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Estimation of diffusive states from single-particle
trajectory in heterogeneous medium using
machine-learning methods

Yu Matsuda, *a Itsuo Hanasaki, b Ryo Iwao,c Hiroki Yamaguchi c and
Tomohide Niimic

We propose a novel approach to analyze random walks in heterogeneous medium using a hybrid

machine-learning method based on a gamma mixture and a hidden Markov model. A gamma mixture and

a hidden Markov model respectively provide the number and the most probable sequence of diffusive

states from the time series position data of particles/molecules obtained by single-particle/molecule

tracking (SPT/SMT) method. We evaluate the performance of our proposed method for numerically

generated trajectories. It is shown that our proposed method can correctly extract the number of diffusive

states when each trajectory is long enough to be frame averaged. We also indicate that our method

can provide an indicator whether the assumption of a medium consisting of discrete diffusive states is

appropriate or not based on the available amount of trajectory data. Then, we demonstrate an application

of our method to the analysis of experimentally obtained SPT data.

1. Introduction

Single-particle/molecule tracking (SPT/SMT) techniques are
widely used to investigate intercellular kinetics and biophysical
processes at cell membranes1–9 and extract non-bulk informa-
tion on soft-materials.10–12 As a quantity of interest for SPT/SMT
trajectory data, mean-squared displacement (MSD) is widely
used. The shape of an MSD indicates the modes of the particle/
molecule motion: normal, anomalous, directed, and confined
diffusion.1,7,13 For example, an MSD for a trajectory of a particle/
molecule in a homogeneous medium is a linear function of time,
and the slope of the MSD indicates the diffusion coefficient.
Though the transient behavior of MSD contains further informa-
tion about particle/molecule motion, the MSD analysis is not
convenient for practical use due to scattering of MSD plot
induced by the limitation of available trajectory data. Thus,
MSD is usually adopted to extract the diffusion coefficient
of particles/molecule moving in a homogeneous medium. To
analyze SPT/SMT trajectories containing adsorption/desorption
motion and diffusion anisotropy, several analysis methods
have been developed.14–20

In the past few years, new approaches based on Bayesian
and machine-learning methods have been developed. Metzner
et al.21 developed a Bayesian inference method based on a time-
discrete Ornstein–Uhlenbeck process. Their method is specia-
lized for analyzing a Brownian motion with drift and can extract
time-dependent statistical parameters. Ott et al.22 applied a
hidden Markov model (HMM) to an analysis of two different
modes of diffusion: a fast and a slow diffusive state in hetero-
geneous medium. The drawback of their method is that the
number of diffusive states has to be fixed a priori in their
maximum likelihood approach to an HMM analysis. Persson
et al.23 proposed an analysis method, the variational Bayes SPT
(vbSPT), based on a variational Bayesian treatment of an
HMM.24–26 Their vbSPT can estimate the number of diffusive
states and state transition rates from trajectories in a hetero-
geneous medium. Their vbSPT is a powerful analysis method
when a sufficient amount of trajectory data is available. However,
it is often pointed out that a proper choice of a prior distribution
is difficult and a large amount of data is required for a reliable
estimation of parameters in a variational Bayesian treatment. For
example, more than 3000 trajectories (one trajectory consists of
steps less than 20) were analyzed for the reliable estimation of the
number of diffusive states in the vbSPT.23 Unfortunately, there
remains many situations that limited number of samples is
available27–30 due to photobleaching of the dyes, limited imaging
area, and so on. Moreover, since these studies22,23 provided the
discussion in the dimensional form, the users have to adjust
parameters to their problem.
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In this study, we extend these HMM approaches by introducing
a gamma mixture model (GMM).31 In other word, we propose a
hybrid machine learning method based on a GMM and an
HMM. Our method is simple and can be easily implemented
in a postprocessing program for SPT/SMT. The number of
diffusive states is estimated by the GMM with the expectation–
maximization (EM) algorithm32 because the GMM is a more
suitable classification algorithm than an HMM. An HMM origin-
ally estimate the most probable path of hidden states, where the
number of the states are given as a prior knowledge.32 By
combining GMM and HMM, we can estimate most probable
sequence of diffusive states from the trajectory data by HMM
based on the number of the states estimated by the GMM in our
method. We apply our proposed method to a numerically
generated Brownian motion to investigate the performance.
Since the previous studies such as ref. 20, 22 and 23 and
our present method assumed that a medium consists of
discrete diffusive states, we also discuss the statistical validity
of the assumption from the given number of data points
of trajectories. Then, the experimentally obtained SPT data is
analyzed as a demonstration.

