by an integer j with —J < j < J. Each state ()
corresponds to a certain extension of the elastic spring. We
consider two identical motor linkers in series which implies the
effective spring constant K = /2 for the elastic coupling between
the two motors as in eqn (2.11). When the spring extension is
increased by a single motor step with step size Z, the elastic force
experienced by both motors is increased by the strain force

Fyx =K = k/l/2, (2.18)

Table1 Values of the parameters used for kinesin-1 and two types of dynein
motors: the values for “strong” and “weak” dynein correspond to yeast and
mammalian cells, respectively. A star superscript indicates a parameter for
which we did not find experimental data in the literature; the corresponding
parameter value was set equal to the experimentally deduced value of
another type of motor. For the minimal and maximal velocities of both
dynein motors in the force—velocity relationship (2.1) we used the estimated
values vmin =~ 0.12vg and vmayx ~ 1.12vq, as indicated by the 1 symbol. For the
parameters in this table the strain force is given by Fx = kl/2 = 0.8 pN both for
kinesin vs. strong dynein and for kinesin vs. weak dynein

“Strong”  “Weak”
Parameter Kinesin-1  dynein dynein
Zero-force unbinding rate & [s”'] 1% 1* 1%¢
Stall force F [pN] 7% 724,26 117738
Detachment force Fy [pN] 3.6% 3.3% 3.3*
Linker stiffness x [pN nm '] 0.2V 0.2* 0.2*
Step size [ [nm] g'722 8>* 8>
Zero-force step ratio g, 800> 4% 4%
Zero-force velocity v, [nm 5] 547" 85%° 800**
Backward velocity Vi, [nm s™'] 121 10" 100"
Max. velocity Viax [N s7] 573" 100" 900"

1,%)

wor(0)

0)
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see Fig. 3. The elastic force acting between the motors is then
given by

F; = jFx in state (j). (2.19)

When one of the motors performs a step, the elastic force
acting between the two motors changes monotonically from its
initial value before the step to its final value after the step. As a
consequence, the effective force acting during the stretching
transition from (j) to (j + 1) is given by

Fio = (B + B2 = B(j + 112) (2.20)

i.e. by the arithmetic mean of the forces acting before and after
such a step.”® Likewise, the effective force acting during the
compression transition from () to (j — 1) has the form

Fio = (F+F_,)/2=Fj— 1/2). (2.21)

Motor kinetics and transition rates. The dynamics of
the two-motor runs can be investigated by considering the
stochastic process on the discrete state space corresponding
to the “stretching” or “compression” of the effective spring
between the motors. In state (0) the spring is relaxed. If one of
the motors performs a single step, the elastic spring of the two-
motor system can be stretched or compressed by //2 and the
system undergoes a transition to states (1) or (—1), respectively,
see the network representation in Fig. 4. In general, the motor
system undergoes a forward transition from state () to state
(j + 1) if kinesin or dynein performs a forward step. The
corresponding stepping rates are given by oci(Fj>) for the
individual motors which implies the forward rate

o(j) = o' (F=) + o (F=) for (j) > (j+1) (2.22)

with —J < j < Jand the boundary condition w¢(J) = 0, see Fig. 4.
Each forward transition leads to an increased stretching or
a reduced compression of the elastic coupling between the
two motors.

Likewise, the motor system undergoes a backward transition
from state () to state (j — 1) if kinesin or dynein performs a

Worr(1)
wf (0)
— >~

wi(J —1)
(e ()

Fig. 4 State space associated with different states of the elastic linker. The two states (1, +) and (1, —) are the absorbing states with a single plus and
minus motor bound to the microtubule. States labelled by integer j with —J < j < J denote the states with a stretched and compressed linker forj > 0
andj < 0O, respectively. Starting from state (j), the plus and minus motors unbind from the filament with rates wg«(j) and wo( j). Furthermore, the motors
undergo a forward transition from () to (j + 1) with rate w¢(j) and a backward transition from () to (j — 1) with rate wy(}).
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backward step. The corresponding stepping rates are given
by B*(F;~) for the individual motors which implies the
backward rate

op(j) = B'(E<) + B (Fi<) for () - (- 1) (2.23)

with —] < j < J and the boundary condition wy(—J) = 0, see
Fig. 4. Each backward transition leads to a reduced stretching
or an increased compression of the elastic coupling between
the two motors.

In state (j), each of the motors can unbind (or detach) from
the filament. The corresponding unbinding rates have the form

¢(F) = eoexp(|F|/Fa) = worl))

for the two types of motors. The overall unbinding rate from
state () is then given by

(2.24)

Woft(J) = o) + @or(f)- (2.25)

Motor parameters. In the following, we will study the tug-of-war
between one plus-directed motor and one minus-directed motor.
Most single motor parameters will be kept fixed and assume
values as appropriate for kinesin-1 and strong dynein, see
Table 1. One parameter that we will vary systematically is the
zero-force unbinding rate

g0 = & .

€0 (2.26)

As we will see, the elastically coupled tug-of-war is characterized,
in the limit of small ¢,, by essentially the same force balance as
the MKL tug-of-war. Another parameter of the motor system
that will be varied systematically is the elastic coupling between
the two motors as described by the strain force Fx = K/ = k//2.
In order to ensure that the finite size of the state space does not
affect our results, we will always use a sufficiently large state
space with (2] + 1) > 101.

3 Results

3.1 Steady state properties of tug-of-war

The elastic coupling between the two antagonistic motors is only
effective as long as both motors are attached to the filament
and perform a 2-motor run. The latter runs are described by
transitions between the states () in Fig. 4 and are terminated as
soon as one of the motors unbinds from the filament. After such
an unbinding event, the cargo is bound to the filament by a
single motor as described by the states (1, +) and (1, —) in Fig. 4.
These 1-motor runs continue until the unbound motor rebinds
to the filament. We will assume that the rebinding typically leads
to the state (0) which is relaxed in the sense that the two motors
do not experience elastic interaction forces. Thus, after rebinding,
a new 2-motor run starts from the initial state (0).

