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Tug-of-war between two elastically coupled
molecular motors: a case study on force
generation and force balance

Mehmet Can Uçar and Reinhard Lipowsky*

Intracellular transport is performed by molecular motors that pull cargos along cytoskeletal filaments.

Many cellular cargos are observed to move bidirectionally, with fast transport in both directions. This

behaviour can be understood as a stochastic tug-of-war between two teams of antagonistic motors.

The first theoretical model for such a tug-of-war, the Müller–Klumpp–Lipowsky (MKL) model, was based

on two simplifying assumptions: (i) both motor teams move with the same velocity in the direction of

the stronger team, and (ii) this velocity matching and the associated force balance arise immediately

after the rebinding of an unbound motor to the filament. In this study, we extend the MKL model by

including an elastic coupling between the antagonistic motors, and by allowing the motors to perform

discrete motor steps. Each motor step changes the elastic interaction forces experienced by the motors.

In order to elucidate the basic concepts of force balance and force fluctuations, we focus on the

simplest case of two antagonistic motors, one kinesin against one dynein. We calculate the probability

distribution for the spatial separation of the motors and the dependence of this distribution on the

motors’ unbinding rate. We also compute the probability distribution for the elastic interaction forces

experienced by the motors, which determines the average elastic force hFi and the standard deviation of

the force fluctuations around this average value. The average force hFi is found to decrease monotonically

with increasing unbinding rate e0. The behaviour of the MKL model is recovered in the limit of small e0. In

the opposite limit of large e0, hFi is found to decay to zero as 1/e0. Finally, we study the limiting case with

e0 = 0 for which we determine both the force statistics and the time needed to attain the steady state.

Our theoretical predictions are accessible to experimental studies of in vitro systems consisting of two

antagonistic motors attached to a synthetic scaffold or crosslinked via DNA hybridization.

1 Introduction

Intracellular cargos such as vesicles and organelles are trans-
ported by cytoskeletal motors.1 Conventional kinesin and cyto-
plasmic dynein represent two types of cytoskeletal motors that
walk along microtubules in opposite directions.2,3 Many cargos
are observed to perform a bidirectional movement on the
microtubules with frequent reversals.4,5 This behaviour reflects
the presence of two antagonistic motors, plus-end directed
kinesin and minus-end directed dynein, on the same cargo.
These motors try to pull the cargo in their preferred direction
of motion, thereby performing a stochastic tug-of-war. The
first theoretical model for such a stochastic tug-of-war was
introduced by Müller, Klumpp, and Lipowsky (MKL)6–8 and
corroborated by the observations of endosome transport in
amoebae9 and fungi.10

The MKL model was based on two simplifying assumptions:
(i) all motors move with the same velocity in the direction of
the stronger team and (ii) this matching of the velocities sets
in as soon as the cargo is pulled by motors from both teams.
Thus, for two antagonistic motors, the MKL tug-of-war state is
characterized by the following properties. When both motors
are simultaneously bound to the filament, they experience
mutual interaction forces which are of equal magnitude and
opposite direction, in accordance with Newton’s third law. The
absolute value of this interaction force, the so-called cargo force
Fca, is determined uniquely by the characteristic force–velocity
relations of the motors and the condition of velocity-matching
under this force.6,8 The cargo then moves with this generally
low, but nonzero velocity vca in the direction of the stronger
motor. In the special case of equally strong motors the cargo is
in a stalled state with zero velocity.

In the MKL model, the motion of the motors is described in
a coarse-grained manner, averaging over the discrete steps of
the individual motors. Here, we extend this model by including
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these discrete steps, following the theoretical approach developed
in ref. 11 and 12 for two identical motors that pull in the same
direction. We consider two antagonistic motors which are coupled
to their common cargo via two elastic linkers. We then use the
force balance between the motors and the cargo to derive an
effective elastic coupling between the two motors. With each step
taken by one of the motors, the effective linker is either stretched
or compressed and an elastic force is induced acting on both
motors. The velocity-matching condition can therefore only be
reached, in general, after the motors have taken multiple steps.

When the tug-of-war involves antagonistic motor teams
consisting of several identical motors, the MKL model makes
the additional assumption that the overall load acting on one
team is shared equally by all motors in that team. This assumption
has been previously criticized to represent a mean-field approxi-
mation because it ignores fluctuations in the load sharing.13–15 In
order to examine the latter fluctuations, the authors in ref. 13–15
studied such antagonistic motor teams. In contrast to these
previous studies, we focus here on the simplest case of two
antagonistic motors for which load sharing does not play any
role. On the one hand, the case of 1 + 1 motors is useful in
order to elucidate the basic concepts of force balance and force
fluctuations. In fact, as shown below, this case already implies a
nontrivial force balance, with an average interaction force that
depends strongly on the unbinding rate e0 of the individual motors
and decays to zero for large e0. On the other hand, the study of the
1 + 1 motor system allows us to perform a detailed comparison
between (i) the tug-of-war of two elastically coupled motors that
perform discrete steps and (ii) the tug-of-war of two antagonistic
motors as described by the MKL model.

The theoretical results described below can be scrutinized
by experimental in vitro studies based on recently developed
protocols16–20 to control the number of active motors on
synthetic molecular scaffolds. Evidence for a tug-of-war mechanism
between kinesin and dynein attached to such scaffolds was
observed in ref. 19 and 20. Very recently, it has also been demon-
strated that one can directly crosslink a single, fluo-labeled kinesin
with a single, fluo-labeled dynein via DNA hybridization.21 For
such two-motor constructs, one should be able to measure the
probability distribution for the spatial separation of the two motors
along the filament and, in this way, directly scrutinize the predic-
tions of our theory. Furthermore, as shown below, the distribution
for the motor–motor separation also determines the probability
distribution for the elastic interaction forces and, thus, the average
elastic force hFi between the motors.

This paper is organized as follows. First, we briefly review (i) the
single motor description in Section 2.1, thereby introducing the
single motor parameters used in our model, and (ii) the cargo force
predicted by the MKL model in Section 2.2. Next, the force balance
for a tug-of-war between two elastically coupled motors is consid-
ered and the associated state space for this process is defined in
Section 2.3. We describe the system as a Markov process with
(i) several transient states corresponding to different extensions of
the effective elastic linker and (ii) two absorbing states defined by a
single plus- or minus-end motor bound to the filament. The rates of
the network are determined using single motor parameters

characterising the stepping and unbinding behaviour. Section 3
reports the results on the steady state probability distributions of 2-
motor runs with both motors attached to the filament, the average
force experienced by the motors, as well as a detailed study of the
limiting case of zero unbinding rates. In the latter case, both the
force statistics and the time needed to reach the steady state are
determined as a function of the elastic coupling strength.

2 Model
2.1 Single motor description

When a motor binds to the filament, it steps along the filament in a
preferred direction. In the absence of an external force F, the motor
moves with its zero-force forward velocity towards the preferred end
of the filament. We use the convention that a resisting force acting
as a load on the motor has a positive sign whereas an assisting
force pulling the motor in its preferred stepping direction has a
negative sign. This convention is used both for plus-directed and
for minus-directed motors. With increasing load force, the motor
velocity decreases until the force reaches the motor’s stall force Fs at
which the motor velocity vanishes. Experimental studies provide
strong evidence that the kinesin-1 motor steps backwards for load
forces F 4 Fs.

22,23 The explicit form of the force–velocity relation for
a single motor can be obtained from fits to experimental data or
provided by piecewise linear relations as in previous theoretical
studies, see e.g. ref. 6, 13 and 15 and Appendix A. Here, we will use a
convenient parametrization of the force–velocity relation as intro-
duced in ref. 11 which has the form

vðFÞ ¼
vmax

vmin � v0

v0 � vmax
þ vmin

vmax

vmin

v0 � vmin

v0 � vmax

� �F=Fs

vmin � v0

v0 � vmax
þ vmax

vmin

v0 � vmin

v0 � vmax

� �F=Fs
: (2.1)

The parameters vmax and vmin determine the limits of v(F) for
large negative and large positive values of F, respectively. The
zero-force velocity v(F = 0) is given by the parameter v0. In the
following, we use the force–velocity relation in eqn (2.1) for
both motors. The parameters v0, vmax, vmin and Fs can be
specified in order to obtain close approximations for experi-
mentally determined force–velocity relations, e.g. as given in
ref. 22 for kinesin-1 and in ref. 24 for cytoplasmic dynein.

