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Inspired by recent experiments using synthetic microswimmers to manipulate droplets, we investigate
the low-Reynolds-number locomotion of a model swimmer (a spherical squirmer) encapsulated inside a
droplet of a comparable size in another viscous fluid. Meditated solely by hydrodynamic interactions, the
encaged swimmer is seen to be able to propel the droplet, and in some situations both remain in a
stable co-swimming state. The problem is tackled using both an exact analytical theory and a numerical
implementation based on a boundary element method, with a particular focus on the kinematics of the
co-moving swimmer and the droplet in a concentric configuration, and we obtain excellent quantitative
agreement between the two. The droplet always moves slower than a swimmer which uses purely
tangential surface actuation but when it uses a particular combination of tangential and normal
actuations, the squirmer and droplet are able to attain the same velocity and stay concentric for all
times. We next employ numerical simulations to examine the stability of their concentric co-movement,
and highlight several stability scenarios depending on the particular gait adopted by the swimmer.
Furthermore, we show that the droplet reverses the nature of the far-field flow induced by the
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DOI: 10.1039/c65sm016369 swimmer: a droplet cage turns a pusher swimmer into a puller, and vice versa. Our work sheds light on

the potential development of droplets as self-contained carriers of both chemical content and self-
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1 Introduction

Droplets have recently been used as small, isolated, aqueous
compartments to encapsulate, incubate and manipulate cells
for biological assays.! Such droplet-based cell encapsulation is
commonly accomplished in microfluidic devices which are able
to precisely produce and manipulate microdroplets of adjustable
sizes.>® Current microfluidic technology allows a high-throughput
and controllable analysis to be performed on individual cells in
their own discrete microenvironments.

In related work, droplets have been used to cage motile organisms
such as the nematode Caenorhabditis elegans (C. elegans)™ in order to
carry out developmental work. In these studies, the size of an encaged
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propelled devices for controllable and precise drug deliveries.

adult C. elegans is comparable to the droplet radius. Despite their
mobility, the worms failed to propel their liquid cages, because they
were immobilized. In the work of ref. 4, the droplet was tightly
squeezed inside a capillary tube, forming a plug thus immobilized
hydrodynamically by the lubrication film while in the work of ref. 5,
the droplet was anchored mechanically by a microfluidic trap.
Motivated by these droplet-based encapsulations of motile
organisms, we raise in this paper a simple question: is it possible for
a microswimmer encaged in a droplet to propel its viscous cage and
co-swim with it? One could envision setups of this type of interest to
the drug delivery community using droplets as small self-contained
units propelled and steered by their internal synthetic swimmers.
Recently, microrobots propelled by a magnetically-rotated
helical appendage mimicking the flagella of bacteria such as
Escherichia coli (E. coli) were fabricated,®’ encapsulated and
operated inside a water-in-oil droplet in microfluidic chips.® In this
case, the droplets were not mobile, presumably for two reasons:
the swimmer was much smaller than the droplet and the droplet
was large compared to the height of the micro-fluidic chips so that
it was tightly squeezed and thus anchored hydrodynamically.*
Excitingly, the same group managed however to use their micro-
robots to push a droplet of a comparable size from the exterior
when the droplet was unbounded or loosely bounded. From the
theoretical point of view, the locomotion of a droplet driven by
the internal release of a surfactant was previously considered.’
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In this paper, we conduct a combined theoretical and numerical
study of a three-dimensional (3D) model microswimmer encap-
sulated in a droplet in free space. The size of the swimmer is of
the same order as the radius of the droplet and we attempt to
answer the following fundamental questions: will the droplet
co-swim with the swimmer? What is the swimming velocity of
the droplet compared to that of the swimmer? How are the
kinematics and energetics of the microswimmer affected by
the confinement due to the presence of the droplet? How stable
is the co-movement of the concentric pair of the swimmer
and droplet?

2 Problem description

We consider, in the creeping-flow regime, the locomotion of a
3D microswimmer encapsulated in a droplet. Due to hydro-
dynamic interactions, the motion of the swimmer is influenced
by the presence of the droplet interface. The geometrical setup is
shown in Fig. 1a. We use a spherical, axisymmetric squirmer'*"*
as our model swimmer. It achieves locomotion by squirming, i.e.
by generating tangential and/or normal velocities on its fixed
spherical surface. This is a classical model for physical actuation
of microorganisms continuously deforming their bodies or beating
their densely-packed cilia, and has been employed in the past to
address a variety of biophysical aspects of locomotion."™® The
shape of the droplet is maintained as spherical by maintaining a
sufficiently large surface tension y on its interface, i.e. we assume
to remain in the low-Capillary number limit. The radius of the
squirmer is denoted by a while that of the droplet is b > g,
respectively, and y = b/a > 1 is the size ratio. The fluid phases
inside and outside the droplet are marked as phase 1 and 2.
Both are Newtonian, with dynamic viscosities of 4" and u®, and /. =
1P/u® denotes the viscosity ratio. Both Cartesian (x,y,2) and
spherical (r,0,¢) coordinate systems are used, shown in Fig. 1b.