2. Numerical model of Brownian
motion

We assume that a particle is a single point; that is, the position
of a maker and the center of diffusion are indistinguishable.
Since the positions of the maker and the diffusion center
cannot be distinguished in an ordinary optical microscope
due to the diffraction limit,1,3,4 this assumption is reasonable
in most SPT/SMT experiments. We consider the trajectory of a
particle in a medium consisting of K media of the diffusion
coefficients D̂m (m = 1, 2, 3,. . .,K), where D̂m may be expressed as
a function of position or time. The diffusion coefficients
as functions of position and time correspond to a spatially
heterogeneous medium such as a surface having adsorption
sites22,33–35 and to a temporally heterogeneous medium whose
property is temporally controlled,36,37 respectively. We also
assume that the particle isotropically diffuses in each medium
and the effect of interfaces between the media on the particle
motion is negligible. The trajectory is generated by the Wiener
process described by the overdamped Langevin equation
as follows

dr̂ðt̂Þ
dt̂
¼

ffiffiffiffiffiffiffiffiffi
2D̂m

q
n t̂ð Þ; (1)

where r̂(t̂) is the position vector of the particle at time t̂. The
variables n(t̂) is Gaussian random with E[xi(t̂)] = 0, var[xi(t̂)] = 1,
and E[xi(t̂)xi(t̂0)] = d(t̂ � t̂0), where E[� � �] and var[� � �] indicate
expectation and variance, respectively. The subscripts, i = 1, 2,
3, corresponding to components of axes x, y, z, respectively.
We introduce the characteristic time t and length

ffiffiffiffiffiffiffiffi
D1t
p

. Then,
eqn (1) is nondimensionalized as

dr

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DR;m

p
n; (2)

where the r and t are nondimensionalized quantities, and DR,m is
the ratio of Dm to D1 (the subscript R indicates ratio). Eqn (2) is
numerically solved by the finite difference method expressed by

r tjþ1
� �

¼ r tj
� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DtDR;m

p
n tj
� �

; (3)

where tj is the time of j-th time step, and Dt is the discretized
time (i.e., tj = jDt). The dimensional time step tDt corresponds
to the time interval between each frame of SPT/SMT experi-
ment. In this study, t = 1 to simplify the discussion. To obtain
particle trajectories having a few diffusive states, DR,m is varied
in the calculation of eqn (3). We treat DR,m as a function of time
varying with given state transition probability, because it is
difficult to obtain the trajectories under the controlled condition
with treating DR,m as a function of position. Since the squared
displacement is the only feature and does not contain the
position information of the particle, this treatment of DR,m is
reasonable in our method.

Fig. 1 shows the sample trajectory under the conditions
of t = 1.0 � 10�2, DR,1 = 1.0, and DR,2 = 5.0. The total number of
time steps is 50. The locations of a particle are classified by
color according to the diffusive states.

3. Machine-learning methods of
SMT/SPT data
3.1 Gamma mixture model

After experimentally/numerically obtaining trajectory data, a
squared displacement d(tj) at the time of j-th time step is
calculated as

d(tj) = |r(tj) � r(tj�1)|2. (4)

Considering ensemble average of the squared displacement,
one can obtain mean squared displacement (MSD). We use only
the squared displacement d(tj) as the feature in our proposed
method; thus, our method can be applied to multi-dimensional
trajectories without any modification. Since the probability
distribution of r(tj) � r(tj�1) follows a Gaussian distribution
(see eqn (3)), the probability distribution of d(tj) follows a
gamma distribution. Then, the number of diffusive states and

Fig. 1 Sample trajectory of Brownian motion with two diffusive states
(state 1 and 2) under the conditions of Dt = 1.0 � 10�2, DR,1 = 1.0, and
DR,2 = 5.0. The total number of time steps is 50.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Se

pt
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 1

0/
24

/2
02

5 
10

:3
8:

56
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8cp02566e


This journal is© the Owner Societies 2018 Phys. Chem. Chem. Phys., 2018, 20, 24099--24108 | 24101

its diffusion coefficients are estimated from the squared dis-
placement d(tj) using a univariate GMM.31

We apply the EM algorithm to find maximum likelihood
solutions for models having unobserved latent variables. Here,
we introduce a GMM following the introduction procedure of a
well-known mixture distribution, a Gaussian mixture model.32

The univariate gamma distribution with a shape parameter a
and an inverse scale parameter b is written as

G xja; bð Þ ¼ xa�1

G að Þba exp �
x

b

� �
; (5)

where G(x) is the gamma function. In the gamma mixture
distribution, the probability distribution p(x) is expressed as a
linear superposition of gamma distributions as follows:

p xð Þ ¼
XK
k¼1

pkG xjak; bkð Þ; (6)

where pk are the mixing coefficients with 0 r pk r 1

and
PK
k¼1

pk ¼ 1. The number of gamma distributions having

different parameters is represented as K, which also corre-
sponds to the number of diffusive states in our method. Here,
we introduce latent variables of a K-dimensional binary (0 or 1)

random variable z = {z1, z2,. . .,zK} with
PK
k¼1

zk ¼ 1. This means

that the probability of an observation x comes from zk is
represented by p(zk = 1) = pk. Since z is a binary random variable,
the distribution p(zk = 1) can be written in the form

p zð Þ ¼
YK
k¼1

pzkk : (7)