Another single motor property that has been measured for
kinesin as a function of load force22,23 is the forward-to-
backward stepping ratio q which is defined as the number of
forward steps divided by the number of backward steps as
observed within a certain time interval. This ratio was found to
depend exponentially on the load force and to be well fitted by22

qðFÞ ¼ q
1�F=Fs
0 with q0 ¼ 800 and Fs ¼ 7 pN for kinesin:

(2.2)

For dynein, the corresponding parameters have not been
measured directly but the single motor data on yeast dynein
in ref. 25 and 26 provide the estimates

q0 = 4 and Fs = 7 pN for dynein. (2.3)
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We now use the force–velocity relationship v(F) and the
forward-to-backward stepping ratio q(F) together with the step
size l to define the forward stepping rate of a single motor by

aðFÞ � vðFÞ
‘

qðFÞ
qðFÞ � 1

(2.4)

and its backward stepping rate by

bðFÞ � vðFÞ
‘

1

qðFÞ � 1
; (2.5)

which implies a/b = q and a � b = lv.11 The force-dependence of
the two stepping rates a and b is illustrated in Fig. 1 for yeast
dynein. At the stall force F = Fs, the two stepping rates are equal,
implying that forward and backward steps are equally likely.
For F 4 Fs, backward steps are more likely than forward steps
and both stepping rates decay monotonically with increasing
force. For F o Fs, on the other hand, forward steps are more
likely than backward steps but the individual stepping rates
are nonmonotonic as a function of F. In fact, the backward
stepping rate b for dynein exhibits a pronounced maximum at
the load force F = 3.21 pN, arising from the relatively small
value q0 = 4 of the forward-to-backward stepping ratio. For
kinesin, on the other hand, which is characterized by a much
larger value of q0, no such maximum of b is found.

A motor bound to a filament unbinds from this filament with
a constant unbinding rate in the absence of external forces. We
denote this zero-force unbinding rate of a single motor by e0.
When a force acts on the cargo, the motor-filament bond is more
likely to break. Although the unbinding process is very complex
on a molecular scale, it can be approximately described as an
escape process of a particle in a potential well. According
to Kramers’ theory,27 the force-dependence of the motor’s
unbinding rate is then approximately exponential and given by

e(F) = e0 exp(|F|/Fd), (2.6)

where Fd is the detachment force, another force scale that char-
acterizes each motor type. Here and below, the force F represents
the tangential force component acting parallel to the long axis of

the filament, with the previously mentioned sign convention that F
is positive when it acts against the preferred stepping direction
that the motor has in the absence of force. Note that e(F) is taken to
depend only on the absolute value |F|, and not on the direction of
the force which implies that resisting and assisting forces increase
the unbinding rate by the same amount. This simplifying assump-
tion is not crucial, however, because, as we will see below, assisting
forces are almost never generated by a tug-of-war.

In the following, we use this single motor description for two
different types of motors, kinesin and dynein, which represent
the best studied examples for processive plus-end and minus-
end directed motors. We will use the notation F�s and F�d for the
stall and detachment forces of these two motor species. Our
sign convention for F implies that both stall and detachment
forces are positive. In addition, this convention also implies
that a positive force acting on the plus-end directed motor
points towards the minus end of the filament whereas a
positive force acting on the minus-end directed motor points
towards the filament’s plus end. Furthermore, because of the
opposite directionality, the force–velocity relationships v+(F)
and v�(F) for the plus- and minus-directed motors have the
form v+(F) = +v(F) and v�(F) = �v(F) with v(F) as in eqn (2.1).

2.2 Cargo force in the MKL model

Before we consider the tug-of-war between elastically coupled
motors, we will first summarize the main properties of the tug-
of-war in the MKL model which provides a useful reference
process. As described in Appendix A, the latter process is
characterized by instantaneous velocity matching between the
different motors. The corresponding matching condition can
be visualized by plotting the two force–velocity relations for the
individual motors in the same (F,v)-diagram.8 The intersection
point of these two relations provides the matching condition
for the MKL tug-of-war as illustrated in Fig. 2 for the case in

Fig. 1 Forward and backward stepping rates, a and b, as a function of load
force F for yeast dynein. The rates are computed via eqn (2.4) and (2.5) with
the force–velocity relationship v(F) and the step ratio q(F) as given by
eqn (2.1) and (2.2), using the single motor parameters in Table 1. The
dashed vertical line (red) corresponds to the motor’s stall force Fs = 7 pN.

Fig. 2 Matching condition for the velocities of two antagonistic motors as
used in the MKL tug-of-war model: force–velocity relations as given by
eqn (2.1) for a plus (green) and a minus (red) motor with zero-force
velocities v+

0 4 0 and v�0 o 0. The intersection point (F, v) = (Fca, vca) of
the two force–velocity relations defines the velocity-matched state in
which both motors move with the same velocity vca and experience the
same single motor force as provided by the cargo force F = Fca. In this
example, the stall force F+

s of the plus motor exceeds the stall force F�s of
the minus motor which implies vca 4 0, i.e. both the cargo and the two
antagonistic motors move towards the plus end of the filament.
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which the stall force F+
s of the plus motor exceeds the stall force

F�s of the minus motor.
In general, the intersection point (F, v) = (Fca, vca) of the two

force–velocity relations defines the velocity-matched state in
which the cargo and the motors move with the same velocity vca

and the two motors experience the same single motor force,
namely the cargo force F = Fca. The cargo force is always positive
because it is located between the stall forces F+

s and F�s of the two
motors, both of which are positive by definition. Thus, according
to our sign convention for single motor forces, the cargo force acts
as a resisting force on both motors: it represents the absolute value
of the two opposing forces that the cargo exerts simultaneously
onto the plus and onto the minus motor.

2.3 Elastic coupling between the motors

We now consider one kinesin and one dynein motor pulling on
the same cargo particle via elastic linkers as illustrated in Fig. 3.
We use the Cartesian coordinate x parallel to the filament to
describe the positions of the motors and the cargo along this
filament. The coordinate x is chosen to increase towards the plus
end of the filament. Thus, each motor–cargo configuration is
described by the positions xki, xdy, and xca with xdy o xca o xki.
Furthermore, to discuss the elastic forces acting between the
motors and the cargo, we will first define these forces with respect
to the coordinate x which implies that we temporarily use a
different sign convention for these interaction forces compared
to the single motor forces. Thus, in the following paragraph, the
elastic interaction forces are taken to be positive when they
point towards the plus end of the filament and negative when
they point towards the filament’s negative end.

Elastic forces between the cargo and the motors. The linkers
between the motors and the cargo are described by harmonic
springs with spring constant k and rest length LJ. The kinesin
motor then exerts the force

Fki,ca = k(xki � xca � LJ) (2.7)

onto the cargo. Likewise, the dynein motor exerts the force

Fdy,ca = �k(xca � xdy � LJ) (2.8)

onto the cargo. We now assume that, for given positions xki and
xdy, the elastic forces balance each other on timescales that are

short compared to the timescales of the single motor transi-
tions. This elastic force balance implies Fki,ca + Fdy,ca = 0 and
xca = 1

2(xki + xdy). Eliminating the cargo position xca from the
expressions in eqn (2.7) and (2.8), we obtain the forces

Fki,ca = 1
2k(xki � xdy � 2LJ) = K(xki � xdy � L0) (2.9)

and

Fdy,ca = 1
2k(xki � xdy � 2LJ) = �K(xki � xdy � L0), (2.10)

which depend only (i) on the coordinate difference xki� xdy of the
two motor positions and (ii) on the effective spring parameters

K � k/2 and L0 = 2LJ. (2.11)

Introducing the combined spring extension

DL � xki � xdy � L0, (2.12)

the force that the kinesin exerts on the dynein becomes

Fki,dy = Fki,ca = KDL, (2.13)

while the force that the dynein exerts on the kinesin has
the form

Fdy,ki = �KDL, (2.14)

as required by Newton’s third law.
Identification with single motor forces. In order to use

the single motor description as described in the previous
subsection, we now return to our original sign convention for
the force F acting on a single motor. As a consequence, the
single motor force is given by

F = Fki � �Fdy,ki for kinesin, (2.15)

which is positive when the force Fdy,ki points towards the minus
end of the filament, and by

F = Fdy � Fki,dy for dynein, (2.16)

which is positive when the force Fki,dy points towards the filament’s
plus end. Newton’s third law as given by Fki,dy = �Fdy,ki then
assumes the simple form Fki = Fdy = F.