We then solve the steady Stokes equations for fluid phase
1 and 2,

VpO = 1OV, v = g, (1)

where p® is the dynamic pressure and v the fluid velocity in
phase (i), where i = 1 or 2. Following classical work,">"" we impose
normal and/or tangential squirming velocities on the surface of
the swimmer r = a to represent its effective swimming motion.
These velocities are assumed to be time-independent and axisym-
metric about its swimming direction, ie., the z axis passing
through the centers of the squirmer and droplet. The squirmer
drives the droplet to co-swim in the same direction, and hence the
problem is fully axisymmetric about the z axis. The velocity of the
swimmer and droplet is denoted by Us and Uy, respectively.

In the laboratory frame of reference, the fluid velocity compo-
nents v = (v y{V) on the swimmer surface, r = a, are given by

o0

vl(‘1)|r=a = ZAnPn(é) + USPI (é)a
n=0

(2)

[o°]

> B Va(&) = Ushi(9),
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Fig. 1 (a) Three-dimensional sketch of a spherical swimmer of radius a
(green) inside a spherical droplet of radius b (magenta). (b) The squirmer
and the droplet co-swim in the z direction with a velocity of Us and Up,
respectively. The fluids inside and outside the droplet are marked as phase
1 and phase 2 and are distinguished by their viscosity p¥ and u®,
respectively.

where A, (respectively B,,) indicates the n-th mode of the normal
(respectively tangential) squirming velocities, P, are the
Legendre polynomial, ¢ = cos0, V, = — 2Px(&)/(n”> + n), and Py,
is the associated Legendre function of the first kind of order 1.
In eqn (2), Us is the value of the unknown swimming velocity of
the swimmer, and Up, is the unknown swimming speed of the
droplet.

On the droplet interface r = b, the normal velocities in the
droplet frame vanish because the droplet does not deform. In
addition, the tangential velocities and tangential stresses are
continuous across the interface. These boundary conditions
formulated in the laboratory frame are written as

v _, =v?| _,= Upcoso,
(1) 2)

i r:h_ K r=b’ (3)
(1) (@)

Hr9 ’ - Hr(') —b’
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where ) = —pO1 + yO[vv® + (V)T is the stress tensor for
fluid 7. Furthermore, the velocity v decays to zero in the far
field r » b.

Finally, the total hydrodynamic forces exerted on both the
swimmer and on the droplet interface are zero, which will be
used to determine the values of both swimming velocities, Us
and Up. For an unbounded squirmer in a single-phase fluid, the
velocity Us = Up, is given by'*"

2B — A,

Ug = 22 (@

3 Analytical theory

We first solve the problem analytically. The methodology is
based on Lamb’s general solution of the Stokes equations in
spherical coordinates.”®>" For a single-phase fluid with viscos-
ity u, the fluid velocity field v can be expanded in spherical
harmonics as

3
"t v

2+ 2 +3) Pt P

{W" + D2n+3)

(5)

where p, and ¢, are solid spherical harmonics satisfying
V?p, = 0 and V?¢, = 0, respectively. In axisymmetric
flow, p, and ¢, are expressed by a series of Legendre
functions as

=Dl Pa&), Pul1,E) = Pur"Pul(®),

where p, and d;n are constants independent of r and ¢.
The radial and tangential velocity components v, and v, are
then obtained as

Palry€)

Sl TS e R - 1
= {pn’" b APy + Oy | (9,
n>0
[ n+3 n+1_ n—2_ .
vo = Z |:7 2 Pn? — " B Py’
n>1
_~_§J) —n2) | (&)
2 —(n+1) n y
(6)
where
_ n . - -
Pn= mpm ¢, =no,.

Note that the solution for the flow in region 1 may contain all
terms in the brackets of eqn (6) while those in region 2 only
contain the last two terms due to the boundary condition at
infinity.

Applying this framework to our case, we use eqn (6) for both
the inner and outer fluid, solving for the unknown constants
P9, ¢, p@(nﬂ) and qg@(nﬂ) (f = 1, 2) using the boundary
conditions, eqn (2) and (3), together with the condition at
infinity. Taking the n = 0, 1 terms in the series expansion of
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eqn (6) with the use of eqn (2) and (3) leads to the system for the
inner fluid

N I (1 I-a
P 1) ;(b(—? = A07 P,f +ﬁ¢71) = 07
_ 1 1.
A5V + ¢\ + Y+~ = 4, + Us,
d a3
PV N (DR B {0 B A
1 L2472 7 2372 ’
_ -y 1 1-a
p2p\l + ¢\ + 9 +E¢§§ = Up,
1 _ - 1 _q I I\1-@ 1
) b2 (1)_ ( _() - - _
( 7)o o mapat (377 )t = e

Hence, the constants p) and ¢ (n = —2, —1 and 1) are
obtained explicitly in terms of both Ugs and Up. The constants
in the outer fluid are then given by
1-¢ -2 l7/.s_1y =@
—50+0Un, ¢4 = (V). ()
and the condition at infinity leads trivially to p*} = 0 and
=0

Applying the force-free condition for the swimmer,

we have
F= J n
N

which leads to p") = 0. Applying the same condition for the
droplet, we obtain p'% = 0. Plugging the two constants into
eqn (7), we obtain the values of all underdetermined constants
together with the velocity of the swimmer, Us, and that of the
droplet, Up, as,

7S = —4nv[pY] =0, 9)

Us 7a1/1:Ir.:27 (10)
and
o 10(4, jBl) 7 )
where
= 20281 — A1)y’ — 10(4; + B))y® + 6(24; + By),
E,=302B1 — Ay’ +10(4; + B))y? — 6(24, + By), (12)
A=312(7 - 1)i+37 +2].