The conditional distribution of x at given z is also expressed as

p xjzð Þ ¼
YK
k¼1

G xjak; bkð Þzk : (8)

When we consider a data set X = (x1, x2,. . .,xN)T consisting of N
observations, the corresponding latent variables can be written
by an N � K matrix of Z in which with n-th row is given by zT

n,
where the superscript T means transpose. Using eqn (7) and (8),
the likelihood for the data set {X,Z} is expressed as

p X ;Z ja; b; pð Þ ¼
YN
n¼1

YK
k¼1

pznkk G xnjak; bkð Þznk ; (9)

where a = (a1, a2,. . .,aK)T, b = (b1, b2,. . .,bK)T, p = (p1, p2,. . .,pK)T,
and znk is n, k element of Z. By maximizing the likelihood, we
can find the best model to fit the data set. The log likelihood
is written as

ln pðX ;Zja; b; pÞ ¼
XN
n¼1

XK
k¼1

znk lnpk þ lnG xnjak; bkð Þf g; (10)

The direct maximization of eqn (10) is difficult, because the Z is
unobserved variables. Therefore, we consider the maximization
problem of the expectation of eqn (10) with respect to the
posterior distribution of the latent variables Z. The posterior

distribution p(Z|X,a,b,p) is obtained from eqn (7) and (8)
with Bayes’ theorem as

p Z jX ; a; b; pð Þ /
YN
n¼1

YK
k¼1

pznkk G xnjak; bkð Þznk : (11)

Then the expectation of znk with respect to the posterior
distribution is calculated as

E znk½ � ¼

P
zn

znk
Q
l

plG xnjal ; blð Þ½ �znlP
zn

Q
m

pmG xnjam; bmð Þ½ �znm

¼ pkG xnjak; bkð ÞP
m

pmG xnjam; bmð Þ ¼ :g znkð Þ:

(12)

Using eqn (12), the expectation of the log likelihood is
expressed as

EZ ½ln p X ;Z ja; b; pð Þ� ¼
X
Z

p Z ja; b; pð Þ ln p X ;Z ja; b; pð Þ

¼
XN
n¼1

X
zn

p znjxn; a; b; pð Þ ln p xn; znja; b; pð Þ

¼
XN
n¼1

XK
k¼1

gðznkÞ ln pk þ lnG xnjak; bkð Þf g:

(13)

As shown in eqn (13), the expectation of the log likelihood
consists of the two terms, g(znk)lnpk and g(znk){ln G(x|ak,bk)}.
First, we maximize the expectation of the log likelihood with
respect to the mixing coefficients pk. Since there is the con-

straint condition
PK
k¼1

pk ¼ 1, we introduce a Lagrange multiplier

l and consider the following Lagrange function L(p,l):

L p; lð Þ ¼
XN
n¼1

XK
k¼1

gðznkÞ ln pk þ l
XK
k¼1

pk � 1

 !
(14)

Then, taking the derivative of L(p,l) with respect to pk equal to
0, we can obtain

XN
n¼1

g znkð Þ
pk
¼ �l: (15)

Multiplying eqn (15) by pk and summing over k with the

condition of
PK
k¼1

pk ¼ 1, the equation, N = �l, is obtained. Then,

eqn (15) can be written as

pk ¼
1

N

XN
n¼1

gðznkÞ: (16)

To maximize the term g(znk){ln G(x|ak,bk)} in eqn (13), the
partial derivatives of it with respect to ak and bk are set to
be 0 as follows,

@

@ak

XN
n¼1

XK
k¼1

gðznkÞ lnG xnjak; bkð Þ ¼ 0; (17)
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@

@bk

XN
n¼1

XK
k¼1

gðznkÞ lnG xnjak; bkð Þ ¼ 0: (18)

Eqn (18) can be easily solved as

bk ¼
1

ak

PN
n¼1

gðznkÞxn

PN
n¼1

gðznkÞ
: (19)

Using eqn (19), ak is expressed as

ln ak � cðakÞ ¼ ln

PN
n¼1

gðznkÞxn

PN
n¼1

gðznkÞ
�

PN
n¼1

gðznkÞ lnxn

PN
n¼1

gðznkÞ
; (20)

where c is the digamma function. Since eqn (20) cannot be
analytically solved, ak is numerically calculated. Now we can
calculate the parameters for GMM using the EM algorithm:
first, the initial values for parameters aold, bold, pold are chosen.
Second, as the expectation (E) step, g(znk) is calculated from
eqn (12) based on aold, bold, pold. Third, as the maximization (M)
step, anew, bnew, pnew are calculated from eqn (20), (19) and (16),
respectively. The maximum likelihood parameters can be obtained
by the iterative calculation of the E and M steps.