As described previously for the 2-motor runs of two identical
motors,'"'? the steady state probability distribution as obtained
from an ensemble average over many 2-motor runs can be
replaced by a time average over a concatenated 2-motor run that
is obtained by redirecting all transitions to the absorbing states
towards a certain initial state. For the network depicted in Fig. 4,
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the absorbing states are provided by (1, +) and (1, —) and the
initial state is taken to be the relaxed state (0). As a result, we
obtain the redefined network in Fig. 12 which has no absorbing
states. The corresponding steady state probability distribution
can then be calculated by solving the master equation for the
redefined network, see Appendix B.

The steady state probability distribution pj* describes the
frequencies with which the effective elastic spring between the
two motors has the extension j. The latter extension determines
the spatial separation

L=Ly+j/ (3.1)

of the two motors along the filament. The average motor-motor
separation is then given by

(L) =Lo+ ()t=Lo+(> p}j
J#0

(3.2)

The fluctuating motor-motor separation L should be directly
accessible to experimental studies when one combines
the recently introduced crosslinking of one fluo-labeled
kinesin and one fluo-labeled dynein via DNA hybridization®*
with advanced methods of fluorescence imaging such as
FIONA.*

In Fig. 5(a) we plot pj* for different values of the zero-force
unbinding rate &. We see that for low unbinding rates, e.g.
g0 = 0.01 s, the probability distribution pjt shifts towards states
with larger j-values. Because the elastic force F; corresponding
to spring extension j is given by F; = jFy, we can transform the
occupation probabilities of the states into the corresponding
force distribution by a change of variables from j to Fj, see
Fig. 5(b). As shown in the latter figure, a decrease in the
unbinding rate leads to a shift of the force distribution towards
higher force values and to an average elastic force

Zp/tF FKZP/]_FK[ Ly — Lo]/¢

Jj#0

(3.3)

that approaches the cargo force F., = 7 pN as obtained for
velocity-matching. For higher unbinding rates, the occupation
probabilities are shifted towards lower j-values, leading to a
reduced motor-motor separation and indicating that the motors
are likely to unbind from the filament before reaching a state
with velocity matching. The relationship in (3.3) implies that the
average elastic force (F) can be determined from the average
motor-motor separation (L).

3.2 Dependence of average elastic force on the unbinding rate

For two antagonistic motors coupled by an effective spring
as studied here, the elastic interaction forces fluctuate and lead
to steady state force distributions as shown in Fig. 5(b) for
different values of the unbinding rate &,. In contrast, for the MKL
model, the mutual interaction force is given by the constant
cargo force F., as obtained via velocity matching, see Fig. 2.
Inspection of Fig. 5(b) shows that the cargo force F., provides
a better approximation to the average elastic force (F) if the
unbinding rate becomes smaller. To further examine the relation-
ship between the fluctuating elastic forces and the cargo force,
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Fig. 5 (a) Steady state probability distributions pft for different values of the unbinding rate ¢g as given in the inset. The spring extension j determines the
spatial separation of the two motors via Lo + j/. Apart from ¢, all parameters have the values as given in Table 1 for kinesin and strong dynein, which
implies the strain force Fx = 0.8 pN; and (b) steady state distributions for the elastic forces as obtained from pf‘ by a change of variables from j to F; = jF.
The dashed vertical line (red) represents the cargo force F., of the velocity-matched model. For low unbinding rates ¢o, the average elastic force
approaches this cargo force. For larger values of &g, the force distribution becomes broader and shifts towards lower force values. As a consequence,
the average elastic force (F) becomes smaller than the cargo force F., see average force values in the inset. Likewise, the average spatial separation
Lo + {j)¢ of the two motors decreases with increasing unbinding rate &g as follows from the distributions pft in (a).

we now consider the very low unbinding rate g, = 107> s~
and calculate the corresponding steady state probability dis-
tribution pj*. This distribution and the associated force dis-
tribution are displayed in Fig. 6 for different values of the strain
force Fg. Both for kinesin vs. strong dynein as depicted in

—~
=\
~—

st
J
g g o g o
[ N PSR U O}

Steady state probability p?

=2
=)

=3pN, (F) =T7.42pN
=2pN, (F) =7.31pN
=1pN, (F) =T7.17pN
=0.5pN, (F) = 7.09 pN
F., =T7pN
& ‘A"A\
i 'y

—_
(op

St

J
© o o o o -
= N W B

Steady state probability p$

=
=)

1

Spring extension j

Fig. 6(al and a2), and for kinesin vs. weak dynein in Fig. 6(b1
and b2), the cargo force F,, provides a more accurate approximation
to the average elastic force (F) for smaller values of the strain
force Fy. This behaviour arises because smaller Fg-values imply
smaller changes in the elastic force induced by single motor
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Fig. 6 Steady state probability distributions and force distributions for the small unbinding rate &o = 107> s~ and for different choices of the strain force
Fx: (al and a2) kinesin against strong dynein, see the motor parameters in Table 1. As we decrease Fy, the average force (F) approaches the cargo force
Fea = 7 pN more accurately; and (bl and b2) kinesin against weak dynein, see again Table 1. The cargo force now has the lower value F., = 4.55 pN
compared to the kinesin vs. strong dynein case in (a). Accordingly, the state (0) in (b1) has a higher occupation probability than the same state in (al), and
the probability for the force value Fo = O is increased in (b2) compared to (a2).
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steps which lead to a larger number of accessible force values
and, thus, to a smoother interpolation of the discrete force
distributions. In addition, the smaller cargo force for the tug-of-
war between kinesin and weak dynein compared to kinesin and
strong dynein implies that the force value F, = 0 has a higher
probability for the weak dynein case, see Fig. 6.