Similar to the case of an unbounded squirmer (see eqn (4)),
the swimming velocities are seen to be independent of
the squirming modes A, or B, for n > 2, but depend only on
Ay and B;.

In order to complete the calculation and characterize the
flow in both fluids, we need to calculate the values of the
constants p,, Doy P—(n+1) and q,’;,(nﬂ) for n > 2 in the series
expansion from eqn (6). The velocities inside and outside the
droplet in the laboratory frame are then obtained to be

Soft Matter, 2017, 13, 3161-3173 | 3163
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A a\2 A+ B " 2 a\3
(1 _ 4o 2(4 1 1 YA .2 54
W= 1{X %) 1}1)0(5) o {6@ D(E) =100 D72 +2022+3)7 (%) }Pl(f)
> 1 7\ e+l 7 a\ 2
+ ;A_n{(NlAn +NaB)(5)" 4 (Nt NaB) () + (Vs + NeBo) () (N1, + Ny B) (%) }P,,(é),
1 _ _A1+B| B £ 2_ B s/a 3 L _n+3 £ n+l1
w) = 120 1)(a) 10(2 — 1) —(24+ 3)x (;) Vi(é > (N1 Ay + Nan)(a)
(13)
n+1 n—1 pn—-2 a\ " n n+2 .
— I Ny + NiBy) (5) T+ (Ns s + NoB) (5) + SN + Nan)( ) }Vn(;),
10(/11 +Bl)y 1A —|—62B a\ n+2
@ AP PUL L Nl [} e
) i - et L) - ()
@ _ 541+ By’ ra f) 14y +623n n—2/an ca\nt2
oo = A (r) (&) z; Ay 72 (r) n(r) Val©),
' . . | )
where t.he values of all undefined constants are provided in K = —-V, - n the mean curvature of $, and g the density of the
Appendix A. 2

We can finally calculate the power consumption of the
squirmer, 2, which is equal to the rate of work done by the
squirmer on the fluid,

P = —[ﬁv(” MW - ngds, (14)
Js
where ng denotes the normal vector on § pointing towards the
fluid. We obtain

single-layer potential on S. The tensor G is the free-space Green’s
function, also known as the Stokeslet or the Oseen-Burgers
tensor,

(xo — x)(xo — x)

é
-4
r

G(xg, x) 3

(17)

where 0 is the identity tensor and r = |x, — x|. As shown in
eqn (16), only single-layer integration is performed, which is

P 2/ +1 (41 + B))
= A +2(Z) + Z2)Z;
dntua At (Z1+2) A2
4 _ _ _ _
wNoA,' + duNeB,? + (cuNe + dyN,) A, B,
+n(n+1)(‘ + + (eaNe + d,N,) )}

where C, is given in terms of the surface tension of the droplet,
7, as Co = {y — u®PAy(2y% + 1)/(* — 1)H(nuMa?y) based on the
condition I — 1Y = 2y/b. Again, all undefined constants are
given in Appendix A.

4 Numerical simulations

In parallel with our theoretical approach, we use numerical
simulations based on a 3D boundary element method. By
choosing the characteristic length, velocity, and stress as b,
JyH{u®(1 + 2)}, and y/b respectively, the nondimensional boundary
integral formulation for the matching-viscosity case (4 = 1) can
be obtained. The nondimensional velocity u(x,) at position x,
everywhere in the domain is classically written as

= o am(x) - G250

G(x9, x)dS(x),

u(x)

yed IUICOR (16)

where § and § denote the surface of the droplet and swimmer
respectively, n the normal vector on S towards the outer fluid,
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N 1 2 2
n o<tn n (’BH n e n o an .
+n§>2(2n+l)An2{2(aNA + buNB2 + (aN, + byN,) A, B,)

(15)
+ CoAo,

sufficient for the rigid body motion of the swimmer and the
dynamics of a matching-viscosity droplet.*>

The surfaces of the swimmer and droplet are discretized
using zero-order flat quadrilateral and second-order curved
triangular elements respectively. For the spherical swimmer, a
six-patch structured mesh>>** consisting of 600 (before mesh
refinement) elements is constructed. The number of elements on
the droplet interface is around 2500 (~5000 discretized points).
Gauss-Legendre quadrature is applied on the quadrilateral elements
to compute nonsingular integrations; on triangular elements, we
compute the integrations using a symmetric Gaussian quadrature
rule.?” When x, is on the surfaces § or S, the surface integrals
become singular and different desingularization strategies are
chosen: on the droplet interface S, the well-known integral identity
for G is exploited and hence the first integral in eqn (16) becomes