The number of gamma distributions having different para-
meters or the number of diffusive states K is extracted based on
the Bayesian information criterion (BIC) represented as

BIC(K) = �2 ln p(X|a,b,p,K) + m ln N, (21)

where m is the number of estimated parameters. We adopt K to
minimize BIC in eqn (21) as the number of diffusive states to
avoid the over-fitting of GMM to the data. The ratios of diffusion
coefficients, DR,m, can be calculated as the mean values of each
gamma distribution. When the EM algorithm converge to a
local solution or some of the mixing coefficients are degenerate
(pk { 1), we seek the maximum likelihood solution by
randomly resetting initial conditions of the parameters.

3.2 Hidden Markov model

After extracting the number of diffusion states, an HMM is
applied to the sequential data of the squared displacements
d(t) to extract the most probable path of the diffusive sates. In
this study, we use an HMM based on the maximum likelihood
approach. Latent variables are also considered in the HMM. An
observation d(tj) is generated through an emission probability
(conditional distribution of the observation from a specific
state)32 from the corresponding latent variable as in the case
of the GMM. The latent variable transfers from one state to
another following the transition probability. The transition and
emission probabilities are estimated by the Baum–Welch
algorithm.32 Then, using the estimated transition and emission
probabilities, the most likely path is calculated by the Viterbi
algorithm.32 The detail of these algorithm is described in text
books such as ref. 32. Since libraries of HMMs are widely
distributed (ex. Statistics and Machine Learning Toolbox
of Matlab38 and hmmlearn for Python39), one can easily

implement an HMM in their code. In the following calculation,
we use the Statistics and Machine Learning Toolbox Ver. 11.2 of
Matlab R2017a. We compare the results by Matlab with those
by Python 3.5.2, showing good agreement between both results.

4. Results and discussions

We validate our proposed method using numerically generated
trajectories (see eqn (3)) in which the number and sequence
of diffusive states are given and known in advance. Then, we
apply our method to experimentally obtained SPT data as a
demonstration.

4.1 Classification performance of GMM for trajectories with
localization error

We first compare our method with the existing methods.20,23 In
ref. 20 they compare their method with vbSPT23 under several
conditions. They numerically generated trajectories of 1000 tracks
of 1000 frames. The conditions are given in dimensional form
as D̂1 = 0.015 mm2 s�1, D̂2 = 0.06 mm2 s�1, and Dt̂ = 4.0 � 10�2 s
in ref. 20. The lifetimes of each state are equal, and hence the
fractions of each state are equal. The localization error of the
particle is set at 20 nm. On this condition, the correctness of
the estimation for the number of diffusive states are estimated
and reported as 0.78 in ref. 20 and 0.8 by vbSPT.23

Following the numerical condition used in ref. 20, we numeri-
cally generate the trajectories of 1000 tracks of 1000 frames
under the conditions of DR,1 = 1.0, DR,2 = 4.0, Dt = 4.0 � 10�2,
and the localization error of 0.16, where the characteristic time
and length are t = 1 s and 0.122 mm. A frame average is used to
reduce the scattering of data in ref. 20. We also consider a
frame average for the squared displacements at the time of j-th
time step as follows

�d tj
� �
¼ 1

2Lþ 1

XL
l¼�L

d tjþl
� �

¼ 1

2Lþ 1

XL
l¼�L

r tjþl
� �

� r tjþl�1
� ��� ��2;

(22)

where 2L + 1 is the number of averaged frames and 2L + 1 of the
squared displacements are averaged. After calculating and
averaging the squared displacement for each trajectory, we
estimate the number of diffusive states using all trajectories.
It is assumed that the trajectories are independent and identi-
cally distributed. In this study, we calculate the correctness of
estimation for the number of diffusive states calculated from 50
independent trials. The correctness is 1.0 for L = 1 and L = 2.
These L are equivalent to the value adopted in ref. 20. However,
the correctness is lower (o0.1) for L = 0 (without a frame
average). These results indicate that our method shows better
performance when each trajectory is long enough to be frame
averaged. This can be achieved under the conditions of
relatively small Dt or long diffusion-state lifetime.11,14 On
the other hand, vbSPT23 shows better performance for short
trajectories as explained in ref. 20 and 23.
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4.2 Performance for trajectories having two diffusive states
without localization error