State space for tug-of-war with elastic coupling. Kinesin and
dynein have the same step size l C 8 nm, see references in
Table 1. We further assume that the motor pair can attain a

Fig. 3 Different states ( j) with j = 0, 1, m and n of two antagonistic motors corresponding to different extensions of the elastic linkers between the
motors and the cargo. The kinesin motor (blue ‘‘heads’’) and the dynein motor (green ‘‘wheels’’) prefer to move towards the (+)- and (�)-end of
the microtubule, respectively. In state (0), the motor linkers are relaxed and do not generate elastic forces. When the motors perform steps leading
to a state ( j) with j 4 0, the spring becomes stretched and generates the elastic force Fj = jFK. As explained in the main text, the single motor forces Fki and
Fdy acting on kinesin and dynein are defined in such a way that Newton’s third law assumes the simple form Fj = Fki = Fdy. In state (1), for example, both the
kinesin and the dynein motor experience the single motor force F1 = FK. In state (m), the force Fm = mFK C F�s , i.e. it is comparable to the stall force F�s of
the minus motor. At this stall force, the minus motor steps forward and backward with equal probability. In state (n), the force Fn is close to the stall force
of the plus motor, which can now step forward and backward with (almost) equal probability.
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relaxed state with DL = 0. It is then convenient to introduce the
dimensionless spring extension

j = DL/l with �J r j r J, (2.17)

where j = J represents the maximal stretching and j = �J the
maximal compression of the spring.

Each motor behaves as a stochastic stepper with force-
dependent forward and backward stepping rates a(F) and b(F), as
given by eqn (2.4) and (2.5). Following the approach in ref. 11 for
two identical motors, we now introduce a discrete state space with
states ( j) labeled by an integer j with �J r j r J. Each state ( j)
corresponds to a certain extension of the elastic spring. We
consider two identical motor linkers in series which implies the
effective spring constant K � k/2 for the elastic coupling between
the two motors as in eqn (2.11). When the spring extension is
increased by a single motor step with step size l, the elastic force
experienced by both motors is increased by the strain force

FK � Kl = kl/2, (2.18)

see Fig. 3. The elastic force acting between the motors is then
given by

Fj � jFK in state ( j). (2.19)

When one of the motors performs a step, the elastic force
acting between the two motors changes monotonically from its
initial value before the step to its final value after the step. As a
consequence, the effective force acting during the stretching
transition from ( j) to ( j + 1) is given by

%Fj4 = (Fj + Fj+1)/2 = FK( j + 1/2), (2.20)

i.e. by the arithmetic mean of the forces acting before and after
such a step.28 Likewise, the effective force acting during the
compression transition from ( j) to ( j � 1) has the form

%Fjo = (Fj + Fj�1)/2 = FK( j � 1/2). (2.21)

Motor kinetics and transition rates. The dynamics of
the two-motor runs can be investigated by considering the
stochastic process on the discrete state space corresponding
to the ‘‘stretching’’ or ‘‘compression’’ of the effective spring
between the motors. In state (0) the spring is relaxed. If one of
the motors performs a single step, the elastic spring of the two-
motor system can be stretched or compressed by l/2 and the
system undergoes a transition to states (1) or (�1), respectively,
see the network representation in Fig. 4. In general, the motor
system undergoes a forward transition from state ( j) to state
( j + 1) if kinesin or dynein performs a forward step. The
corresponding stepping rates are given by a�( %Fj4) for the
individual motors which implies the forward rate

of( j) = a+( %Fj4) + a�( %Fj4) for ( j) - ( j + 1) (2.22)

with �J r j r J and the boundary condition of(J) = 0, see Fig. 4.
Each forward transition leads to an increased stretching or
a reduced compression of the elastic coupling between the
two motors.

Likewise, the motor system undergoes a backward transition
from state ( j) to state ( j � 1) if kinesin or dynein performs a

Table 1 Values of the parameters used for kinesin-1 and two types of dynein
motors: the values for ‘‘strong’’ and ‘‘weak’’ dynein correspond to yeast and
mammalian cells, respectively. A star superscript indicates a parameter for
which we did not find experimental data in the literature; the corresponding
parameter value was set equal to the experimentally deduced value of
another type of motor. For the minimal and maximal velocities of both
dynein motors in the force–velocity relationship (2.1) we used the estimated
values vmin C 0.12v0 and vmax C 1.12v0, as indicated by the † symbol. For the
parameters in this table the strain force is given by FK = kl/2 = 0.8 pN both for
kinesin vs. strong dynein and for kinesin vs. weak dynein

Parameter Kinesin-1
‘‘Strong’’
dynein

‘‘Weak’’
dynein

Zero-force unbinding rate e0 [s�1] 135 1* 136

Stall force Fs [pN] 722 724,26 1.137,38

Detachment force Fd [pN] 3.639 3.340 3.3*
Linker stiffness k [pN nm�1] 0.217 0.2* 0.2*
Step size l [nm] 817,22 825 824

Zero-force step ratio q0 80022 425 4*
Zero-force velocity v0 [nm s�1] 54711 8525 80024

Backward velocity vmin [nm s�1] 1211 10† 100†

Max. velocity vmax [nm s�1] 57311 100† 900†

Fig. 4 State space associated with different states of the elastic linker. The two states (1, +) and (1, �) are the absorbing states with a single plus and
minus motor bound to the microtubule. States labelled by integer j with �J r j r J denote the states with a stretched and compressed linker for j 4 0
and j o 0, respectively. Starting from state ( j), the plus and minus motors unbind from the filament with rates o+

off( j) and o�off( j). Furthermore, the motors
undergo a forward transition from ( j) to ( j + 1) with rate of( j) and a backward transition from ( j) to ( j � 1) with rate ob( j).
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backward step. The corresponding stepping rates are given
by b�( %Fj4) for the individual motors which implies the
backward rate

ob( j) = b+( %Fjo) + b�( %Fjo) for ( j) - ( j � 1) (2.23)

with �J r j r J and the boundary condition ob(�J) = 0, see
Fig. 4. Each backward transition leads to a reduced stretching
or an increased compression of the elastic coupling between
the two motors.

In state ( j), each of the motors can unbind (or detach) from
the filament. The corresponding unbinding rates have the form

e�(Fj) = e�0 exp(|Fj|/F�d ) � o�off( j) (2.24)

for the two types of motors. The overall unbinding rate from
state ( j) is then given by

ooff( j) = o+
off( j) + o�off( j). (2.25)

Motor parameters. In the following, we will study the tug-of-war
between one plus-directed motor and one minus-directed motor.
Most single motor parameters will be kept fixed and assume
values as appropriate for kinesin-1 and strong dynein, see
Table 1. One parameter that we will vary systematically is the
zero-force unbinding rate

e0 � e+
0 = e�0 . (2.26)

As we will see, the elastically coupled tug-of-war is characterized,
in the limit of small e0, by essentially the same force balance as
the MKL tug-of-war. Another parameter of the motor system
that will be varied systematically is the elastic coupling between
the two motors as described by the strain force FK = Kl = kl/2.
In order to ensure that the finite size of the state space does not
affect our results, we will always use a sufficiently large state
space with (2J + 1) Z 101.

3 Results
3.1 Steady state properties of tug-of-war

The elastic coupling between the two antagonistic motors is only
effective as long as both motors are attached to the filament
and perform a 2-motor run. The latter runs are described by
transitions between the states ( j) in Fig. 4 and are terminated as
soon as one of the motors unbinds from the filament. After such
an unbinding event, the cargo is bound to the filament by a
single motor as described by the states (1, +) and (1, �) in Fig. 4.
These 1-motor runs continue until the unbound motor rebinds
to the filament. We will assume that the rebinding typically leads
to the state (0) which is relaxed in the sense that the two motors
do not experience elastic interaction forces. Thus, after rebinding,
a new 2-motor run starts from the initial state (0).

As described previously for the 2-motor runs of two identical
motors,11,12 the steady state probability distribution as obtained
from an ensemble average over many 2-motor runs can be
replaced by a time average over a concatenated 2-motor run that
is obtained by redirecting all transitions to the absorbing states
towards a certain initial state. For the network depicted in Fig. 4,

the absorbing states are provided by (1, +) and (1, �) and the
initial state is taken to be the relaxed state (0). As a result, we
obtain the redefined network in Fig. 12 which has no absorbing
states. The corresponding steady state probability distribution
can then be calculated by solving the master equation for the
redefined network, see Appendix B.