J k(x)n(x) - G(xp,x)dS, = J[K(x) — x(x0)]n(x)-
S S (18)
x G(xg,x)dSy,

where the 0(r~") singularity of the original integrand is removed;
on the squirmer surface $, each quadrilateral element is divided

This journal is © The Royal Society of Chemistry 2017
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(a)

Fig. 2 Meshing of the swimmer—droplet pair used in numerical simulations.
(@) The 3D view of the meshes of the droplet (triangular elements) and
swimmer (quadrilateral elements), where adaptive mesh refinement is
implemented on the swimmer; half of the droplet interface is removed
for visualisation purposes. (b) The projection view on the xy plane. (c) The
projection view on the xz plane.

into four triangular sub-elements, where the transformation of
polar coordinates®® with Gauss-Legendre quadrature is adopted
to desingularize the integral. Both integrals in eqn (16) tend to
be nearly singular when the distance between the two surfaces
§ and § is too small. Desingularizing measures are hence
taken for them: on the droplet interface S, a high-order near-
singularity subtraction is implemented by following ref. 27
and on the swimmer surface §, adaptive mesh refinement is
utilized. Fig. 2 presents a schematic view of the adaptively-
refined mesh.

A crucial numerical difficulty arising from droplet/bubble
simulations based on Lagrangian interface representation is to
maintain the quality of the mesh of the interface. In order to
guarantee the smoothness and orthogonality of the triangle
mesh over a long time evolution, we implement a so-called
‘passive mesh stabilization’ scheme.*®*° At each time step, the
scheme searches the optimal tangential field that is added to
the normal velocity to update the Lagrangian points, minimizing
a global kinetic-energy-like norm that quantifies the clustering
and distortion of the mesh. This scheme significantly slows down
mesh degradation. Its effectiveness was proved in the previous
study on a squeezed pancake droplet in a microfluidic chip based
on an accelerated boundary integral implementation.*

In contrast to the infinite-surface tension assumed in the
theory, a large but finite surface tension is adopted in the
simulations and hence the numerical droplet is not strictly
spherical but slightly deformable. The strength of the typical
ratio of viscous stresses to surface tension forces is measured
by the capillary number, Ca = 1?B,/y, and Ca = 0 corresponds
to the theoretical limit of infinite surface tension. We vary Ca
numerically from 107> to 10, without detecting significant
changes in the kinematics of the swimmer. We hence use Ca=10">
throughout our study, and are able to approximate well the Ca = 0
limit from our a posteriori comparison with the theory.

This journal is © The Royal Society of Chemistry 2017
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5 Results

5.1 Squirming with purely tangential velocities

In this section, we start by investigating the instantaneous
dynamics of a droplet encapsulating a squirmer using solely
tangential surface velocities, i.e. with 4, = 0. If one further sets
the B, (n > 3) modes to zero, as is classically done for the
squirmer model,"? the swimming gait consists of only B; and B,
modes: the B; mode determines the swimming velocity while
the B, mode captures the leading order disturbance flow
induced by the swimmer, namely a stresslet (or force dipole).
We define f = B,/B; to measure the relative strength of the
stresslet. The squirmer is said to be neutral when f = 0, while it
is a pusher (respectively a puller) when f is negative (respectively
positive). Varying the value of § allows modeling the majority of
swimming microorganisms and synthetic microswimmers: pushers
model flagellated bacteria such as E. coli** while biflagellated green
algae such as C. reinhardtii**>* are pullers. Neutral swimmers may
be considered as special cases of synthetic swimmers such as Janus
particles self-propelling owing to various phoretic mechanisms or
some active droplets driven by Marangoni stresses.*>*>

5.1.1 Velocity of the swimmer and droplet: theory. For a
tangential squirmer, the velocities Us and Up are given
analytically by

% = %{ (27 = 572 +3)2+ 3% + 5 - 3},
0

(19)
UD o 15)(2

Uy 4
where A is defined in eqn (12) and we use the swimming
velocity of an unbounded squirmer as the reference scale,
U, = 2B,/3. Both velocities are functions solely of the size ratio, y,
and the viscosity ratio, 4.

We plot in Fig. 3a the dependence of the swimmer velocity
on y and 4. The velocity decreases monotonically with 4. When
the outer and inner phase have matching viscosities (4 = 1), Us
is not affected by the presence of the droplet, and is thus equal
to the unbounded velocity U, for all values of y. The squirmer
swims faster than the unbounded one when the outer phase is
less viscous than the inner (1 < 1), and swims slower in the
opposite limit, 4 > 1. When 1 # 1, the velocity Us varies with
the size ratio y non-monotonically, reaching its maximum value
for 2 < 1 when the swimmer is tightly confined, y ~ 1.1-1.2,
namely when the droplet is slightly larger than the swimmer.
The result is similar when 4 > 1 and the minimum is reached.
For any viscosity ratios, Us = Uy in the limit of y =1 and y - oo.
The former corresponds to the situation when the droplet
exactly encompasses the swimmer and the latter to when the
droplet is much larger than the swimmer. In Fig. 3b, we further
show that the velocity of the droplet decreases monotonically
with y, as well as with A. The inset of Fig. 3b presents the ratio
Up/Us of the droplet velocity over the swimmer velocity as
a function of y in a log-log form, this ratio decays as y°
for large y. It is important to note that for any values of y or 4
the swimmer is always faster than the droplet, Us > Up.