4.2.1 Typical example of estimation. We investigate the
detailed performance of our method based on the analysis of
the trajectories consisting of two diffusive states. Hereafter, we
consider the trajectories without the localization error of the
particles. Since the localization error will increase the apparent
diffusion coefficient of the particles and obscure the true value,
we compare the estimated diffusion coefficient with the exact
one without considering the localization error. The trajectories
are generated under the conditions of DR,1 = 1.0, DR,2 = 4.0, and
Dt = 4.0 � 10�2. The particles transfer between the two diffusive
states with the transition probability of 0.05 or stay in the same
states with the probability of 0.95 during the time interval of Dt.
We prepare 1000 trajectories with consecutive 30 frames (time
steps). These conditions are similar to those discussed in the
previous section and the literature20,22,23 in which the condi-
tions were determined as a model of membrane or protein
kinetics. We extract the number of the diffusive states, their
most probable sequence, and the transition probability from
the trajectories using our method. The squared displacements,
d(t), defined by eqn (4) are calculated from the generated
trajectory data. Then, the number of diffusive states and each
diffusion coefficient are estimated from the probability distribu-
tion of the squared displacement using the GMM. We consider a
frame average of the squared displacements defined as eqn (22)
to reduce the scattering of the squared displacements and
improve the estimation by the GMM. The choice of a certain
value of L means that the probability of the state transition is
sufficiently small in the frames of 2L + 1, and L should be less
than 10 in the experimental conditions reported in the
literature.20,22,23 By substituting %d(tj) for xj, g(znk) is calculated
by eqn (12) as the E step. Then, as the M step, anew, bnew, and
pnew are calculated from eqn (20), (19) and (16), respectively. In
the GMM, the maximum likelihood parameters are obtained by
the iterative calculation of the E and M steps. Fig. 2a shows the
typical result of the GMM for the trajectories, where consecutive
5 (L = 2) steps of the squared displacements are averaged. The
histogram of the squared displacement is also shown in the
figure for the comparison. Note that the histogram is not used in
the GMM calculation and the bin width does not affect the GMM
result. Two peaks corresponding to the two diffusive states have
been detected using the GMM. The ratios of diffusion coefficients
are estimated as DR,1 = 1.03 and DR,2 = 3.68 in this example. In the
HMM calculation, the initial estimation of transfer probability
between each state is determined based on the number of frames
for averaging (5 in this example). The most likely path for each
trajectory is calculated by the Viterbi algorithm. Fig. 2b shows a
typical example of an estimation for the most likely path. The
correctness of the estimation is defined as

CHMM ¼
number of correctly estimated states

number of the squared displacements
: (23)

In this example, CHMM = 0.966, and the reliability of the estima-
tion is reduced near the transition from state 1 to state 2

(time step of 14 in Fig. 2b). The transition probability is
estimated as 0.033 from state 1 to 2, where the exact probability
is 0.05. This example shows that our proposed method is
effective to extract the diffusive states and estimate the transfer
between the states.

4.2.2 Effect of number of averaging frames and trajec-
tories. We investigate the dependence of the classifying perfor-
mance on the number of averaging frames (2L + 1). One
thousand trajectories are prepared under the condition of
DR,1 = 1.0, DR,2 = 4.0, Dt = 4.0 � 10�2, and each trajectory
consists of 15 to 60 time steps. Fig. 3a shows the correctness of
the estimated the number of diffusive states using the GMM,
where the correctness of estimation by the GMM, CGMM, is
defined as following equation,

CGMM ¼
number of correct estimations

number of independent trials
: (24)

In this study, we calculate CGMM from 50 independent trials.
The tested numbers of averaging frames are from 3, 5, and 7
(L = 1, 2, 3). The correctness, CGMM, drastically increases with
increasing number of averaging frames or time steps as shown
in Fig. 3a. The correctness, CGMM, is 0 for L = 0, when the time
steps of each trajectory is from 15 to 100. This result shows that

Fig. 2 Typical results of the estimation using our proposed method.
The trajectory was generated under the conditions of Dt = 4.0 � 10�2,
DR,1 = 1.0, and DR,2 = 4.0. The number of trajectories is 1000, and each
trajectory consists of consecutive 30 time steps. (a) Estimation for the
number of diffusive states using the GMM. (b) Most likely sequential path
estimated by the Viterbi algorithm is shown as circles and the actual state
path given in the trajectory generation is shown as triangles (left y axis). The
squared displacements are also shown in squares (right y axis).
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our method works well when each trajectory is long enough to
calculate a frame average (415). Fig. 3b shows the estimated
DR,1 and DR,2 calculated from the correct estimations of the
number of diffusion states for L = 2. The estimated value of Des

R,2

approaches the assigned value for large numbers of time steps.
Though Des

R,1 is larger than the assigned value, the deviation of
Des

R,1 from the assigned value is small (B3%).
In the above discussion, the number of trajectories is fixed

at 1000. In the following, we fix the time steps of each trajectory
of 30 and vary the number of trajectories. The other conditions
remain the same (i.e., DR,1 = 1.0, DR,2 = 4.0, Dt = 4.0 � 10�2,
L = 2). Fig. 4a shows the correctness of estimation by the
GMM, CGMM. The correctness CGMM monotonically increases
and is larger than 0.9 when the number of trajectories is larger
than 50. The estimated DR,1 and DR,2 shown in Fig. 4b indicate
that reliable estimation is achieved by our method even when
the number of trajectories is small. For example, the DR,1

and DR,2 can be estimated with 10% when the number of
trajectories larger than 25.