As shown in Fig. 5, increasing the unbinding rate ¢, leads to
a reduction in the average elastic force (F) induced by the
motors. This unbinding rate dependence of the average elastic
force is displayed in more detail in Fig. 7(a) for different choices
of the strain force Fy, with Fig. 7(b) magnifying the limit of
small ¢,. In this limit, the deviation of the average elastic force
(F) from the cargo force F., increases for larger values of Fy.
The decrease of the average force (F) with increasing unbinding
rate ¢, is caused by the increasing probability that one of the
motors unbinds from the filament before the motors have
matched their velocities in the 2-motor run and, thus, before
the motors can generate forces comparable to the cargo force
F.,. The double-logarithmic plot in Fig. 7(c) reveals that the
average elastic force (F) decays to zero for large &,. It follows
from eqn (3.3) that the asymptotic behavior of (F) for large ¢, is
determined by the asymptotic behavior of the steady state
probability distribution pj* for large ¢,. The latter behavior can

@)
Z7)
L@ 6
3 5
<4
2
% 3 —— Fi =0.5pN
ohn
§ 1 K =2D.
<0
0.0 02 04 0.6 0.8 1.0
Zero—force unbinding rate € [s~1
C
© ,

| | |
[5%) \e} — (=)

log,(<F>/pN)

|
N

log o(€o/s™)

Fig. 7

View Article Online

Soft Matter

be directly obtained from the master equations (B.1)-(B.4).
One then finds from the local flux balance in the states () that

st st COf(J - 1) .
txpl ——— for1<j<J 3.4
PR J (34)
and
st st wb(] + 1) .
trpl,————= for —J<j<—1 3.5
Pj = Pj+ ot (J) J (35)

in the limit of large unbinding rates wqg(j) ~ &. Iterating these
relations and imposing the normalization condition (B.5), one
obtains the asymptotic behavior

st o (0) N 1 st
P oo (1) e

for large ¢
(3.6)
as well as
P~ 1 —pf —p%i =1+ 0(1/e) forlarge eq (3.7)

whereas all other pJ‘?t are of higher order in 1/¢,. The average
elastic force (F) as given by (3.3) then behaves as

(F) ~ F(p§' — p™1) ~ 1/g, for large &,.

(3.8)
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(a) Average elastic force (F) acting on the motors as a function of the zero-force unbinding rate ¢ for different values of the strain force Fx. The

average force (F) decreases with increasing ¢q, irrespective of the value for Fy; (b) limiting behaviour of the average elastic force (F) for small unbinding
rate ¢o. In this limit, the average force (F) approaches an asymptotic value (F)q close to the cargo force F., and the deviation (F)o — F, decreases with
decreasing F; (c) double-logarithmic plot of the average force (F) versus the unbinding rate which now varies over six orders of magnitude. The straight
lines clearly demonstrate that (F) decays to zero for large ¢o and that this decay can be well fitted, over the accessible range of ¢o-values, by a power law
of the form (F) ~ 1/&5 with the effective decay exponent {; and (d) effective exponent { as obtained by fitting the data in (c) for different values of the

strain force Fy.
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The power law behavior (F) ~ 1/g, is corroborated by the
numerical data in Fig. 7(c) which are well fitted, over the
accessible range of ¢,-values as given by 15! < g, < 10°s7?,
by a power-law of the form (F) ~ 1/¢* with the effective decay
exponent (. As shown in Fig. 7(d), the effective exponent ( is
found to depend weakly on the strain force Fx for Fx < 13 pN

and to approach the true asymptotic value { = 1 for Fx > 13 pN.

3.3 Statistics of elastic forces for vanishing unbinding rate

We now look at the properties of the tug-of-war in the limit in
which the two motors can no longer unbind from the filament,
corresponding to zero-force unbinding rate &, = 0 which implies
that we(j) = 0 for all j. In this case, the state space for the
tug-of-war between the two motors is reduced to the states
J = —J,-.,J. For this reduced state space, the probability
distribution p;(¢), which starts from the initial distribution
p;(0) = Jjo at time ¢ = 0, evolves towards a steady state distribu-
tion p;* as shown in Fig. 8. The maximum of p;* is located close
to the state (j = 9) characterized by the elastic force 9Fx = 7.2 pN
induced by the effective spring, while the cargo force obtained
from velocity matching is F., = 7 pN.

The average elastic force (F) for the process with vanishing
unbinding rate is shown in Fig. 9 for different values of the strain
force Fyx. We observe that, regardless of the choice of Fy, the
average force (F) remains close to the cargo force F., whereas its
standard deviation o increases with increasing Fx. In the limit of
small strain forces Fy, the average force (F) approaches the cargo
force F., more accurately, in accordance with our previous results.
As shown in the right inset of Fig. 9, the standard deviation

/ Z P (FP — (F)?) (3.9)
of the elastic force behaves as
OF ~ FK (3.10)

over the whole range of Fy-values considered here. For Fx =1 pN
and ¢, = 0, the standard deviation is 6 ~ 1.5 pN. Increasing the

[ pj'f

Foo/Fy = 8.75

-2 0 2 4 6 8 10 12 14 16

Spring extension j

Fig. 8 Time evolution of the probability distribution p;(t) for unbinding
rate ¢o = 0 and strain force Fx = 0.8 pN, the latter parameter being
appropriate for strong dynein. The initial probability distribution at time
t = 0 is given by p;(0) = 9;p corresponding to a relaxed spring with zero
extension. As t increases, the distribution p;(t) approaches the steady state
distribution pf‘ as indicated by the dashed red line.
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3.1

zero-force unbinding rate ¢, for fixed Fx = 1 pN, the full network
in Fig. 4 leads to a slight increase in the deviation o, which
then saturates at 67 ~ 1.9 pN for an unbinding rate of gp=1s*
(data not shown here).