Soft Matter, 2017, 13, 3161-3173 | 3165
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Fig. 3 (a) Velocity Us of the swimmer squirming with tangential surface
actuation only; (b) velocity Up of the droplet, both scaled by that of an
unbounded squirmer, Ug = 2B4/3. In both cases, the velocities are plotted
as a function of the size ratio, y = b/a for viscosity ratios 2 = 0.1, 1, 3, 5 and
10. The inset of (b) shows the ratio, Up/Us, of the droplet velocity over the
swimmer velocity in log—log form.

The concentric configuration is thus not a steady state if the
swimmer only applies tangential forcing.

5.1.2 Comparisons between theory and simulations. Here
we consider the dynamics of a neutral swimmer (f = 0), a
pusher with = —5 and a puller with § = 5 encapsulated inside
a same-viscosity droplet (1 = 1). For simplicity we further take
B, =0forn > 3 and A, = 0 for all n. Since the velocities Up and
Us are independent of f3, the ratio Up/Us only depends on the
value of y. This functional dependence is plotted in Fig. 4,
showing an excellent agreement between the theory (green
lines) and numerical data (red squares).

Next in Fig. 5a-c, we plot the flow velocity field, v/B;, in the
laboratory frame for the pusher (a), neutral (b) and puller (c)
swimmers respectively. The size ratio is y = 2. Theoretical
results are shown on the left panel and numerical data on
the right. The numerical predictions show good agreement with
the theoretical data in most of the flow domain except very
close to the droplet interface where numerical errors arise from
the nearly-singular integration.

For the neutral swimmer, note that the velocity field is not
affected at all by the presence of the droplet. This is corroborated
by the fact that neither the swimming velocity nor the power
are impacted by the droplet, as implied by eqn (10) and (15).
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Up/Us

37456 78910

Fig. 4 The ratio Up/Us between the droplet velocity, Up, and the swimmer
velocity, Us, as a function of the size ratio y. The swimmer employs only
tangential squirming modes and the viscosity ratio is 4 = 1. Green solid lines
and red squares indicate results from the theory and numerical simulations,
respectively.

This results from the vanishing radial velocity in the droplet
frame, such that the spherical droplet interface introduces no
perturbation and hence does not influence the swimming
dynamics.

For the pusher in a drop, similar to a pusher in free space,
fluid is locally pushed away from the anterior (0 = 0) and
posterior (0 = m) parts of the swimmer and comes to the lateral
directions (6 = n/2). Due to the non-penetrating nature of the
droplet interface, two counter-rotating toroidal vortices form
inside. Outside the droplet the fluid is drawn towards its poles
and expelled away on the equatorial plane. Interestingly the
flow signature of a local pusher turns therefore into a puller in a
far field. More quantitatively one can show that the velocity fields
of a puller with f > 0 and a pusher with —f satisfy the relation

v p(rym — 0) + v, |_p(r,0) = 0,

Vg|/3(r,TE — 9) — V(;l,/j(r,e) = 0, (20)

which indicates that the mirror symmetry about the equatorial
plane 0 = m/2 of the flow field of the pusher with —f is
equivalent to the reversed flow field of the puller with f.

We next investigate the spatial variation of v(z)/B; along the z
axis in Fig. 5d-f, for the three swimmers. Here again, numerical
data (empty red circles) agree very well with the theoretical
predictions (solid blue line). The velocity magnitude, |v|/B,,
decays in the far-field from the swimmer center as 7~ 2 for the
pusher/puller and r for the neutral swimmer. The velocity
distribution v(z) over z for the pusher and that for the puller are
symmetric about z = 0, as implied by eqn (20). For both
swimmers, two stagnation points appear near the droplet inter-
face r = b, one close to the frontal interface and the other close
to the rear. They can be observed in Fig. 5.

It is worth emphasizing the result that the presence of a
droplet reverses the direction of the far-field flow with respect

This journal is © The Royal Society of Chemistry 2017
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to that of a pusher/puller in free space (Fig. 5a and c). This
can be made more precise by an analysis of the theoretical
predictions in eqn (13). With only B, and B, modes, the leading-
order contribution to the radial velocity 1) in the outer phase is

2 _ ¢ a\?
Ve ){leading_ 7A2X2 (;) BQP2(5)7

(21)

and that to the radial velocity of an unbounded pusher/puller is
given by ref. 11 as

2
Whesting= = (5) B2P2(&). (22)
Their ratio is v£2)|1eading/v,|leading = ¢,/(4,)”), which is negative
for any size ratio y > 1 hence rationalizing the velocity
inversion.