The steady state probability distribution pst
j describes the

frequencies with which the effective elastic spring between the
two motors has the extension j. The latter extension determines
the spatial separation

L � L0 + jl (3.1)

of the two motors along the filament. The average motor–motor
separation is then given by

hLi ¼ L0 þ h ji‘ ¼ L0 þ ‘
X
ja0

pstj j: (3.2)

The fluctuating motor–motor separation L should be directly
accessible to experimental studies when one combines
the recently introduced crosslinking of one fluo-labeled
kinesin and one fluo-labeled dynein via DNA hybridization21

with advanced methods of fluorescence imaging such as
FIONA.29

In Fig. 5(a) we plot pst
j for different values of the zero-force

unbinding rate e0. We see that for low unbinding rates, e.g.
e0 = 0.01 s�1, the probability distribution pst

j shifts towards states
with larger j-values. Because the elastic force Fj corresponding
to spring extension j is given by Fj = jFK, we can transform the
occupation probabilities of the states into the corresponding
force distribution by a change of variables from j to Fj, see
Fig. 5(b). As shown in the latter figure, a decrease in the
unbinding rate leads to a shift of the force distribution towards
higher force values and to an average elastic force

hFi ¼
X
j

pstj Fj ¼ FK

X
ja0

pstj j ¼ FK hLi � L0½ �=‘ (3.3)

that approaches the cargo force Fca = 7 pN as obtained for
velocity-matching. For higher unbinding rates, the occupation
probabilities are shifted towards lower j-values, leading to a
reduced motor–motor separation and indicating that the motors
are likely to unbind from the filament before reaching a state
with velocity matching. The relationship in (3.3) implies that the
average elastic force hFi can be determined from the average
motor–motor separation hLi.

3.2 Dependence of average elastic force on the unbinding rate

For two antagonistic motors coupled by an effective spring
as studied here, the elastic interaction forces fluctuate and lead
to steady state force distributions as shown in Fig. 5(b) for
different values of the unbinding rate e0. In contrast, for the MKL
model, the mutual interaction force is given by the constant
cargo force Fca as obtained via velocity matching, see Fig. 2.
Inspection of Fig. 5(b) shows that the cargo force Fca provides
a better approximation to the average elastic force hFi if the
unbinding rate becomes smaller. To further examine the relation-
ship between the fluctuating elastic forces and the cargo force,

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
N

ov
em

be
r 

20
16

. D
ow

nl
oa

de
d 

on
 1

/1
1/

20
26

 4
:2

0:
20

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm01853j


334 | Soft Matter, 2017, 13, 328--344 This journal is©The Royal Society of Chemistry 2017

we now consider the very low unbinding rate e0 = 10�5 s�1

and calculate the corresponding steady state probability dis-
tribution pst

j . This distribution and the associated force dis-
tribution are displayed in Fig. 6 for different values of the strain
force FK. Both for kinesin vs. strong dynein as depicted in

Fig. 6(a1 and a2), and for kinesin vs. weak dynein in Fig. 6(b1
and b2), the cargo force Fca provides a more accurate approximation
to the average elastic force hFi for smaller values of the strain
force FK. This behaviour arises because smaller FK-values imply
smaller changes in the elastic force induced by single motor

Fig. 5 (a) Steady state probability distributions pst
j for different values of the unbinding rate e0 as given in the inset. The spring extension j determines the

spatial separation of the two motors via L0 + jl. Apart from e0, all parameters have the values as given in Table 1 for kinesin and strong dynein, which
implies the strain force FK = 0.8 pN; and (b) steady state distributions for the elastic forces as obtained from pst

j by a change of variables from j to Fj = jFK.
The dashed vertical line (red) represents the cargo force Fca of the velocity-matched model. For low unbinding rates e0, the average elastic force
approaches this cargo force. For larger values of e0, the force distribution becomes broader and shifts towards lower force values. As a consequence,
the average elastic force hFi becomes smaller than the cargo force Fca, see average force values in the inset. Likewise, the average spatial separation
L0 + hjil of the two motors decreases with increasing unbinding rate e0 as follows from the distributions pst

j in (a).

Fig. 6 Steady state probability distributions and force distributions for the small unbinding rate e0 = 10�5 s�1 and for different choices of the strain force
FK: (a1 and a2) kinesin against strong dynein, see the motor parameters in Table 1. As we decrease FK, the average force hFi approaches the cargo force
Fca = 7 pN more accurately; and (b1 and b2) kinesin against weak dynein, see again Table 1. The cargo force now has the lower value Fca = 4.55 pN
compared to the kinesin vs. strong dynein case in (a). Accordingly, the state (0) in (b1) has a higher occupation probability than the same state in (a1), and
the probability for the force value F0 = 0 is increased in (b2) compared to (a2).
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steps which lead to a larger number of accessible force values
and, thus, to a smoother interpolation of the discrete force
distributions. In addition, the smaller cargo force for the tug-of-
war between kinesin and weak dynein compared to kinesin and
strong dynein implies that the force value F0 = 0 has a higher
probability for the weak dynein case, see Fig. 6.

As shown in Fig. 5, increasing the unbinding rate e0 leads to
a reduction in the average elastic force hFi induced by the
motors. This unbinding rate dependence of the average elastic
force is displayed in more detail in Fig. 7(a) for different choices
of the strain force FK, with Fig. 7(b) magnifying the limit of
small e0. In this limit, the deviation of the average elastic force
hFi from the cargo force Fca increases for larger values of FK.
The decrease of the average force hFi with increasing unbinding
rate e0 is caused by the increasing probability that one of the
motors unbinds from the filament before the motors have
matched their velocities in the 2-motor run and, thus, before
the motors can generate forces comparable to the cargo force
Fca. The double-logarithmic plot in Fig. 7(c) reveals that the
average elastic force hFi decays to zero for large e0. It follows
from eqn (3.3) that the asymptotic behavior of hFi for large e0 is
determined by the asymptotic behavior of the steady state
probability distribution pst

j for large e0. The latter behavior can

be directly obtained from the master equations (B.1)–(B.4).
One then finds from the local flux balance in the states ( j) that

pstj � pstj�1
ofð j � 1Þ
ooffð jÞ

for 1 � j � J (3.4)

and

pstj � pstjþ1
obð j þ 1Þ
ooffð jÞ

for � J � j � �1 (3.5)

in the limit of large unbinding rates ooff( j) B e0. Iterating these
relations and imposing the normalization condition (B.5), one
obtains the asymptotic behavior

pst1 �
ofð0Þ
ooffð1Þ

� 1

e0
and pst�1 �

obð0Þ
ooffð�1Þ

� 1

e0
for large e0

(3.6)

as well as

pst
0 E 1 � pst

1 � pst
�1 = 1 + O(1/e0) for large e0 (3.7)

whereas all other pst
j are of higher order in 1/e0. The average

elastic force hFi as given by (3.3) then behaves as

hFi E FK( pst
1 � pst

�1) B 1/e0 for large e0. (3.8)

Fig. 7 (a) Average elastic force hFi acting on the motors as a function of the zero-force unbinding rate e0 for different values of the strain force FK. The
average force hFi decreases with increasing e0, irrespective of the value for FK; (b) limiting behaviour of the average elastic force hFi for small unbinding
rate e0. In this limit, the average force hFi approaches an asymptotic value hFi0 close to the cargo force Fca and the deviation hFi0 � Fca decreases with
decreasing FK; (c) double-logarithmic plot of the average force hFi versus the unbinding rate which now varies over six orders of magnitude. The straight
lines clearly demonstrate that hFi decays to zero for large e0 and that this decay can be well fitted, over the accessible range of e0-values, by a power law
of the form hFi B 1/ez0 with the effective decay exponent z; and (d) effective exponent z as obtained by fitting the data in (c) for different values of the
strain force FK.
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The power law behavior hFi B 1/e0 is corroborated by the
numerical data in Fig. 7(c) which are well fitted, over the
accessible range of e0-values as given by 1 s�1 r e0 r 106 s�1,
by a power-law of the form hFi B 1/ez with the effective decay
exponent z. As shown in Fig. 7(d), the effective exponent z is
found to depend weakly on the strain force FK for FK o 13 pN
and to approach the true asymptotic value z = 1 for FK 4 13 pN.

