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Ultrafine ruthenium—titanium oxide catalysts were directly produced
using a continuous hydrothermal flow synthesis process and assessed
as chloride oxidation catalysts. Selectivity towards chlorine (over
oxygen) evolution was shown to generally increase with decreasing
ruthenium content. The optimum catalyst was then used to make an
anode for a light-driven brine-splitting demonstrator device to
produce hydrogen and chlorine gases.

Sunlight is mankind's largest energy source; the amount that
reaches the surface of the earth every hour, is twice the global
energy consumed by human activity annually.® Solar cells
convert sunlight into electricity and are currently the fastest
growing renewable technology,> but they suffer from the inter-
mittency of sunlight and are not optimal when energy is most
needed, i.e. in winter and/or at night.* Natural photosynthesis is
the perfect example of how sunlight can produce renewable
fuels that can be stored and used when required, thereby cir-
cumventing the problem of solar intermittency. Learning from
nature, bio-inspired approaches deemed artificial photosyn-
thesis (AP) have shown great promise, where devices are being
developed that can drive the synthesis of molecular fuels using
sunlight.* Currently, the most popular approach to AP is the
solar photolysis of water, i.e. water splitting, which produces
hydrogen (H,), and oxygen (O,) gases, the former being a carbon
neutral fuel.> However, one of the major obstacles towards the
efficient photocleavage of water, is the facile oxidation of water,
which requires the transfer of four electrons per oxygen mole-
cule formed.® Even when using the best water oxidation cata-
lysts (WOCs) based on ruthenium and iridium oxides, a large
overpotential (7 ~ 400 mV at 10 mA cm ) is required to drive
the reaction efficiently.”
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Light-driven generation of chlorine and hydrogen
from brine using highly selective Ru/Ti oxide redox

L. McCafferty,® C. O'Rourke,” A. Mills,*® A. Kafizas,? I. P. Parkin® and J. A. Darr*?

The much less-studied photocleavage of brine (salt water) to
hydrogen and chlorine gas, can be considered an elegant alter-
native to water splitting. The overall reaction, a 2 electron transfer,
is much easier to effect, requiring a significantly lower over-
potential than the cleavage of water® (n ~ 50 mV at 10 mA cm™?).
Not only does it produce an invaluable fuel, but also an oxidized
chloride product, either chlorine gas or sodium hypochlorite
(NaOCl), depending on reaction pH, which are important
chemical feedstocks, with many uses. Both Cl, and NaOCl are
produced on a very large scale industrially through the electro-
chemical chlor-alkali and chlorate processes, respectively.’
Generating these chemicals electrochemically, consumes vast
amounts of electricity, therefore, the scope for producing these
chemicals using a renewable energy source is attractive. As the
transportation of chlorine gas is expensive and dangerous, the
production of chlorine in situ using a portable solar powered
device, such as that developed herein, would facilitate production
at the point of consumption, which may be particularly attractive
to those in the developing world.

Although electrochemically relatively facile, the oxidation of
chloride still presents a significant challenge, since the stan-
dard electrochemical potential required to oxidize chloride is
1.33 Vgye (as opposed to the 1.23 Vgyyg required for that of
water). Additionally, chlorine is an aggressive oxidant, and only
a few materials, most notably RuO,, when mixed with other
elements'®'" is resistant to anodic corrosion.** Thus, in
industry, for the chlor-alkali and chlorate processes, a typical
anode is composed of an intimate mixture of RuO, and TiO,
(optimum Ru content ~30-40 at%), which is known as
a dimensionally stable anode (DSA). The reasons for adding
TiO, are three-fold; (i) it improves stability,"® (ii) it reduces cost
(as Ti is less expensive than Ru) and, (iii) it can improve selec-
tivity for chloride oxidation (as opposed to the competing water
oxidation reaction).'*** Typically, ruthenium content values
<30 at% are not favoured as they require increased over-
potential to drive chloride oxidation. In industry, DSAs use
electricity from the grid and are maintained at current densi-
ties >1 A cm ™2 In comparison, if a solar cell is used to power
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a brine splitting device, the current density of a typical solar
cell, would be ca. 10 mA cm > (i.e. about 100 times less than
industry). Considering this, it may be possible that a DSA
catalyst with relatively low Ru content, could prove more
effective for the solar-driven cleavage of brine (compared to the
DSAs used in industry). This report explores the effect of Ru : Ti
ratio on activity and selectivity for Cl, evolution using ultrafine,
i.e. high surface area, crystalline Ru/Ti nano-oxide redox cata-
lysts, prepared using a continuous hydrothermal flow synthesis
(CHFS) process.***® The best electrocatalyst was then used in
a solar-driven brine splitting demonstration cell.