4.2.3 Effect of ratio of diffusion coefficient. The classifying
performance would depend on the ratio of diffusion coefficient,
DR,2. We prepare 1000 trajectories consisting of 30 time steps
under the conditions of DR,1 = 1.0, 1.8 r DR,2 r 4.0, Dt = 4.0 �
10�2. Fig. 5 shows the correctness CGMM, where L = 1, 2, 3. It
is considered that the correct estimation will be difficult for

small DR,2. The correctness also drastically increases with
increasing DR,2 for L = 2, and the reliable estimation is achieved
for L = 3 even when DR,2 is small (CGMM = 0.74 for DR,2 = 2.0).
The correctness for L = 1 is low even when DR,2 Z 4. Thus, a
larger number of trajectories or time steps of each trajectory is
required for reliable estimation when L = 1 (see also Fig. 3).

Fig. 3 Performance of the proposed method. Trajectories are generated
under the conditions of Dt = 4.0 � 10�2, DR,1 = 1.0, and DR,2 = 4.0.
(a) Correctness of estimation for number of diffusive states using the GMM.
The number of averaging frames are L = 1, 2, 3. (b) Ratio of the estimated
diffusion coefficients (superscript ‘‘es’’) to the input (superscript ‘‘in’’)
coefficients for L = 2.

Fig. 4 Dependence of estimation on the number of trajectories.
Trajectories of 30 time steps are generated under the conditions of
Dt = 4.0 � 10�2, DR,1 = 1.0, and DR,2 = 4.0. (a) Correctness of estimation
for number of diffusive states using the GMM. The number of averaging
frames is L = 2. (b) Ratio of the estimated diffusion coefficients (superscript
‘‘es’’) to the input (superscript ‘‘in’’) coefficients for L = 2.

Fig. 5 Correctness of estimation for number of diffusive states using the
GMM, CGMM. The number of averaging frames are L = 1, 2, 3. The trajectory
was generated under the conditions of Dt = 4.0 � 10�2 and DR,1 =
1.0 (fixed). The number of trajectories is 1000, and each trajectory consists
of consecutive 30 time steps.
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We also investigate the effect of the time step Dt for L = 2
and confirm that Dt does not affect the result because the
mean ratio of the squared displacements does not change in
different Dt.

4.2.4 Performance of HMM. The most probable path of
diffusive sates is estimated for each trajectory. The correctness
CHMM and transfer probability depend on the number of time
steps. Note that the frame average is not used in the HMM
calculation. The trajectories are generated under the conditions
of DR,1 = 1.0, DR,2 = 4.0, Dt = 4.0 � 10�2, and the transition
probabilities from state 1 to 2 and vice versa are set at 0.05.
These conditions are the same as those of Section 4.2.1. We
prepare 1000 trajectories varying the time steps of each trajec-
tory and calculate the most probable path for each trajectory by
the HMM. Fig. 6 shows the correctness, CHMM, and the esti-
mated transfer probability from state 1 to 2. The correctness,
CHMM, gradually increases with increasing the time steps of
each trajectory. However, CHMM is smaller than CGMM. Though
there are a lot of trajectories without state transitions in
the given time steps due to small transition probability and
number of time steps, the HMM always classifies the data into
two states; thus, CHMM is small and the transition probability is
over estimated for the small numbers of time steps.

4.3 Three diffusive states

We discuss the application of our method to the analysis of the
trajectories for particles traveling in a medium having three
diffusive states. We generate the trajectories under the follow-
ing conditions: three diffusive states with DR,1 = 1.0 (state 1),
DR,2 = 4.0 (state 2), and DR,3 = 12.0 (state 3) and the discretized
time Dt = 3.0 � 10�3. The characteristic time and length are
t = 1 s and 0.5 mm, respectively. The particles transfer each state
during the time interval of Dt under the following probabilities:
the transition probability from state 1 to state 2 is 0.031 and to
state 3 is 0.1. The transition probability from state 2 to state 1 is
0.017 and to state 3 is 0.01. The transition probability from
state 3 to state 1 is 0.055 and to state 3 is 0.055. These
conditions correspond to those discussed in Persson et al.,23

where the parameters were given in dimensional quantities:
D̂1 = 0.25 mm2 s�1, D̂2 = 1.0 mm2 s�1, D̂3 = 3.0 mm2 s�1, and
Dt̂ = 3.0 � 10�3 s.