3.3 Statistics of elastic forces for vanishing unbinding rate

We now look at the properties of the tug-of-war in the limit in
which the two motors can no longer unbind from the filament,
corresponding to zero-force unbinding rate e0 = 0 which implies
that ooff( j) = 0 for all j. In this case, the state space for the
tug-of-war between the two motors is reduced to the states
j = �J,. . .,+J. For this reduced state space, the probability
distribution pj (t), which starts from the initial distribution
pj (0) = dj0 at time t = 0, evolves towards a steady state distribu-
tion pst

j as shown in Fig. 8. The maximum of pst
j is located close

to the state ( j = 9) characterized by the elastic force 9FK = 7.2 pN
induced by the effective spring, while the cargo force obtained
from velocity matching is Fca = 7 pN.

The average elastic force hFi for the process with vanishing
unbinding rate is shown in Fig. 9 for different values of the strain
force FK. We observe that, regardless of the choice of FK, the
average force hFi remains close to the cargo force Fca whereas its
standard deviation sF increases with increasing FK. In the limit of
small strain forces FK, the average force hFi approaches the cargo
force Fca more accurately, in accordance with our previous results.
As shown in the right inset of Fig. 9, the standard deviation

sF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

pstj Fj
2 � hFi2

� �s
(3.9)

of the elastic force behaves as

sF �
ffiffiffiffiffiffi
FK

p
(3.10)

over the whole range of FK-values considered here. For FK = 1 pN
and e0 = 0, the standard deviation is sF C 1.5 pN. Increasing the

zero-force unbinding rate e0 for fixed FK = 1 pN, the full network
in Fig. 4 leads to a slight increase in the deviation sF, which
then saturates at sF C 1.9 pN for an unbinding rate of e0 = 1 s�1

(data not shown here).
Using these results for the statistics of the elastic forces,

we can directly conclude that the average spring extension h ji
behaves as

h ji = hFi/FK C Fca/FK (3.11)

and its standard deviation

sj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

pstj j2 � h ji2ð Þ
s

¼ sF=FK (3.12)

as

sj �
ffiffiffiffiffiffi
FK

p .
FK ¼ 1

. ffiffiffiffiffiffi
FK

p
� 1
. ffiffiffiffi

K
p

: (3.13)

These dependencies on the strain force FK are displayed in
Fig. 10.

The average spring extension h ji implies that the two motors
have the average separation hDLi = lh ji. Thus, we conclude that,
in the limit of small FK corresponding to weakly coupled
motors, the average separation between the motors increases

as 1
� ffiffiffiffiffiffi

FK

p
� 1
� ffiffiffiffi

K
p

. Furthermore, the behavior of the standard
deviation sj is consistent with a Gaussian probability distribu-
tion of the form

pst
j p exp[�cK ( j � h ji)2] (3.14)

for the spring extension j where c is a proportionality factor.
It is instructive to compare the distribution as given by (3.14),

which arises from the stochastic nature of the tug-of-war and the
underlying motor activity, with the equilibrium distribution

peq
j p exp[�1

2Kj2/(kBT)] (3.15)

corresponding to thermal fluctuations in the harmonic spring
potential 1

2Kj2. Comparing the two distributions in (3.14) and
(3.15), we can draw two conclusions. First, the motor activity

Fig. 8 Time evolution of the probability distribution pj (t) for unbinding
rate e0 = 0 and strain force FK = 0.8 pN, the latter parameter being
appropriate for strong dynein. The initial probability distribution at time
t = 0 is given by pj (0) = dj0 corresponding to a relaxed spring with zero
extension. As t increases, the distribution pj (t) approaches the steady state
distribution pst

j as indicated by the dashed red line.

Fig. 9 Average elastic force hFi as a function of strain force FK for
unbinding rate e0 = 0: the average force hFi is roughly independent of FK

for FK o 3 pN and remains close to the cargo force value Fca = 7 pN. (left
inset) Average force hFi for 0.01 pN r FK r 0.09 pN. (right inset) The
standard deviation sF of the elastic force is proportional to

ffiffiffiffiffiffi
FK

p
(solid blue

line).
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leads to a nonzero average value h ji of the spring extension
implying a nonzero average separation hDLi = lh ji of the

motors and a nonzero average force hFi = FKh ji acting on them.
Second, the fluctuations around the average value h ji can be
characterized by a standard deviation sj � 1

� ffiffiffiffi
K
p

both for the
thermal and for the active process.

A comparison between Fig. 7 and 9 also shows that the
tug-of-war obtained for the reduced state space with e0 = 0 is
reached in a smooth manner when we consider the full state
space as depicted in Fig. 4 and take the limit of small e0. This
agreement is to be expected because the steady state probability
distributions for e0 4 0 follow from the redefined network
in Fig. 12 which also becomes identical with the reduced state
space for e0 = 0.

3.4 Relaxation time for vanishing unbinding rate

For the reduced state space consisting of the states ( j) with
j = �J,. . .,+J as obtained for unbinding rate e0 = 0, the elastically
coupled motors eventually reach a steady state with the average
elastic force hFi C Fca as illustrated in Fig. 8 for FK = Fca/8.75.
We will now address the relaxation time for this process, i.e. the
time it takes to actually reach this steady state. This relaxation
time tre is provided by the largest non-zero eigenvalue l2 of the
transition rate matrix for the redefined state space in Fig. 12 via
the relation30

tre = �1/l2. (3.16)

As shown in Fig. 11, the relaxation time tre for the approach
towards the steady state increases strongly as we reduce the
strain force FK, i.e. as we reduce the elastic coupling between
the two motors and allow them to move further apart. Indeed,
in the limit of small FK, the average separation of the two
motors increases as hDLi = lh ji B 1/FK as follows from the
behavior of h ji in Fig. 10. When we plot the tre-data in a double-
logarithmic manner, see the inset of Fig. 11, a least-squares fit
leads to the relation tre B 1/FZ

K with the decay exponent Z =
0.97. We thus conclude that the relaxation time tre is also
inversely proportional to FK to a very good approximation. As a
consequence, the relaxation time tre for two weakly coupled
motors is roughly proportional to their average separation
hDLiB 1/FK which diverges in the limit of small FK = lK = lk/2.

In order to obtain a well-defined relaxation time tre, we
had to consider the limiting case with unbinding rate e0 = 0.
Real motors have, of course, a finite unbinding rate which
implies that their 2-motor runs are terminated after a finite

Fig. 10 Average spring extension h ji and standard deviation sj of these
extensions as a function of strain force FK for unbinding rate e0 = 0. Both h ji
and sj decrease with increasing FK. The FK-dependence of h ji is very well
described by Fca/FK (dashed red line). The standard deviation sj is propor-
tional to 1

� ffiffiffiffiffiffi
FK

p
(full blue line in the inset). This behavior is intimately

related to the behavior of the average force hFi and the associated
standard deviation sF, see the main text.

Fig. 11 Strain force dependence of the relaxation time tre (green) needed
to attain the steady state for unbinding rate e0 = 0. The inset displays a
double-logarithmic plot of the tre-data. A least-squares fit to these data
leads to tR B 1/FZK with the exponent Z = 0.97 from which we conclude
that the relaxation time tre is inversely proportional to FK to a very good
approximation. For comparison, the average run time t2 (red) for 2-motor
runs with e0 = 0.3 s�1 has also been included. For the range of FK-values
considered here, the relaxation time tre is always large compared to the
average run time t2.

Fig. 12 Redefined state space: all transitions of the full network in Fig. 4 that reach the two absorbing states (1, +) and (1, �) are combined with a very fast
rebinding transition towards the transient initial state (0). Because the rebinding process is instantaneous, the combined unbinding and rebinding
transition from state ( j) to state (0) is governed by the rate ooff as given by eqn (2.25).
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time and can then be characterized by the average run time

t2 ¼
P
j

pstj ooffð jÞ
 !�1

. We must now distinguish different

cases depending on the relative size of the average run time
t2 and the relaxation time tre. If t2 is large compared to tre, the
two motors will be characterized by an average elastic force hFi
close to the cargo force Fca of the MKL model. On the other
hand, if t2 is small compared to tre, the force balance between
the two motors is different because hFi is small compared to
Fca. As shown in Fig. 11, the latter case applies to the unbinding
rate e0 = 0.3 s�1 for the whole range of FK-values considered in
this figure. A more detailed discussion of the different time-
scales and the associated dynamic regimes will be given in a
subsequent publication.31

4 Summary and outlook

In this paper, we considered the tug-of-war between one kinesin
and one dynein motor, which are coupled to a common cargo
via elastic linkers. We started from the known properties of
the single motors and used these properties to derive the force-
dependent stepping rates for forward and backward steps
of both motors. Unexpectedly, we found that the backward
stepping rate of strong dynein exhibits a maximum at an
intermediate load force, see Fig. 1. We then described the
elastic interaction forces between the motors and the cargo
by two harmonic springs which can be combined into an
effective harmonic spring between the two motors. The exten-
sion j of this effective spring was used to define the state space
for the tug-of-war between two elastically coupled motors as
displayed in Fig. 4.