5.1.3 Power consumption. When the viscosities inside and
outside the droplet are equal (1 = 1) and the swimmer uses
tangential surface actuations alone, the power consumption 2
based on eqn (15) is simplified to

P2 4 =, 8d
=_B? ——" B2, 23
dmpa 3 +;n(n+l)4|” (23)
where
d, =477 — (2n+3)* + (2n — 1),
A, = 8723 — (2n + 1)(2n + 3)x* + 2(2n — 1)(2n + 3)y*

— (2n — 1)(2n + 1). (24)

Restricting then our attention to the simplest squirmer with
B, =0 for n > 3, the power becomes

P 4 4 — T4 +3 )
S a—— S 25
4np By 3( AT Ty v v L )
of a similar form to that of an unbounded squirmer™*
20 4/ 1,
_ 2042, 26
4nu aBy? 3( * 2ﬁ ) (26)

Theoretical and numerical values of & show excellent agree-
ment, as shown in Fig. 6. The power of an encapsulated squirmer,
2, always exceeds that of an unbounded one, #,,. From a practical
standpoint, # approximately doubles when the radius of the
droplet is 50% larger than that of the swimmer. We further observe
that 2 is negatively correlated with y, and the swimmer expends
more energy due to a stronger confinement. The inset log-log plot
indicates that scaled excessive power /%, — 1 decreases with the
size ratio as 3.

5.2 Co-swimming by combining tangential and normal
squirming

We have shown in the previous sections that a swimmer employing
solely tangential squirming modes, B,, is always faster than the
droplet, i.e. Us > Up. Thus, the swimmer and droplet cannot
remain concentric. With the idea of using artificial swimmers
encapsulated in a droplet for controllable cargo delivery, it is
attempting to try and tune the squirming gait such that the
swimmer and droplet co-move with the same velocity Us = Up
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Fig. 6 Similar to Fig. 4, but for the power consumption of the squirmer,
2, scaled by the unbounded value, Z,. In contrast to the velocities,
2 depends also on modes |B,| (n > 2). Here |B| = |B,/B1| = 5and B, = 0
(n > 3). The inset shows the ;> scaling of the nondimensional excess
power 2/%q — 1.

and maintain a concentric configuration. We find that a squirmer
combining both tangential and normal velocities is able to
accomplish this, as shown below.

The results in eqn (10) and (11) imply that the swimming
velocities Us and Up, only depend on the first modes, 4; and B;.
We define o = A,/B; to indicate the relative strength of the
modes. By comparing eqn (10) and (11), we find that a particular
value of «, denoted by o™, allows obtaining equal velocities, namely
(424 6)y° — 1042 + 6(A — 1)

T2 3) S 11042 — 12G— 1) 27)

CO

leading to a co-swimming squirmer and droplet velocity, Usp,
given by

10B172{(64+9)7° — 6(2 — 1)}

U = Us = Usb = 41274 3)f + 107 — 12(i = 1)}

- (@8)

For any size ratio y > 1, «°® > 0 and thus a positive 4; mode,
which contributes to the swimming velocity negatively and
therefore enables the squirmer to co-swim with the droplet.
The influence of confinement y and viscosity ratio 4 on the
resulting co-swimming speed is depicted in Fig. 7 by plotting
the scaled co-moving speed Usp/U,, where U, = 2B4/3 is the
velocity of an unbounded squirmer with pure tangential modes.
Even for a small viscosity ratio (4 = 0.1), the co-moving velocity
sp of the pair remains below 0.7U,. Simulations have been
performed to determine the values of «°° and Usp, for the /. =1
case, and here again the numerical results show excellent
agreement with the theory (not shown).
The relation between the mode strength o and the size ratio
¥ required to achieve concentric co-swimming is given by eqn (27)
for arbitrary viscosity ratio 4. When 4 is fixed, the particular
value «“® ensuring co-swimming is easily chosen as a function
of y. Conversely, one may determine a particular size ratio y°

This journal is © The Royal Society of Chemistry 2017
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0.7

Fig. 7 The co-swimming velocity USR of the squirmer and droplet, as a
function of the size ratio y and viscosity ratio A. The first-mode normal
squirming is tuned to be A; = «“°B; such that the squirmer and droplet
swim with identical velocity USB.

as a function of o by solving the quintic equation. In the case of
A =1, the required size ratio y*° is simply given by

o a4+ 1 1/3
L= \a12)

It implies that for a given swimmer with fixed modes one may
select a particular size of droplet transportable by the swimmer
in a co-swimming state. This encouraging result points to a practical
route toward building self-propelled chemical droplets.