Using these results for the statistics of the elastic forces,
we can directly conclude that the average spring extension ()
behaves as

(J) = (F)/Fx ~ FealFx (3.11)
and its standard deviation
/Z N?) = or/Fk (3.12)
as
O"/'N\/FK/FKil/\/FKNl/\/EA (313)

These dependencies on the strain force Fy are displayed in
Fig. 10.

The average spring extension () implies that the two motors
have the average separation (AL) = /(j). Thus, we conclude that,
in the limit of small Fr corresponding to weakly coupled
motors, the average separation between the motors increases
as 1/y/Fx ~ 1/V/K. Furthermore, the behavior of the standard
deviation g; is consistent with a Gaussian probability distribu-
tion of the form

;" oc exp[—cK(j — ()] (3.14)

for the spring extension j where ¢ is a proportionality factor.
It is instructive to compare the distribution as given by (3.14),

which arises from the stochastic nature of the tug-of-war and the

underlying motor activity, with the equilibrium distribution

B9 o exp[ K7 (ksT)] (3.15)

corresponding to thermal fluctuations in the harmonic spring
potential 1Kj?. Comparing the two distributions in (3.14) and
(3.15), we can draw two conclusions. First, the motor activity

This journal is © The Royal Society of Chemistry 2017
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Fig. 10 Average spring extension (j) and standard deviation g; of these
extensions as a function of strain force Fy for unbinding rate ¢g = 0. Both (j)
and g; decrease with increasing Fx. The Fx-dependence of (j) is very well
described by F,/Fx (dashed red line). The standard deviation g; is propor-
tional to l/m (full blue line in the inset). This behavior is intimately
related to the behavior of the average force (F) and the associated
standard deviation af, see the main text.

leads to a nonzero average value (j) of the spring extension
implying a nonzero average separation (AL) = /(j) of the
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Fig. 11 Strain force dependence of the relaxation time 7, (green) needed
to attain the steady state for unbinding rate ¢ = 0. The inset displays a
double-logarithmic plot of the 7,-data. A least-squares fit to these data
leads to tp ~ 1/F} with the exponent n = 0.97 from which we conclude
that the relaxation time 1, is inversely proportional to Fx to a very good
approximation. For comparison, the average run time t, (red) for 2-motor
runs with eo = 0.3 s™* has also been included. For the range of Fx-values
considered here, the relaxation time 7. is always large compared to the
average run time t,.
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motors and a nonzero average force (F) = Fx(j) acting on them.
Second, the fluctuations around the average value (j) can be
characterized by a standard deviation g; ~ 1/VK both for the
thermal and for the active process.

A comparison between Fig. 7 and 9 also shows that the
tug-of-war obtained for the reduced state space with ¢, = 0 is
reached in a smooth manner when we consider the full state
space as depicted in Fig. 4 and take the limit of small ¢,. This
agreement is to be expected because the steady state probability
distributions for ¢, > 0 follow from the redefined network
in Fig. 12 which also becomes identical with the reduced state
space for &, = 0.

3.4 Relaxation time for vanishing unbinding rate

For the reduced state space consisting of the states (j) with
J=—J,...,%J as obtained for unbinding rate ¢, = 0, the elastically
coupled motors eventually reach a steady state with the average
elastic force (F) ~ F., as illustrated in Fig. 8 for Fx = F.,/8.75.
We will now address the relaxation time for this process, i.e. the
time it takes to actually reach this steady state. This relaxation
time 7. is provided by the largest non-zero eigenvalue /4, of the
transition rate matrix for the redefined state space in Fig. 12 via
the relation®®

Tre = —1/25. (3.16)
As shown in Fig. 11, the relaxation time t,, for the approach
towards the steady state increases strongly as we reduce the
strain force Fy, i.e. as we reduce the elastic coupling between
the two motors and allow them to move further apart. Indeed,
in the limit of small Fy, the average separation of the two
motors increases as (AL) = /(j) ~ 1/Fg as follows from the
behavior of (j) in Fig. 10. When we plot the t,.-data in a double-
logarithmic manner, see the inset of Fig. 11, a least-squares fit
leads to the relation 1, ~ 1/F} with the decay exponent 7 =
0.97. We thus conclude that the relaxation time 7. is also
inversely proportional to Fx to a very good approximation. As a
consequence, the relaxation time 7, for two weakly coupled
motors is roughly proportional to their average separation
(AL) ~ 1/Fxwhich diverges in the limit of small Fr = /K = //2.
In order to obtain a well-defined relaxation time 7., we
had to consider the limiting case with unbinding rate ¢, = 0.
Real motors have, of course, a finite unbinding rate which
implies that their 2-motor runs are terminated after a finite

wot (—J) Woft (J)
wOH(_l) woff(l)
(=) e T 1)
(C) o O O >(0) >N )=
wb(—J +1) wb(0) wy(1) wp(J)

Fig. 12 Redefined state space: all transitions of the full network in Fig. 4 that reach the two absorbing states (1, +) and (1, —) are combined with a very fast
rebinding transition towards the transient initial state (0). Because the rebinding process is instantaneous, the combined unbinding and rebinding
transition from state () to state (0) is governed by the rate wq as given by eqn (2.25).