A Markov process was constructed on this state space with
transition rates that were derived from the single motor rates.
Starting from the relaxed state (0) with spring extension j = 0,
the antagonistic motors perform a 2-motor run on the reduced
state space consisting of the transient states ( j) with j =�J,. . .,+J
until one motor unbinds from the filament and the process
ends up in one of the absorbing states (1, +) or (1, �), see Fig. 4.
The ensemble average over many such 2-motor runs can be
obtained by computing the steady state probability distribution
pst

j on the redefined state space in Fig. 12. Using this distribu-
tion, we calculated the average elastic force hFi experienced by
the two motors as a function of the unbinding rate e0, see Fig. 7.
This average force approaches the cargo force Fca for small e0

and decays to zero as 1/e0 for large e0, see (3.8). Numerically we
find the power law hFiB 1/ez0 with an effective decay exponent z
that depends on the strain force FK, see Fig. 7(d).

Finally, we studied the limiting case of a tug-of-war between
two elastically coupled motors that cannot unbind from the
filament, corresponding to zero-force unbinding rate e0 = 0. In
this case, we found that the time evolution of the probability
distribution always leads to a steady state distribution for
which (i) the average elastic force hFi is close to the cargo force
Fca irrespective of the strain force FK and (ii) the standard
deviation sF of the force fluctuations is proportional to

ffiffiffiffiffiffi
FK

p

as shown in Fig. 9. These relationships imply that the average
spring extension h ji B 1/FK B 1/K and the standard deviation

sj � 1
� ffiffiffiffiffiffi

FK

p
� 1
� ffiffiffiffi

K
p

, see Fig. 10. The latter dependence is
consistent with a Gaussian probability distribution for the
spring extension j as described by (3.14). The behavior of the
average spring extension h ji implies that the average separation
hDLi = lh ji of the two antagonistic motors increases as 1/K for
small K, corresponding to the weak coupling limit. Essentially
the same K-dependence is found for the relaxation time tre

towards the steady state probability distribution pst
j , see Fig. 11.

Therefore, in the weak coupling limit of small K, both the
average motor separation hDLi and the relaxation time tre

diverge as 1/K for e0 = 0.
In the present article, we have focussed on the forces acting

between two elastically coupled motors. As indicated in
the last subsection 3.4 on the relaxation time, the resulting
tug-of-war involves different timescales that define different
kinetic regimes. Likewise, as far as motor unbinding is con-
cerned, one has to distinguish spontaneous unbinding for
small elastic forces from force-induced unbinding for large
elastic forces. Another interesting topic is the tug-of-war
between elastically coupled motor teams involving N1 Z 1
plus-directed motors and N2 Z 1 minus-directed motors.
These more complex motor systems will be addressed in a
forthcoming paper.31

As previously mentioned, the theoretical results presented
here can be scrutinized by experimental in vitro studies based
on recently developed protocols16–20 to control the number of
active motors on synthetic DNA scaffolds. Evidence for a tug-of-
war mechanism between kinesin and dynein attached to such
scaffolds was observed in ref. 19 and 20. Very recently, it has
also been demonstrated that one can directly crosslink a single,
fluo-labeled kinesin with a single, fluo-labeled dynein via DNA
hybridization.21 Our tug-of-war model provides detailed predic-
tions for the transport properties of such a two-motor system.
One of these properties is the probability distribution pst

j for the
spatial separation of the two motors as displayed in Fig. 5a, 6a1,
b1, and 8. The latter distribution should be accessible to
advanced methods of fluorescence imaging such as FIONA.29

In principle, it is also possible to measure the average inter-
action force hFi directly via FRET-based molecular tension
probes32 that are incorporated into the linkers between the
motors and the cargo. Other quantities of interest that can be
used to compare our theory with experiment include the run
lengths and run times of the two-motor systems.

Appendices
A Review of tug-of-war with velocity matching

Here we shortly describe the tug-of-war in the MKL model,
following ref. 6 and 7. Let N+ and N� denote the number of
plus and minus motors attached to the cargo, respectively.
At any given time t 0 the cargo is pulled by n+ plus and n�minus
motors, where 0 r n+ r N+ and 0 r n� r N�. The motility
state of the cargo at t 0 is then characterised by the
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number of bound motors to the microtubule, denoted by
(n+, n�). Assuming that (i) opposing motors act as load and
(ii) identical motors share this load6 the transition rates
between adjacent motility states can be inferred from single
motor binding and unbinding behaviour. The force balance
on a cargo pulled by n+ plus and n� minus motors at any
moment is given by:

Fca(n+,n�) � n+F+ = �n�F�. (A.1)

F+ and F� are the forces ‘‘felt’’ by a single plus and a single
minus motor, respectively. The sign of the force is chosen to
be positive if it is a load on the plus motors. The force acting
on a single plus motor is then given by F+ = Fca(n+,n�)/n+.
This means that all plus motors feel the same load in a given
cargo state (n+,n�). The effective unbinding rate for a plus
motor is:

e+(n+,n�) = n+e
+
0 exp(|Fca(n+,n�)|/(n+F+

d)). (A.2)

Note that multiplying single motor rates by the factor n+

implies that the motor–motor interactions are not considered.
The effective binding rate of a plus motor is similarly given by:

p+(n+,n�) = (N+ � n+)p+
0. (A.3)

The effective binding and unbinding rates for the minus
motors can be obtained by replacing the index ‘‘+’’ by ‘‘�’’ in
eqn (A.2) and (A.3).

An expression for the cargo force Fca(n+,n�) of the force
balance condition can be determined by observing that both
plus and minus motor teams match their velocities under
this load. The corresponding velocity is equal to the cargo
velocity:

vca(n+,n�) = v+(Fca(n+,n�)/n+) = �v�(Fca(n+,n�)/n�),
(A.4)

where the functions v+(	) and v�(	) are determined by the single
plus and minus motor force–velocity relations. In ref. 6 and 7
the force–velocity relation of a single motor is given by the
following piecewise-linear function:

v(F) = vF|B(1 � F/Fs), (A.5)

with vF|B = vF for F r Fs and vF|B = vB for F 4 Fs, where vF and vB

are the force-free forward and backward velocity, respectively.
When there is no load force acting on the motor, it proceeds
with the force-free forward velocity vF. Note that both vF and vB

indicate the absolute values of the corresponding velocities. In
this work, however, we use an empirical force–velocity relation
obtained by a least squares fit to the data from ref. 22. This
specific choice is initially presented in ref. 11, see eqn (2.1) in
the main text.

From eqn (A.5) we obtain the velocity of plus motors for the
state (n+,n�):

The minus motor velocity is given by an analogous expression
by replacing the index ‘‘+’’ by ‘‘�’’. The cargo force Fca(n+,n�)
can now be determined by the velocity matching condition in
eqn (A.4):

vþFjB 1� Fca nþ; n�ð Þ
�

nþF
þ
s

� �� �
¼ �v�FjB 1� Fca nþ; n�ð Þ

�
n�F

�
s

� �� �
;

, Fca nþ; n�ð Þ ¼
nþn�F

þ
s F
�
s vþ

FjB þ v�FjB

� 	
vþFjBn�F

�
s þ v�FjBnþF

þ
s

:

(A.7)

Observe that when only one motor type is active, i.e. n� = 0 or
n+ = 0, the force acting on the cargo disappears: Fca(n+,n�) = 0.
From eqn (A.7) and (A.4), we obtain the cargo velocity:

vca nþ; n�ð Þ ¼ nþF
þ
s � n�F

�
s

n�F�s

.
v�
FjB þ nþFþs

.
vþ
FjB

: (A.8)

For the empirical force–velocity relationship v(F) as given in
the main text by eqn (2.1) the matching condition (A.4) can be
solved numerically. In the case of two antagonistic motors the
cargo velocity defined by the matching condition eqn (A.4) can be
obtained graphically from the intersection point (F,v) = (Fca,vca)
of two force–velocity relations, as shown in Fig. 2.