In the CHFS process, nanoparticles were formed when a flow
of aqueous metal salt solution was mixed with supercritical (or
superheated) water, typically at up to 450 °C and 24 MPa. This
resulted in rapid simultaneous hydrolysis and dehydration of
the metal salt(s) in the mixture, to form the corresponding
nanoparticulate metal oxides.”® The authors previously devel-
oped a confined jet mixer,”* that was shown to eliminate
blockages in flow by minimising undesirable preheating of the
incoming metal salt precursors.* Further details of the design
of the system are described in previous publications.*?** In this
study, ruthenium and titanium salts in water, were used to
produce RuO,:TiO, nanopowders, the relative concentrations of
the precursors were varied according to the desired ruthenium
content in the oxide product (1, 5, 10, 15, 20, 25, 50, 75 and
100 at% Ru, with the remainder being Ti).

The nanopowders from CHFS, were analysed by trans-
mission electron microscopy (TEM). Particles were primarily
spherical and <10 nm in size, with some rod-like particles at
high Ru at%, which typically measured <5 x 20 nm (Fig. 1). BET
analysis revealed high surface areas in the range 189-260 m>
g '; with the highest surface area seen at 50 at% Ru. Elemental
ratios of ruthenium to titanium in the solids were analysed by
Energy Dispersive X-ray Spectroscopy (EDS) and compared well
with the relative concentrations used for the precursors during
synthesis.

PXRD analysis was carried out on all the samples and
selected results are illustrated in Fig. 2. These findings
confirmed that for undoped TiO, (100 at% Ti), the anatase
phase was observed exclusively, which was consistent with
previous work.” As the nominal percentage of titanium
decreased, the intensity of the anatase (101) peak (26 = 11.6°)

Fig. 1 High resolution transmission electron micrographs of CHFS
made nanopowders of (A) 50 at% Ru : 50 at% Ti and (B) 100% at% Ru.
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Fig. 2 XRD patterns of CHFS produced RuO,:TiO, oxides compared
against known RuO, (ICSD reference pattern 84575), anatase TiO;
(similar to ICSD reference pattern 9852) and rutile TiO, (similar to ICSD
reference pattern 9161) patterns. An impurity peak of ruthenium metal
is indicated by an asterisk.

decreased until it was no longer visible by the sample with
50 at% Ru. At and above 50 at% Ru, a small fraction of ruthe-
nium metal was observed along with predominately a rutile
structure with very broad peaks straddling the rutile peaks for
TiO, and RuO,. It is suggested by PXRD that for the mixed metal
samples, the TiO, component was a mixture of anatase and
rutile TiO,, where the rutile polymorph was favoured with
increasing Ru content. Broad bands and low signal to noise
ratios were found in all samples, attributed to the small crys-
tallite sizes. Application of the Scherrer equation to selected
PXRD peaks, suggested that average crystallite sizes ranged
from 2 to 7 nm.

The catalytic activities of the different CIOCs were assessed
using a Ce(w)/Cl™ test system, details of which are reported
elsewhere,” in which a 90 pL aliquot of Ce(wv) solution was
injected into a 1 cm cuvette containing a 2.5 mL 0.5 M H,SO,
with 2 M NacCl solution and a dispersion (60 mg L") of the
(CIOC) catalyst powder under test. The subsequent decay of the
Ce(v), due to reaction (1), was monitored spectrophotometri-
cally (UV-Vis).