This journal is © The Royal Society of Chemistry 2017

Soft Matter, 2017, 13, 328-344 | 337


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm01853j

Open Access Article. Published on 17 November 2016. Downloaded on 1/11/2026 4:20:20 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

time and can then be characterized by the average run time
-1
th = <Zpls-la]off(j)> . We must now distinguish different
—F

cases depending on the relative size of the average run time
t, and the relaxation time 1. If ¢, is large compared to 1., the
two motors will be characterized by an average elastic force (F)
close to the cargo force F., of the MKL model. On the other
hand, if ¢, is small compared to 7, the force balance between
the two motors is different because (F) is small compared to
F... As shown in Fig. 11, the latter case applies to the unbinding
rate &, = 0.3 s~ ' for the whole range of Fy-values considered in
this figure. A more detailed discussion of the different time-
scales and the associated dynamic regimes will be given in a
subsequent publication.>*

4 Summary and outlook

In this paper, we considered the tug-of-war between one kinesin
and one dynein motor, which are coupled to a common cargo
via elastic linkers. We started from the known properties of
the single motors and used these properties to derive the force-
dependent stepping rates for forward and backward steps
of both motors. Unexpectedly, we found that the backward
stepping rate of strong dynein exhibits a maximum at an
intermediate load force, see Fig. 1. We then described the
elastic interaction forces between the motors and the cargo
by two harmonic springs which can be combined into an
effective harmonic spring between the two motors. The exten-
sion j of this effective spring was used to define the state space
for the tug-of-war between two elastically coupled motors as
displayed in Fig. 4.

A Markov process was constructed on this state space with
transition rates that were derived from the single motor rates.
Starting from the relaxed state (0) with spring extension j = 0,
the antagonistic motors perform a 2-motor run on the reduced
state space consisting of the transient states (j) with j = —J,.. ., J
until one motor unbinds from the filament and the process
ends up in one of the absorbing states (1, +) or (1, —), see Fig. 4.
The ensemble average over many such 2-motor runs can be
obtained by computing the steady state probability distribution
p;* on the redefined state space in Fig. 12. Using this distribu-
tion, we calculated the average elastic force (F) experienced by
the two motors as a function of the unbinding rate &, see Fig. 7.
This average force approaches the cargo force F., for small ¢,
and decays to zero as 1/¢, for large ¢, see (3.8). Numerically we
find the power law (F) ~ 1/¢5 with an effective decay exponent {
that depends on the strain force Fx, see Fig. 7(d).

Finally, we studied the limiting case of a tug-of-war between
two elastically coupled motors that cannot unbind from the
filament, corresponding to zero-force unbinding rate ¢, = 0. In
this case, we found that the time evolution of the probability
distribution always leads to a steady state distribution for
which (i) the average elastic force (F) is close to the cargo force
F., irrespective of the strain force Fy and (ii) the standard
deviation o of the force fluctuations is proportional to /Fx
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as shown in Fig. 9. These relationships imply that the average
spring extension (j) ~ 1/Fx ~ 1/K and the standard deviation
oj ~1/\Fx ~1/VK, see Fig. 10. The latter dependence is
consistent with a Gaussian probability distribution for the
spring extension j as described by (3.14). The behavior of the
average spring extension (j) implies that the average separation
(AL) = /(j) of the two antagonistic motors increases as 1/K for
small K, corresponding to the weak coupling limit. Essentially
the same K-dependence is found for the relaxation time 7.,
towards the steady state probability distribution pj', see Fig. 11.
Therefore, in the weak coupling limit of small K, both the
average motor separation (AL) and the relaxation time 7.
diverge as 1/K for ¢, = 0.

In the present article, we have focussed on the forces acting
between two elastically coupled motors. As indicated in
the last subsection 3.4 on the relaxation time, the resulting
tug-of-war involves different timescales that define different
kinetic regimes. Likewise, as far as motor unbinding is con-
cerned, one has to distinguish spontaneous unbinding for
small elastic forces from force-induced unbinding for large
elastic forces. Another interesting topic is the tug-of-war
between elastically coupled motor teams involving N; > 1
plus-directed motors and N, > 1 minus-directed motors.
These more complex motor systems will be addressed in a
forthcoming paper.*’

As previously mentioned, the theoretical results presented
here can be scrutinized by experimental in vitro studies based
on recently developed protocols'®*° to control the number of
active motors on synthetic DNA scaffolds. Evidence for a tug-of-
war mechanism between kinesin and dynein attached to such
scaffolds was observed in ref. 19 and 20. Very recently, it has
also been demonstrated that one can directly crosslink a single,
fluo-labeled kinesin with a single, fluo-labeled dynein via DNA
hybridization.? Our tug-of-war model provides detailed predic-
tions for the transport properties of such a two-motor system.
One of these properties is the probability distribution p§* for the
spatial separation of the two motors as displayed in Fig. 5a, 6al,
b1, and 8. The latter distribution should be accessible to
advanced methods of fluorescence imaging such as FIONA.>
In principle, it is also possible to measure the average inter-
action force (F) directly via FRET-based molecular tension
probes®® that are incorporated into the linkers between the
motors and the cargo. Other quantities of interest that can be
used to compare our theory with experiment include the run
lengths and run times of the two-motor systems.

Appendices
A Review of tug-of-war with velocity matching

Here we shortly describe the tug-of-war in the MKL model,
following ref. 6 and 7. Let N, and N_ denote the number of
plus and minus motors attached to the cargo, respectively.
At any given time ¢’ the cargo is pulled by n, plus and n_ minus
motors, where 0 < n, < N, and 0 < n_ < N_. The motility
state of the cargo at ¢’ is then characterised by the

This journal is © The Royal Society of Chemistry 2017
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number of bound motors to the microtubule, denoted by
(n+, n_). Assuming that (i) opposing motors act as load and
(ii) identical motors share this load® the transition rates
between adjacent motility states can be inferred from single
motor binding and unbinding behaviour. The force balance
on a cargo pulled by n. plus and n_ minus motors at any
moment is given by:

Fe(niyn ) = nF" = —n_F . (A1)

F" and F~ are the forces “felt” by a single plus and a single
minus motor, respectively. The sign of the force is chosen to
be positive if it is a load on the plus motors. The force acting
on a single plus motor is then given by F' = F(n.,n_)/n..
This means that all plus motors feel the same load in a given
cargo state (ni,n_). The effective unbinding rate for a plus
motor is:

£ () = mesexp(|Falnon (D). (A2)

Note that multiplying single motor rates by the factor n.
implies that the motor-motor interactions are not considered.
The effective binding rate of a plus motor is similarly given by:

' (ne,n_) = (Ne — ny)mg. (A.3)

The effective binding and unbinding rates for the minus
motors can be obtained by replacing the index “+” by “—” in
eqn (A.2) and (A.3).