For the case of ‘‘stronger plus motors’’, i.e. n+F+
s 4 n�F�s ,

we have:

Fca(n+,n�) = Ln+F+
s + (1 � L)n�F�s , (A.9)

vca nþ; n�ð Þ ¼ nþF
þ
s � n�F

�
s

n�F�s
�
v�B þ nþFþs

�
vþF
; (A.10)

where L = (1 + (n+F+
sv�B )/(n�F�s v+

F))�1. Observe that L can only
have values in the interval [0,1], which implies that the cargo
force Fca(n+,n�) ranges between the maximal values of the plus
and minus stall forces n+Fs+ and n�Fs�.

In this work we only consider two opposing motors, i.e.
the state (n+ = 1, n� = 1). The notation used in the main text is
Fca� Fca(n+ = 1, n� = 1) and vca� vca(n+ = 1, n� = 1), where Fca and
vca are obtained from the numerical solution of the velocity
matching condition, i.e. by determining the coordinates of the
intersection point of the force–velocity functions of both motors.

B Master equations and the specification of parameters

The full network in Fig. 4 can be reduced to a closed network
with all transitions to the two absorbing states being redirected
to the initial state (0), see Fig. 12. The steady state distribution
of the closed network can now be used to obtain some quan-
tities of interest such as the average absorption time for the full
network.11,33 The latter quantity can also be calculated recur-
sively without constructing the closed network.34 A single
trajectory on the closed network in Fig. 12 corresponds to the
concatenation of many full network trajectories, each of which
starts at the initial state (0) and is eventually absorbed in the

vþ Fca nþ; n�ð Þ=nþð Þ ¼
vþF 1� Fca nþ; n�ð Þ

�
nþF

þ
s

� �� �
; for Fca nþ; n�ð Þ � Fþs ;

vþB 1� Fca nþ; n�ð Þ
�

nþF
þ
s

� �� �
; for Fca nþ; n�ð Þ4Fþs :

8<
: (A.6)
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states (1, +) or (1, �). The master equations corresponding to
the closed network in Fig. 12 are given by

qtp�J(t) = �[of(�J) + ooff(�J)] p�J(t) + ob(�J + 1)p�J+1(t)
(B.1)

and

qtpJ(t) = �[ob( J) + ooff( J)] pJ(t) + of(J � 1)pJ�1(t). (B.2)

for the two boundary states with j = �J and j = +J, by

@tp0ðtÞ ¼ � ofð0Þ þ obð0Þ½ �p0ðtÞ þ obð1Þp1ðtÞ þ ofð�1Þp�1ðtÞ

þ
X
ja0

ooffð jÞpjðtÞ; ðB:3Þ

for the state (0), where the sum includes all states ( j) apart
from (0), and

qtpj (t) = �[of( j) + ob( j) + ooff( j)]pj (t) + ob( j + 1)pj+1(t)

+ of( j � 1)pj�1(t) (B.4)

for all other values of j. Eqn (B.1)–(B.4) are supplemented by the
normalization conditionX

j

pjðtÞ ¼ 1 for all t: (B.5)

The different rates that appear in these equations are defined
in (2.22)–(2.25) and depend on the single motor properties
described by (2.1)–(2.6). The latter relationships involve the
single motor parameters v0, vmax, vmin, Fs, q0, Fd, e0, and l as
well as the elastic coupling parameter K = k/2. We typically vary
one parameter such as the unbinding rate e0 or the elastic
coupling parameter K, keeping all other parameters fixed at
their values in Table 1.

C Matrix form of master equations

The master equations can be written in the matrix form if we
define the (2J + 1)-dimensional column vector

(p�J(t),p�J+1(t),. . .,pJ�1(t),pJ(t))
T � |p(t)i (C.1)

where the superscript T stands for ‘transpose’ and the ket
notation will be used for convenience. Using the latter vector,
the master equations (B.1)–(B.4) attain the compact form

qt|p(t)i = W|p(t)i (C.2)

with the (2J + 1) 
 (2J + 1) transition rate matrix W. The
diagonal matrix elements Wj, j are given by

Wj, j = �[of( j) + ob( j) + ooff( j)] for j a �J, j a 0, and j a J
(C.3)

as well as by

W�J,�J = �[of(�J) + ooff(�J)], (C.4)

W0,0 = �[of(0) + ob(0)], (C.5)

and

WJ, J = �[ob( J) + ooff( J)]. (C.6)

The off-diagonal matrix elements of W are given by

Wj, j+1 = ob( j + 1) for j r J � 1 (C.7)

and

Wj, j�1 = of( j � 1) for j Z �J + 1. (C.8)

For each column of the matrix W, the matrix elements sum up
to zero, i.e.

P
j

Wj;k ¼ 0 for all values of k.

Most of our results are based on the steady state solutions
pst

j of eqn (C.2) with qt|psti = W|psti = 0 orX
k

Wj;kp
st
k ¼ l1pstj with eigenvalue l1 ¼ 0: (C.9)

The numerical solutions of these equations were obtained with a
self-written script based on built-in subroutines of Mathematica 9.0.

D Time evolution without motor unbinding

In Section 3.3, we describe the time evolution of the probability
distribution pj (t) for unbinding rate e0 = 0, see Fig. 8. In this
limiting case, the state space in Fig. 4 becomes 1-dimensional
and does not contain any cycles. The steady state probability
distribution pst

j then satisfies the detailed balance conditions

of( j � 1)pst
j�1 � ob( j)pst

j = Wj, j�1pst
j�1 � Wj�1, jp

st
j = 0

(D.1)

for all j with �J r j r J � 1 which is equivalent to

Wi,jp
st
j = Wj,ip

st
i (D.2)

for all nonzero matrix elements. Applying the conditions (D.1)
iteratively along the 1-dimensional state space, we obtain the
steady state solutions

pstj ¼
ofð j � 1Þofð j � 2Þ 	 	 	ofð�J þ 1Þofð�JÞ
obð jÞobð j � 1Þ 	 	 	obð�J þ 2Þobð�J þ 1Þp

st
�J ; (D.3)

where pst
�J is determined by the normalization conditionP

j

pstj ¼ 1.

In general, the matrix W is not symmetric. However, if the
matrix elements Wi,j fulfill the detailed balance conditions
(D.2), we can define the symmetric transition rate matrix W̃
with matrix elements41

~Wj;k �Wj;k
pstk
pstj

 !1=2

¼ ~Wk;j : (D.4)

Because the matrix W̃ is symmetric, it has real eigenvalues ln

with n = 1,2,. . .,N and N = 2J + 1. Furthermore, the right and left
eigenvectors for the eigenvalue ln have the same components
ũj (ln), i.e. X

k

~Wj;k~uk lnð Þ ¼ ln~uj lnð Þ andX
j

~uj lnð Þ ~Wj;k ¼ ln~uk lnð Þ
(D.5)

and satisfy the orthonormality conditionX
j

~uj lmð Þ~uj lnð Þ ¼ dm;n (D.6)
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where the Kronecker delta symbol dm,n = 1 for m = n and 0
otherwise.

It then follows from eqn (D.4) that the transition rate matrix
W has the same eigenvalues ln as the symmetric matrix W̃ and
that the right eigenvectors of W are given by the column vectors

lnj i ¼ r1 lnð Þ; . . . ; rN lnð Þð ÞT with rj lnð Þ � ~uj lnð Þ
ffiffiffiffiffiffi
pstj

q
(D.7)

whereas the left eigenvectors of W are provided by the
row vector

lnh j ¼ ‘1 lnð Þ; . . . ; ‘N lnð Þð Þ with ‘j lnð Þ �
~uj lnð Þffiffiffiffiffiffi

pstj

q : (D.8)

The left and right eigenvectors satisfy the orthonormality and
completeness relations

lm j lnh i ¼ dm;n and
X
n

lnj i lnh j ¼ 1 (D.9)

with the identity matrix 1. The column vector |p(t)i can now be
decomposed according to

pðtÞj i ¼
X
n

lnj iCnðtÞ with CnðtÞ � ln j pðtÞh i: (D.10)

When this decomposition is inserted into the master equation
(C.2), we obtain the time-dependent coefficients Cn(t) = Cn(0)elnt

and the probabilities

pjðtÞ ¼
ffiffiffiffiffiffi
pstj

q X
n

~uj lnð ÞCnð0Þelnt (D.11)

with

Cnð0Þ ¼
X
k

~uk lnð Þffiffiffiffiffiffi
pstk

p pkð0Þ: (D.12)

Because all eigenvalues ln are negative for n Z 2, the long time
behavior of pj (t) is dominated by the term with n = 1 and l1 = 0
corresponding to the steady state probabilities pst

j .
Thus, in order to determine the time-dependent probabilites

pj (t) as given by (D.11), we subsequently computed the steady
state probabilities pst

j , see (D.3), the symmetric matrix W̃ via
(D.4), as well as the eigenvalues ln of W̃ and the corresponding
eigenvectors with components ũj (ln), using again the built-in
subroutines of Mathematica 9.0. The initial distributions were
set to pj (t = 0) = 1 for j = 0 and pj (t = 0) = 0 for all other values of j.