2Ce(IV) + 2C1 —29C , 2¢e(IIT) + Cl, (1)

It was noted that in the absence of a catalyst, Ce(iv) was stable
in the acidic solution, even in the presence of 2 M NaCl. A
typical set of Ce(iv) absorbance vs. time decay profiles, for RuO,
as a ClOC (catalyst) for three repeated injections of Ce(), is
illustrated in Fig. 3A. A first order analysis of each decay plot,
revealed a straight line over three half-lives, from which a value
for the first order rate constant, k;, for reaction (1) was obtained.
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Fig. 3 (A) A typical UV-visible absorbance decay profile tracking the

reduction of Ce(v) to Ce(in) at 430 nm. Three serial injections of 90 pL
of 0.1 M Ce(v) (aq) were added to a stirred dispersion of catalyst. (B) Cl,
% yield (black squares) and rate constant, k;, (blue circles) plotted as
a function of ruthenium content (at%) for a range of CHFS-produced
RuO,:TiO, samples.

This process of testing ClOC activity was repeated for all
CHFS-made RuO,:TiO, samples, and a plot of k; vs. Ru at% is
illustrated in Fig. 3B. The mass of catalyst used was kept
constant and not normalised to differences in catalyst disper-
sion in solution. The measured rates for all samples were faster
in the presence of chloride than without, indicating that under
these conditions, the oxidation of brine is more facile than that
of water.

From these results, it appears that from 1 to 50 at% Ru, there
is a sigmoid, “S”, shaped correlation between catalytic activity
(k) with ruthenium content. Above this level, no further activity
increase is observed, which is presumably related to the avail-
ability of Ru on or near the surface, reaching saturation. This
suggested that perhaps a 50 at% Ru loaded catalyst was
optimum in terms of cost (linked to Ru content) vs. activity.
Interestingly, a similar trend is observed in industrial Ru/Ti DSA
electrodes.™

The yields of Cl, evolution for all the Ru:Ti catalysts tested
using 2 M NaCl in reaction (1), were always high (>90%).
However, by using a much lower NaCl concentration (0.05 M), it
was possible to explore the selectivities of the RuO,:TiO, cata-
lysts for generating Cl,, via reaction (1) rather than oxygen, via
reaction (2):

wocC

4Ce(IV) + 2H,0 4Ce(Ill) + O, +4H  (2)
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A plot of the measured % Cl, yields vs. at% Ru content, for the
different ClOCs tested, is illustrated in Fig. 3B and revealed that
the highest selectivities were achieved using samples with low
ruthenium content, even though these catalysts exhibited the
lowest activity (i.e. lowest value for k;). The Cl, selectivity
increased as the ruthenium content decreased. Arikawa et al.
reported similar trends for ruthenium and titanium DSAs, and
showed that the threshold electrode potential for oxygen
evolution, increased more rapidly than that of chlorine evolu-
tion as ruthenium content was decreased.' When studying DSA
type electrodes, surface inhomogeneity can influence selec-
tivity.”” Previous CHFS studies of nanomaterials have shown the
process can yield homogenous elemental distributions and can
increase the solubility limit of solid solutions.”* No change in
Ru : Ti ratio was detectable in CHFS prepared nanopowders
analysed by SEM-EDS and depth profiled XPS. However, local
changes in individual particles cannot be ruled out. From the
results of this work, it seems that the best trade-off in terms of:
activity, selectivity and minimum Ru content (to reduce costs)
for CHFS-made catalysts, was ca. 50 at% Ru for the samples
made herein.