We estimate the number of diffusive states, where the time
steps of each trajectory are fixed at 30. The correctness for the
estimation of number of diffusive states is calculated from
50 independent trials as shown in Fig. 7a. The correctness
rapidly increases in 100 trajectories and reaches to unity over
750 trajectories. The correctness for this 3 states estimation is
smaller than that for 2 states estimation shown in Fig. 4a because
the number of data in each state is smaller by construction.
Fig. 7b shows the estimated ratio of diffusion coefficients. The
estimated DR,1 converges to the input value with 1000 trajectories.
On the other hand, the estimated DR,2 and DR,3 are 10% or 20%
lager than the input values because the variances of squared
displacement generated from DR,2 and DR,3 are larger than that
from DR,1. Our method works well in the 3-states problem.

4.4 Distinction of discrete diffusive states

In the above discussions, we have considered the particle
trajectories in a medium having discrete diffusive states. The
medium is assumed as consisting of several discrete diffusive
states because HMM can treat only discrete hidden states.32

This is one of the limitation of the HMM. It is sometimes
convenient to regard a medium consisting of multiple discrete

Fig. 6 Correctness of estimated state path and transition probability using
the HMM, CHMM. Trajectories are generated under the conditions of Dt =
4.0 � 10�2, DR,1 = 1.0, and DR,2 = 4.0. The transition probabilities from state
1 to 2 and vice versa are set at 0.05. The number of trajectories is 1000 and
the time steps of each trajectory is shown as horizontal axis.

Fig. 7 Dependence of estimation on number of trajectories. Trajectories
of 30 time steps are generated under the conditions of Dt = 3.0 � 10�3,
DR,1 = 1.0, DR,2 = 4.0, and DR,3 = 12.0. (a) Correctness of estimation for
number of diffusive states using the GMM. The number of averaging
frames are L = 2. (b) Ratio of the estimated diffusion coefficients
(superscript ‘‘es’’) to the input (superscript ‘‘in’’) coefficients for L = 2.
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diffusive states or particle motion is approximately expressed
as such, when the underlying process is unclear before the
analysis.28,40–42 Therefore, it is worth clarifying how much
amount of data is necessary for treating a medium consisting
of discrete diffusive states. Fig. 3a, 4a, 5 and 7a can be under-
stood as showing the required amount of data to determine
whether a medium consists of discrete diffusive states or not by
the GMM based on BIC.

As a comparison to a medium having several discrete
diffusive states, we consider a case where a particle travels in
a medium having a continuously varying diffusion coefficient.
One thousand trajectories are generated by eqn (3), where
DR,m is replaced by the time varying diffusion coefficient
DR(tj). The diffusion coefficient linearly varies from 1 to Dmax

as DR(tj) = (Dmax� 1)( j� 1)/(N� 1) + 1, where Dmax = 4.0 and the
time steps N = 30. This condition corresponds to that discussed
in Section 4.2.2 except for a continuously varying diffusion
coefficient, and the correctness is unity when the number of
frame averaging is over 5 (L Z 2) in Fig. 3a. Fig. 8 shows the
probability densities for the squared displacements of the
trajectories with the continuously varying diffusion coefficient
DR(tj) and the discrete diffusion states (DR,1 = 1.0, and DR,2 = 4.0)
for comparison, where the number of frame averaging is 5
(L = 2). The solid and dashed curves are obtained by the GMM
in which the number of the mixing distribution is determined
by BIC. The GMM returns a single state with the diffusion
coefficient of 2.45 corresponding to the time average of DR(tj)
for the trajectory with the continuously varying diffusion coeffi-
cient (solid line). For the trajectory traveling in the discrete
states, the discrete diffusive states are successfully classified by
the GMM (dashed line). As shown in figures from 3 to 7, the
GMM can classify the discrete diffusive states when the suffi-
cient number of time steps is available and/or the number of
averaging frames is sufficiently large for the trajectories with
the discrete diffusive states. By contrast, for the trajectory in
the continuously varying diffusion coefficient, the estimated
number of diffusive states is determined as one by our method
even when the large number of times steps and/or averaging

frames are used. Our method provides a statistical validity of
the assumption that a medium can be treated as consisting of
discrete diffusive states for the given number of data points
of trajectory.