An expression for the cargo force F.,(n.,n_) of the force
balance condition can be determined by observing that both
plus and minus motor teams match their velocities under
this load. The corresponding velocity is equal to the cargo
velocity:

vca(nﬂnf) = v+(FCa(n+7n7)/n+) = 7v7(Fca(n+;n7)/n7)7
(A4)

where the functions v'(-) and v~ (-) are determined by the single
plus and minus motor force-velocity relations. In ref. 6 and 7
the force-velocity relation of a single motor is given by the
following piecewise-linear function:

V() = vep(1 — FIFy), (A.5)

with vg|g = Vg for F < Fs and vg|g = vg for F > F,, where vg and vg
are the force-free forward and backward velocity, respectively.
When there is no load force acting on the motor, it proceeds
with the force-free forward velocity vg. Note that both vp and vg
indicate the absolute values of the corresponding velocities. In
this work, however, we use an empirical force-velocity relation
obtained by a least squares fit to the data from ref. 22. This
specific choice is initially presented in ref. 11, see eqn (2.1) in
the main text.

From eqn (A.5) we obtain the velocity of plus motors for the
state (74,n_):

V+(Fca(n+an*)/n+) =

This journal is © The Royal Society of Chemistry 2017
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The minus motor velocity is given by an analogous expression
by replacing the index “+” by “—”. The cargo force F.,(7.,n_)
can now be determined by the velocity matching condition in
eqn (A.4):

V;‘B(l — Fca(n+,n_)/(n+Fs+)) = —vE‘B(l — Fca(m_,n_)/(n_Fs_))7

nin_FJF; <v;|B + vg‘B)

& Foa(ny,n_) =— —— .
VF\B’LFS + vF‘Bn+Fs+

(A.7)

Observe that when only one motor type is active, i.e. n_ = 0 or
n, = 0, the force acting on the cargo disappears: F,(n.,n_) = 0.
From eqn (A.7) and (A.4), we obtain the cargo velocity:

+ .
va(nn ) = — e =k . (A.8)

”*st/"lgua Jr”+Fs+/";|13

For the empirical force-velocity relationship v(F) as given in
the main text by eqn (2.1) the matching condition (A.4) can be
solved numerically. In the case of two antagonistic motors the
cargo velocity defined by the matching condition eqn (A.4) can be
obtained graphically from the intersection point (F,v) = (Fea,Vea)
of two force-velocity relations, as shown in Fig. 2.

For the case of “stronger plus motors”, i.e. n.Fy > n_F;,

we have:
Fea(ni,n_ ) = AnFi + (1 — A)n_Fg, (A.9)

_ nyFf —n_F;
i F v+ EE

Vea(ny,n_) (A.10)
where A = (1 + (n,Fivg)/(n_Fsvy))~". Observe that A can only
have values in the interval [0,1], which implies that the cargo
force F.,(n.,n_) ranges between the maximal values of the plus
and minus stall forces n,Fs, and n_F,_.

In this work we only consider two opposing motors, i.e.
the state (n, = 1, n_ = 1). The notation used in the main text is
Fea =Fy(ni=1,n_=1)and vy = vea(nr =1, n_ = 1), where F., and
Vea are obtained from the numerical solution of the velocity
matching condition, i.e. by determining the coordinates of the
intersection point of the force-velocity functions of both motors.

B Master equations and the specification of parameters

The full network in Fig. 4 can be reduced to a closed network
with all transitions to the two absorbing states being redirected
to the initial state (0), see Fig. 12. The steady state distribution
of the closed network can now be used to obtain some quan-
tities of interest such as the average absorption time for the full
network.'™** The latter quantity can also be calculated recur-
sively without constructing the closed network.** A single
trajectory on the closed network in Fig. 12 corresponds to the
concatenation of many full network trajectories, each of which
starts at the initial state (0) and is eventually absorbed in the

for Fea(ny,n_) < Ff,

(A.6)
for Feu(ny,n_) > F;".
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states (1, +) or (1, —). The master equations corresponding to
the closed network in Fig. 12 are given by

Op_j(t) = —[we(=)) + wore(=/)]P—At) + @b(=] + V)p_pii(t)
(B.1)

and

0p/(8) = ~[wn(]) + @or( D)) + O — Vpy4(0)- (B-2)
for the two boundary states with j = —J and j = +J, by
Oipo(1) = — [@r(0) + @b (0)]po (1) + @p(1)p1 (1) + p(=1)p-1(7)

+ > oo (/)pi(0),

Jj#0

(B.3)

for the state (0), where the sum includes all states (j) apart
from (0), and

0p;(t) = —[w()) + ob(J) + wos()p; (@) + wu(j + V)pjn(t)
+ os(j — Vpj-a(9) (B.4)

for all other values of j. Eqn (B.1)—(B.4) are supplemented by the
normalization condition

Zp_,-(t) =1 forallzr. (B.5)

The different rates that appear in these equations are defined
in (2.22)-(2.25) and depend on the single motor properties
described by (2.1)-(2.6). The latter relationships involve the
single motor parameters Vo, Vmax, Vmins Fs» o, Fa, €0, and / as
well as the elastic coupling parameter K = x/2. We typically vary
one parameter such as the unbinding rate ¢, or the elastic
coupling parameter K, keeping all other parameters fixed at
their values in Table 1.