The most promising CIOC sample, i.e. that containing
50 at% Ru, was used to produce an anode on transparent con-
ducting glass and then used in a demonstrator device for solar
brine splitting that incorporated an amorphous silicon solar
cell (see ESI Fig. S1f for diagram). The CIOC electrode was
placed in an acidified brine photocleavage cell and connected to
the solar cell. A light source was used to illuminate the solar
cell, which when connected to the electrolysis cell, generated an
average current of 4.8 mA and voltage of 1.89 V. The plots of H,
and Cl, yields arising from this work are illustrated in Fig. 4. A
comparison of the current with the temporal production of H,,
revealed an almost 100% efficiency of production and collec-
tion, whereas for Cl, evolution it was nearer to 50% of that ex-
pected. Under the conditions used (the applied voltage and
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Fig. 4 The photocleavage of brine using a 50 at% Ru anode and
platinum mesh cathode, coupled to a Si solar cell operating at 1.89 V,
in 0.5 M H,SO4 and 2 M NaCl. The plot illustrates: (i) the predicted
temporal H, yield based on current (blue squares), (i) the measured
temporal H, yield based on GC measurements (green circles), the final
Cl, yield measured using a Kl trap (red triangles) and corresponding Cl,
yield using a potentiostat set at a lower operating voltage of 1.44 V
(purple diamonds).

This journal is © The Royal Society of Chemistry 2017
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current density provided by the solar cell), it was suggested that
water oxidation competed with chloride oxidation. Evidence for
this was provided by further studies; by first running an
otherwise identical cell, in the absence of chloride ions,
a similar current was generated, presumably due to the photo-
electrolysis of water, suggesting that the oxidation of water
occurred at a similar rate to that of chloride (under those
conditions). Increasing the NaCl concentration to 6 M had little
effect on the measured Cl, yield (54%). A lower operating
voltage was shown to be more selective towards Cl, evolution;
with 80% Cl, yield obtained at 1.44 V. A conventional sol-gel
DSA film, with similar at% Ru content, was prepared on FTO
glass (rather than the more conventional Ti metal) and evalu-
ated in the solar demonstrator under the same conditions (see
ESIT for preparation method). All measurements were normal-
ised to geometric surface area, which does not account for
surface roughness or gas bubble formation that change the
utilised surface area.”® At 1.36 V and 1.44 V, CHFS-made mate-
rials exhibited superior activity and selectivity (90% and 80%
Cl, yields, respectively) when compared to the DSA-type
material (50% Cl, yield). Increasing the applied potential
reduced the Cl, selectivity for the CHFS samples, whereas for
the DSA-type material it remained fairly constant at all applied
potentials tested (ESI Fig. S21). “Mud crack structures”, which
can influence performance,* were seen at the DSA surface but
not for CHFS prepared films prepared via spin coating. The
stability of both anodes were tested by fixing the applied
potential and monitoring current loss over 12 h in a func-
tioning chlorine evolution cell, the CHFS-made anode showed
a 4% loss in activity, which was much better than the
conventional sol-gel made DSA anode on FTO (16% loss).

In summary, a range of high surface area ruthenium-tita-
nium oxides were prepared using a continuous hydrothermal
flow synthesis (CHFS) method. Using a high throughput
chemical oxidation test, both activity and selectivity (towards
chloride oxidation) of these catalysts were rapidly assessed. This
revealed that the CIOCs were highly active, owing partially to
the high surface area. As the ruthenium content was reduced,
the selectivity towards chloride oxidation increased. A 50 : 50
Ru : Ti oxide mixture was identified as the optimum composi-
tion of the set, therefore it was used as an anode material in
a light-driven brine splitting demonstrator device. The photo-
cleavage of brine is presented as an alternative to water split-
ting, resulting in the formation of Cl, gas (that is used in
a number of chemical processes including water purification),
and H, (which can be stored and used as a fuel or converted to
electricity via a fuel cell). This work provides a basis for the
future use of our methodology to rapidly make and screen
libraries of alternative nanomaterials for brine oxidation cata-
lysts composed of inexpensive and abundant elements.
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