(29)

5.3 Stability of the co-swimming state: axisymmetric
configuration

While the analysis above shows that co-swimming is possible, it
is not clear a priori if such a configuration would be stable. In
order to address the stability of swimmers, we perform numerical
simulations for a swimmer-droplet pair, which is initially off-
center but axisymmetric. The stability problem depends on
many parameters including the size ratio y, the viscosity ratio
/., the value of the mode ratio o, the stresslet strength f, and
the initial offset distance z.¢. In order to make the problem
tractable, we restrict the parameter values as y = 0.5, 1 =1, 0 = 1.4
and f§ = —5, 0, 5. We use z,g = Zq — Zdp to denote the offset
distance in the axial direction, where z,q and zq, are the axial
positions of the swimmer and droplet, respectively, and all
simulations start with zy(¢ = 0) = £0.2a.

Fig. 8 (top row) displays the time evolution of z.s for a
swimmer which starts initially ahead (blue dot-dashed lines) or
behind (red solid lines) using a tangential squirming of f = —5
(pusher, a), § = 0 (neutral, b) and = 5 (puller, c). The physical
characteristic time T = b/B, is used to scale the time ¢. For the
co-moving pusher as shown in Fig. 8a, the offset z,¢(0) decays
to zero regardless of its sign: the concentric co-moving state is
recovered and remains stable. The influence of z.(0) for the co-
moving neutral swimmer is shown in Fig. 8b. The concentric
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co-movement is seen to be stable if the swimmer is initially
ahead of the droplet, but it is unstable and yields a finite-time
collision between the swimmer and the droplet interface, when
the swimmer is initially behind. In contrast, for the puller
illustrated in Fig. 8c, the swimmer eventually touches the rear
interface indicating instability when z,4(0) < 0, while when
Zot¢(0) > 0, the pair reaches an eccentric co-moving state that is
asymptotically stable. In the latter case, the swimmer is close to
the front droplet interface but separated by a thin lubrication
film which acts to stabilize their co-movement via hydro-
dynamic interactions. The asymptotically steady thickness of
the film is about 0.08a.

The stability properties of the co-moving state seen in Fig. 8
may be interpreted physically by examining the disturbance
flow field induced by the swimmer. We plot in Fig. 8 (middle
row) the disturbance flow patterns corresponding to the co-moving
swimming gaits which consist of normal squirming «“° (dashed
magenta lines) and tangential squirming /3 (solid black lines). The
disturbance flow of the pusher and puller is characterized by a
stresslet oriented in the swimming direction, decaying as 1/r%; that
of the neutral swimmer resembles a source dipole along the same
direction, decaying faster as 1/r”. The analysis of ref. 11 shows that
the flow induced by the 4; mode squirming is equivalent to that by
a neutral swimmer with B; = A;. The details of this disturbance
flow dictate hydrodynamic interactions between the swimmer and
its environment. As can be seen in Fig. 8d, a body located in front
of or behind a pusher tends to be repelled by it while it will tend to
be attracted for a puller. In contrast for a neutral swimmer with
A; > 0, ahead of the swimmer will be repulsive while it will
tend to be attractive behind it.

We then link in Fig. 8 (bottom row) the disturbance flow of
the swimmer and its relative movement with respect to the droplet,
where solid/dashed circles denote the swimmer’s initial/final
location (the dot-dashed circles denote an intermediate position).
As seen in Fig. 8g, for a co-moving pusher initially ahead of the
droplet center, the repulsive flow in front of the swimmer,
consisting of both repulsive flows from tangential squirming of
f = —5 and normal squirming of o = 1.4, is stronger than its rear
counterpart and brings the swimmer back to the center (stable).
For the same swimmer but initially closer to the rear of the droplet
as depicted in Fig. 8j, the rear flows dominate. While the flows
induced by the two squirming modes are of opposite sign, the
repulsive flow arising from tangential squirming is likely to
overcome the attractive one of the normal squirming due to the
faster-decaying and shorter-ranged disturbance flow of the latter
(1/7% vs. 1/r?).

The behavior of the co-moving neutral swimmer can be under-
stood along the same vein, as illustrated in Fig. 8h and k, and
similarly for the puller when its is initially located behind that
of the droplet (Fig. 81). The only non-intuitive result is the
asymptotically-stable eccentric location of the co-moving puller
that is originally closer to the droplet front as illustrated in
Fig. 8i. Initially, the gap between the swimmer and interface is
relatively large, therefore the longer-ranged attractive flow from the
tangential squirming will outweigh the shorter-ranged repulsive
one from the normal squirming, and the swimmer will be
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added tangential squirming with (a) f = —5 (pusher); (b) § = 0 (neutral); and (c) = 5 (puller). The swimmer is ahead/behind of the droplet center by 0.2a at
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droplet interface respectively. The solid and dashed circles indicate the swimmer's initial and final positions respectively. Middle: Disturbance flow field
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(pusher); (e) p = 0 (neutral); and (f) f = =5 (puller). The solid black and dashed magenta lines denote the flow patterns generated by the tangential and
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circle its final location (the green dot-dashed circle in (i) indicates an intermediate location).

8
wes®®

attracted towards the interface. As the gap width decreases, the interface. This explains, at least qualitatively, why hydro-
the repulsive short-range flow becomes stronger, eventually dynamic interactions lead in this situation to a stable eccentric
dominating and preventing the swimmer from further approaching configuration.
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Fig. 9 The dependence of the stability of the co-moving state on the
stresslet strength f.