E Dependence of average elastic force on strain force

In Fig. 9 the strain force dependency of the average elastic force
hFi is presented up to a strain force value of FK C 3 pN. In this
regime, the average elastic force is approximately independent
of the strain force and equal to the cargo force Fca of the tug-of-
war in the MKL model. In the limit of high strain forces,
however, we would expect the elastically coupled model to
generate hFi = 0, since none of the motors would be able to
make a single step because of the high spring stiffness.

In Fig. 13 we plot the average force hFi as a function of the
strain force FK within the range 3 pN r FK r 40 pN. We observe a
weak maximum of hFi around a strain force value of FK C 10 pN.

For FK Z 15 pN, the average force hFi decreases monotonically
towards zero. Considering the steady state distribution over the
discrete state space one can interpret the FK-dependence of hFi as
follows. Up to a strain force value of FK C 2F+

s = 2F�s the process
can perform at least one step resulting in a stretching of the linker
between the motors. Recall that the transition from state (0)
to state (1) occurs with the sum of forward stepping rates
a+( %F04) + a�( %F04), see eqn (2.22), where the motors feel the
effective force %F04 = FK/2. For a strain force of FK = 14 pN this
force is %F04 = 7 pN = F+

s = F�s , at which the motors are equally
likely to perform a forward or a backward step. Without motor
unbinding, and taking into account that a further transition
from (1) to (2) with an effective force of %F14 = 14 pN acting on
the motors is highly unlikely, this force balance is expected to lead
to steady state probabilities pst

0 C pst
1 C 0.5 and to the average

elastic force hFiC pst
0 F0 + pst

1 F1 = 7 pN = Fca.† A further increase
in the strain force FK shifts the steady state distribution towards
the relaxed state (0), i.e. pst

0 4 pst
1 , resulting in a reduction of the

average force hFi towards zero. The initial increase of hFi with
increasing FK implies that the corresponding increase in F1

overcompensates the decrease of pst
1 for FK o 10 pN, see the

steady state distribution in Fig. 14.
In Fig. 14 we plot the time evolution of the probability

distribution over the states pj (t) starting from an initial state
different from (0). We fix a high strain force FK = 10 pN,
corresponding to the maximum of hFi in Fig. 13, and choose
the initial state to be (5), i.e. pj (0) = dj5. As t increases we see that
the time-dependent probability distribution pj (t) approaches the
steady state distribution pst

j (dashed red line). We see that
pst

j has a clear peak in state (1), but also a nonzero value in (2),
where the corresponding elastic force is given by F2 = 2FK = 20 pN.
These high force value contributions from state (2) to the average
force results in hFi 4 Fca, as observed in Fig. 13.

Fig. 13 Average elastic force hFi of the process for zero-force unbinding
rate e0 = 0 and strain forces FK Z 3 pN. We observe that hFi reaches a
maximum around a strain force value of FK = 10 pN. For larger strain forces
corresponding to stiffer springs, the average force hFi induced by the
motors decreases monotonically to zero.

† In this discussion we ignore the backward transitions (0) - (�1) leading to a
compression of the spring, since the transition rate for (0) - (�1) is much
smaller than the rate for (�1) - (0), e.g. for a strain force of FK = 14 pN we would
have of(�1) C 10ob(0).
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F Dependence of force distribution on the size of state space

As shown in Fig. 10, the probability distribution pst
j is shifted

towards larger j-values and becomes broader as we decrease the
strain force FK. Therefore, a fixed size of the state space, i.e. a
fixed number (2J + 1) of states, acts to truncate the distribution
pst

j for sufficiently small values of FK. Likewise, the average elastic
force hFi starts to decrease, for a fixed value of FK, as we decrease
the size (2J + 1) of the state space below a certain minimal value.

These finite size effects are illustrated in Fig. 15 where the
average elastic force hFi is plotted as a function of the inverse
size (2J + 1)�1 of the state space. Inspection of this figure shows
that hFi attains a constant value for sufficiently small (2J + 1)�1

but decays strongly for sufficiently large (2J + 1)�1. In practice,
we chose (2J + 1) Z 201 for FK r 0.1 pN and (2J + 1) Z 51 for
FK r 0.5 pN.

Glossary of mathematical symbols

a(F) Force-dependent forward stepping rate
b(F) Force-dependent backward stepping rate

dij Kronecker delta symbol
e0 Zero-force unbinding rate
e(F) Force-dependent unbinding rate
z Effective decay exponent in hFi B e�z0 , see Fig. 7
Z Decay exponent in tre B F�ZK , see Fig. 11
Fca Cargo force of the MKL model
Fd Detachment force
Fs Stall force
Fdy,ca Force exerted by the dynein motor onto the cargo
Fki,ca Force exerted by the kinesin motor onto the cargo
Fj Elastic force acting in state ( j), defined by Fj � jFK

%Fj4 Effective force acting during the stretching by a
single step

%Fjo Effective force acting during the compression by a
single step

FK Effective strain force, FK = Kl
F� Force acting on single plus/minus motors in the

MKL model
j Integer spring extension in units of l, �J r j r J
( j) State corresponding to the spring extension j
J Maximal value of j
k Spring constant of a single motor linker
K Effective spring constant, K = k/2,
kB Boltzmann constant
l Step size of the motors
LJ Rest length of a single elastic linker
L0 Effective rest length of two elastic linkers, L0 = 2LJ
DL Extension of the effective spring
ln Eigenvalue of the transition rate matrix W
N� Number of plus/minus motors attached to the

cargo
n� Number of active motors bound to the filament
of( j) Forward transition rate
ob( j) Backward transition rate
ooff( j) Overall unbinding rate
peq

j Equilibrium probability to be in state ( j), see
eqn (3.15)

pst
j Steady state probability to be in state ( j)

pj (t) Time-dependent probability to be in state ( j)
q0 Zero-force forward-to-backward stepping ratio
q(F) Force-dependent forward-to-backward stepping

ratio
sF Standard deviation of the force distribution
sj Standard deviation of the probability distribution

pst
j

tre Relaxation time
t2 Average two-motor binding time
|lni Right eigenvector of W for eigenvalue ln

hln| Left eigenvector of W for eigenvalue ln

vca Cargo velocity of the velocity-matched state
v0 Zero-force velocity
vmax Maximal forward velocity
vmin Backward velocity
vF Force-free forward velocity of the MKL model
vB Force-free backward velocity of the MKL model
vF|B Velocity parameter given by vF or vB

Fig. 15 Dependence of average elastic force hFi on the inverse size (2J + 1)�1

of the state space. If the two motors are weakly coupled, the finite size
of the state space acts to truncate the probability distributions. Thus, for
FK = 0.1 pN, we see large finite size effects and a strong decay of hFi
already for (2J + 1)�1

\ 0.005.

Fig. 14 Time evolution of the probability distribution pj (t) for a strain force
of FK = 10 pN. The initial probability distribution is pj (0) = dj5. The probability
distribution pj (t) approaches the steady state distribution pst

j , indicated by
the dashed red line, which has a maximum for spring extension j = 1.
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W Transition rate matrix of the redefined state space
in Fig. 12

Wi, j (2J + 1) 
 (2J + 1) matrix elements of W
W̃ Symmetric transition rate matrix as defined by

eqn (D.4)
W̃i, j (2J + 1) 
 (2J + 1) matrix elements of W̃
xki Position of the kinesin motor
xdy Position of the dynein motor
xca Position of the cargo
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