C Matrix form of master equations

The master equations can be written in the matrix form if we
define the (2/ + 1)-dimensional column vector

POy -2y Op0)" = |p())

where the superscript T stands for ‘transpose’ and the ket
notation will be used for convenience. Using the latter vector,
the master equations (B.1)-(B.4) attain the compact form

0:lp()) = Wp(8)

with the (2] + 1) x (2/ + 1) transition rate matrix W. The
diagonal matrix elements W; ; are given by

(C.1)

(C.2)

Wi = —los)) + ou()) + 0on(f)] forj # —J,j # 0,andj # J

(C.3)
as well as by
Wy = —[we(=]) + wore(=])]; (C4)
Wo,0 = —[@¢(0) + wb(0)], (C.5)
and
Wy = —[on(]) + @ose(J)]. (C.6)
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The off-diagonal matrix elements of W are given by
Wi =wp(j+1) forj<j—1 (C.7)
and
Wij1=wfj—1) forj > —J+1. (C.8)

For each column of the matrix W, the matrix elements sum up
to zero, i.e. > W;; = 0 for all values of £.

J .
Most of our results are based on the steady state solutions
pi* of eqn (C.2) with 3,|p*) = W|p*) = 0 or

Z Wikpi = Zip)'  with eigenvalue 4; = 0. (C.9)

k
The numerical solutions of these equations were obtained with a
self-written script based on built-in subroutines of Mathematica 9.0.

D Time evolution without motor unbinding

In Section 3.3, we describe the time evolution of the probability
distribution p;(¢) for unbinding rate &, = 0, see Fig. 8. In this
limiting case, the state space in Fig. 4 becomes 1-dimensional
and does not contain any cycles. The steady state probability
distribution pj* then satisfies the detailed balance conditions

wi(j — Dpits — oo = Wit — Wa,pj" = 0
(D

)
for all j with —J < j < J — 1 which is equivalent to

Wip;t = W;pit (D.2)

for all nonzero matrix elements. Applying the conditions (D.1)

iteratively along the 1-dimensional state space, we obtain the
steady state solutions

a_ 0= Dox(j=2)-or(=J + Dax(=J)
= wp(o(j— 1) on(—J + an(— + 1)

(D.3)

where p*; is determined by the normalization condition
Xp=1
i

In general, the matrix W is not symmetric. However, if the
matrix elements W;; fulfill the detailed balance conditions
(D.2), we can define the symmetric transition rate matrix W
with matrix elements®!

N 12
. P P
Wik = W/k< s\t) = Wk,
Dj

(D.4)

Because the matrix W is symmetric, it has real eigenvalues 4,
with n=1,2,...,Nand N = 2] + 1. Furthermore, the right and left
eigenvectors for the eigenvalue 4, have the same components
i(An), Le.

> Wikiti(An) = Jnily(An) and
k

. = - D.5
S () W = i) (B:3)
J
and satisfy the orthonormality condition
Z ﬁ/()°"1)ﬁ/ (;“il) = 6/71,/1 (DG)

J
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where the Kronecker delta symbol 6,,, = 1 for m = n and 0
otherwise.

It then follows from eqn (D.4) that the transition rate matrix
W has the same eigenvalues 1, as the symmetric matrix W and
that the right eigenvectors of W are given by the column vectors

i) = (71 G- (2a)) - with () = 8203 [ (D7)

whereas the left eigenvectors of W are provided by the
row vector

with ¢(4,) = 2 (),
v}

(n] = (G (An), -« En(An)) (D.8)

The left and right eigenvectors satisfy the orthonormality and
completeness relations

(o | 2n) = Omn and > " |2) (| =1 (D.9)

with the identity matrix 1. The column vector |p(¢)) can now be
decomposed according to

(1)) =D 1) Calt)  with Cu(t) = (2 | p(1)).  (D.10)

When this decomposition is inserted into the master equation
(C.2), we obtain the time-dependent coefficients C,(t) = C,,(0)e™™
and the probabilities

(1) =[5 1(20) G (0)e

(D.11)

with

€(0) = 3 % o).

k Pk

(D.12)

Because all eigenvalues /,, are negative for n > 2, the long time
behavior of p;() is dominated by the term withn=1and 1, =0
corresponding to the steady state probabilities pj*.

Thus, in order to determine the time-dependent probabilites
p;() as given by (D.11), we subsequently computed the steady
state probabilities pj‘, see (D.3), the symmetric matrix W via
(D.4), as well as the eigenvalues 4, of W and the corresponding
eigenvectors with components #;(4,), using again the built-in
subroutines of Mathematica 9.0. The initial distributions were
set to p;(t = 0) =1 for j = 0 and p;(¢ = 0) = 0 for all other values of ;.

E Dependence of average elastic force on strain force

In Fig. 9 the strain force dependency of the average elastic force
(F) is presented up to a strain force value of Fx ~ 3 pN. In this
regime, the average elastic force is approximately independent
of the strain force and equal to the cargo force F., of the tug-of-
war in the MKL model. In the limit of high strain forces,
however, we would expect the elastically coupled model to
generate (F) = 0, since none of the motors would be able to
make a single step because of the high spring stiffness.

In Fig. 13 we plot the average force (F) as a function of the
strain force Fi within the range 3 pN < Fy < 40 pN. We observe a
weak maximum of (F) around a strain force value of Fx ~ 10 pN.
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Fig. 13 Average elastic force (F) of the process for zero-force unbinding
rate go = 0 and strain forces Fx > 3 pN. We observe that (F) reaches a
maximum around a strain force value of Fx = 10 pN. For larger strain forces
corresponding to stiffer springs, the average force (F) induced by the
motors decreases monotonically to zero.