Additional simulations were then performed with 1/ ranging
from 0.3 to 0.7 and f ranging from —5 to 5. These simulations
show that the stability properties of the co-moving state are
independent of the size ratio y and depend only on f. As shown
in Fig. 9, when i < 0, the concentric co-movement state is stable
regardless of the sign of the initial offset z,¢. When f > 1, the
eccentric co-moving state is stable if the swimmer is initially
ahead (zo¢ > 0) while no stable co-moving configuration is
observed otherwise (z,¢ < 0).

5.4 Stability of the co-swimming state: non-axisymmetric
configuration

We next address the issue of stability when the initial position
of the swimmer center is not aligned with the droplet along the
z axis. Since the system is not axisymmetric in this case, we
employ numerical simulations allowing the swimmer to display
rotational motion. We track the two offset distances in x and
z directions with x¢ = Xsq — Xqp and Zog = Zgq — Zap- When y =2
and o« = 1.4, we consider three types of swimmers, namely a
pusher with stresslet strength f = —5, a neutral swimmer with
f =0, and a puller with = 5.

We first plot in Fig. 10a the trajectories of pullers in the
laboratory frame with an initial offset (xof,2ofr) = (0.2a,0.2a).
Initially the system is not axisymmetric but after a slight
rotation the swimmer settles in an axisymmetric configuration.
Although the rotational motion is small, it occurs early in the
dynamics, in particular before the swimmer closely approaches
the droplet. After that, the system becomes equivalent to the
axisymmetric situation considered in Fig. 8c and the swimmer
reaches a stable state maintaining a thin gap with the droplet.

Next we show in Fig. 10b the trajectories of pushers with an
initial offset (Xos,2ofr) = (0.2a,—0.2a). The swimmer slightly rotates
but in this case does not align with the droplet axisymmetrically.
Instead, due to the attractive flows in the lateral directions, the
pusher approaches the droplet and eventually collides with it.
Other cases with the initial offset (xof,20s) = (0.2a,0.2a) or (0.2a,0)
exhibit similar behaviors as in Fig. 10b with no stable configurations.
Also pullers with the initial offset (X,fr,2oe7) = (0.2a,—0.2a) or (0.24,0)
and neutral swimmers with (Xog,20f) = (0.2a,£0.2a) or (0.2a,0)

This journal is © The Royal Society of Chemistry 2017
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Fig. 10 Trajectories of swimmers in droplets initially in non-axisymmetric
configurations shown in the laboratory frame: (a) pullers (f = 5) with an
initial offset (xof.2zor) = (0.2a,0.2a) and (b) pushers (B = —5) with an initial
offset (Xofr,.Zof) = (0.2a,—0.2a). The blue diamonds and red circles denote
the droplet and swimmer centers respectively. The arrows indicate the
swimming directions. The puller with the initial configurations in (a) has a
stable configuration while other swimmers collide with the droplet surface.

do not settle a stable configuration. Additional simulations
by changing the size ratio and stresslet strength lead to similar
results.

6 Conclusion

In this paper, we have studied in the creeping flow regime
the dynamics of a spherical squirmer encapsulated in an
undeformable droplet using both theory and computations.
The incompressible Stokes equations were first solved analytically,
and when the swimmer and droplet are concentric, we obtained
exact solutions of the swimmer and droplet velocities, the flow
velocity fields and their dissipated power. Along with this analytic
approach, numerical simulations based on a boundary element
method were performed and the numerical results agreed well
with the theoretical results.
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The analytical solutions provide a useful physical picture of
the instantaneous dynamics for the concentric configuration of

Table1 The constants for the fluid velocity field given in egn (13) and the
power in egn (15)
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the squirmer and droplet. For a squirmer using pure tangential
surface actuations, although the concentric geometry is only
transient, the theoretical results state that the swimmer is
always faster than the droplet. When the normal surface
velocities are incorporated on top of tangential modes, the
squirmer and droplet are able to co-swim with the same velocity
and thus to remain concentric.

When the swimmers are slightly displaced from the con-
centric position, we found that they would either return to the
center (stable), deviate further and eventually touch the droplet
interface (unstable), or reach an eccentric steady-state position
(stable). Such final states depend on swimming gaits or relative
locations of swimmers.

The ultimate goal of encaging swimmers is to help transport
and deliver small chemical payloads, and thus a lot of future
work lies ahead for swimmer-droplet complexes. Questions
including swimming near complex boundaries or near walls,
or non-axisymmetrically, will have to be tackled. Surfactants,
which are commonly used in droplet-based microfluidics to
prevent coalescence, could perhaps be used here to prevent
collision between the swimmers and the interface, with interesting
physical consequences. Finally, if heterogeneous fluid mixtures
are to be transported in the droplet, it will be important to
quantify their mixing and chemical fate as they move along
with the swimmer.

Appendix
Constants in flow solution

The undefined constants for the fluid velocity fields in eqn (13)
and the power calculations in eqn (15) are given in Table 1.
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