For Fi > 15 pN, the average force (F) decreases monotonically
towards zero. Considering the steady state distribution over the
discrete state space one can interpret the Fy-dependence of (F) as
follows. Up to a strain force value of Fy ~ 2F; = 2F; the process
can perform at least one step resulting in a stretching of the linker
between the motors. Recall that the transition from state (0)
to state (1) occurs with the sum of forward stepping rates
a'(Fos) + o (Fos), see eqn (2.22), where the motors feel the
effective force Fy~. = Fy/2. For a strain force of Fx = 14 pN this
force is Fy~. = 7 pN = F§ = F;, at which the motors are equally
likely to perform a forward or a backward step. Without motor
unbinding, and taking into account that a further transition
from (1) to (2) with an effective force of F,. = 14 pN acting on
the motors is highly unlikely, this force balance is expected to lead
to steady state probabilities p ~ pi' ~ 0.5 and to the average
elastic force (F) ~ p§'F, + pi'Fy = 7 pN = F.,.T A further increase
in the strain force Fy shifts the steady state distribution towards
the relaxed state (0), i.e. py’ > pj', resulting in a reduction of the
average force (F) towards zero. The initial increase of (F) with
increasing Fx implies that the corresponding increase in F;
overcompensates the decrease of pi* for Fx < 10 pN, see the
steady state distribution in Fig. 14.

In Fig. 14 we plot the time evolution of the probability
distribution over the states p;(¢) starting from an initial state
different from (0). We fix a high strain force Fx = 10 pN,
corresponding to the maximum of (F) in Fig. 13, and choose
the initial state to be (5), i.e. p;(0) = 0;5. As t increases we see that
the time-dependent probability distribution p;(¢) approaches the
steady state distribution pi* (dashed red line). We see that
pi* has a clear peak in state (1), but also a nonzero value in (2),
where the corresponding elastic force is given by F, = 2F, =20 pN.
These high force value contributions from state (2) to the average
force results in (F) > F.,, as observed in Fig. 13.

t In this discussion we ignore the backward transitions (0) — (—1) leading to a
compression of the spring, since the transition rate for (0) — (—1) is much
smaller than the rate for (—1) — (0), e.g. for a strain force of Fx =14 pN we would
have w¢(—1) ~ 10wp(0).
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Fig. 14 Time evolution of the probability distribution p;(t) for a strain force

of Fx = 10 pN. The initial probability distribution is p;(0) = d;5. The probability

distribution p;(t) approaches the steady state distribution ps', indicated by

the dashed red line, which has a maximum for spring extension j = 1.
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Fig. 15 Dependence of average elastic force (F) on the inverse size (2J + 1)*
of the state space. If the two motors are weakly coupled, the finite size
of the state space acts to truncate the probability distributions. Thus, for
Fx = 0.1 pN, we see large finite size effects and a strong decay of (F)
already for (2J + 1)~ = 0.005.

F Dependence of force distribution on the size of state space

As shown in Fig. 10, the probability distribution pj* is shifted
towards larger j-values and becomes broader as we decrease the
strain force Fg. Therefore, a fixed size of the state space, i.e. a
fixed number (2] + 1) of states, acts to truncate the distribution
pj* for sufficiently small values of Fx. Likewise, the average elastic
force (F) starts to decrease, for a fixed value of Fy, as we decrease
the size (2] + 1) of the state space below a certain minimal value.

These finite size effects are illustrated in Fig. 15 where the
average elastic force (F) is plotted as a function of the inverse
size (2] + 1) " of the state space. Inspection of this figure shows
that (F) attains a constant value for sufficiently small (2] + 1)
but decays strongly for sufficiently large (2/ + 1)~". In practice,
we chose (2] + 1) > 201 for Fx < 0.1 pN and (2] + 1) > 51 for
Fx < 0.5 pN.

Glossary of mathematical symbols

o(F)
B(F)

Force-dependent forward stepping rate
Force-dependent backward stepping rate
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VB
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Kronecker delta symbol

Zero-force unbinding rate

Force-dependent unbinding rate

Effective decay exponent in (F) ~ &,°, see Fig. 7
Decay exponent in 7, ~ Fg', see Fig. 11

Cargo force of the MKL model

Detachment force

Stall force

Force exerted by the dynein motor onto the cargo
Force exerted by the kinesin motor onto the cargo
Elastic force acting in state (j), defined by F; = jFx
Effective force acting during the stretching by a
single step

Effective force acting during the compression by a
single step

Effective strain force, Fx = K/

Force acting on single plus/minus motors in the
MKL model

Integer spring extension in units of /, -] < j < J
State corresponding to the spring extension j
Maximal value of j

Spring constant of a single motor linker
Effective spring constant, K = /2,

Boltzmann constant

Step size of the motors

Rest length of a single elastic linker

Effective rest length of two elastic linkers, L, = 2L
Extension of the effective spring

Eigenvalue of the transition rate matrix W
Number of plus/minus motors attached to the
cargo

Number of active motors bound to the filament
Forward transition rate

Backward transition rate

Overall unbinding rate

Equilibrium probability to be in state (j), see
eqn (3.15)

Steady state probability to be in state ()
Time-dependent probability to be in state ()
Zero-force forward-to-backward stepping ratio
Force-dependent forward-to-backward stepping
ratio

Standard deviation of the force distribution
Standard deviation of the probability distribution
n'

Relaxation time

Average two-motor binding time

Right eigenvector of W for eigenvalue /,

Left eigenvector of W for eigenvalue 4,

Cargo velocity of the velocity-matched state
Zero-force velocity

Maximal forward velocity

Backward velocity

Force-free forward velocity of the MKL model
Force-free backward velocity of the MKL model
Velocity parameter given by vg or vg
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\"% Transition rate matrix of the redefined state space
in Fig. 12

W, (27 +1) x (2/ + 1) matrix elements of W

W Symmetric transition rate matrix as defined by
eqn (D.4)

W, (2] + 1) x (2/ + 1) matrix elements of W

Xki Position of the kinesin motor

Xdy Position of the dynein motor

Xea Position of the cargo
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