4.5 Analysis of experimentally obtained SPT data

Now, we apply our proposed method to the analysis of experi-
mentally obtained SPT data. The SPT data was obtained by an
optical microscope in the same manner as that of our previous
study.43 We used ZnS–AgInS2 nanoparticles44–46 as probe par-
ticles, and mixed it into a polydimethylsiloxane (PDMS) layer.
An oil immersion objective lens with 100 times magnification
with N.A. of 1.4 was used. The time step (frame interval) was
Dt = 0.2 s. The SPT images were captured after 20 h adding a
curing agent in the PDMS layer at a room temperature of 20 1C.
The SPT images were analyzed using IDL-code.47 For the
completely cured PDMS layer, the diffusion coefficient was
calculated as O(10�4) mm2 s�1. This indicates that the localiza-
tion error is considered as O(102) nm. Under this condition,
there were some diffusive states in the PDMS layer.43 Fig. 9a
shows the estimation result of the number of diffusive states
using the GMM. Fig. 9b shows the single particle trajectory
having 185 location data points with the most probable
diffusive states. In the GMM analysis, it was found that there
were three diffusive states of diffusion coefficients of 4 � 10�3,
8 � 10�3, and 12 � 10�3 mm2 s�1. These values reasonably
agreed with those obtained by MSD analysis.43 The particle

Fig. 8 Typical results of probability densities for trajectories in a medium
with continuously varying diffusion coefficient and that consisting of two
discrete diffusive states. The solid and dashed curves show the result of the
GMM for each condition.

Fig. 9 Analysis results for the experimentally obtained SPT trajectory.
(a) The estimation for number of diffusive states using GMM. (b) The
classified result using HMM.
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motions having relatively large displacement can be captured as
the fast state (large diffusion coefficient). Though there is the
place around x = 0.25, y = 0.12 containing two diffusive states due
to the estimation error induced from the small amount of the
data, each diffusive state occupies different place in the layer as
shown in Fig. 9b. It is considered that the PDMS layer consists of
several portions having different viscosity, when we assume
discrete diffusive states. We conclude that our proposed method
is applicable to the analysis of experimental SPT/SMT data.

5. Conclusions

In this article, we have proposed a hybrid method of a gamma
mixture model (GMM) and a hidden Markov model (HMM) to
classify particle trajectory for a particle moving in a hetero-
geneous medium. We introduce a GMM as an extension of a
Gaussian mixture model based on the expectation–maximization
(EM) algorithm. The number of diffusive states is estimated by
the GMM, and then the HMM is used to extract the most likely
path of the diffusive states. The correct estimation of the number
of diffusive states can be achieved from small amount of
trajectory data by considering frame average of squared displa-
cements. The transition path of diffusive states is estimated by
the Viterbi algorithm based on the estimated number of diffu-
sive states. We compare our method with existing methods by
calculating trajectory for a particle moving in a medium having
two diffusive states. It is shown that our proposed method can
extract the number of diffusive states more reliably than existing
methods when the number of averaging frames is large. Thus,
our method is a powerful tool for the trajectories obtained with
relatively large frame rate or having long diffusion-state lifetime.
Furthermore, we also indicate that our method can provide an
indicator whether the assumption of a medium consisting of
discrete diffusive states is appropriate or not based on the
amount of the given data. Our hybrid method of the GMM
and HMM is promising method for analyzing single-particle/
molecule tracking data when limited number of data is available.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank K. Tomita for his assistance with the simulations by
Python. This work was partly supported by a JSPS Grant-in-Aid
for Scientific Research (B), No. 16H04277 and a research
encouragement grants from the Asahi Glass Foundation.

References

1 M. J. Saxton and K. Jacobson, Annu. Rev. Biophys. Biomol.
Struct., 1997, 26, 373–399.

2 M. J. Saxton, Biophys. J., 1997, 72.

3 W. E. Moerner and D. P. Fromm, Rev. Sci. Instrum., 2003,
74, 3597.

4 J. R. Lakowicz, Principles of Fluorescence Spectroscopy,
Springer, 3rd edn, 2006.

5 N. Ruthardt, D. C. Lamb and C. Brauchle, Mol. Ther., 2011,
19, 1199–1211.

6 A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai
and T. K. Fujiwara, Nat. Chem. Biol., 2014, 10, 524–532.

7 C. Manzo and M. F. Garcia-Parajo, Rep. Prog. Phys., 2015,
78, 124601.

8 T. Chen and B. M. Reinhard, Small, 2013, 9, 876–884.
9 J. A. Varela, C. Aberg, J. C. Simpson and K. A. Dawson, Small,

2015, 11, 2026–2031.
10 D. Woll, H. Uji-i, T. Schnitzler, J. Hotta, P. Dedecker,

A. Herrmann, F. C. De Schryver, K. Mullen and J. Hofkens,
Angew. Chem., Int. Ed. Engl., 2008, 47, 783–787.

11 S. Ito, K. Itoh, S. Pramanik, T. Kusumi, S. Takei and
H. Miyasaka, Appl. Phys. Express, 2009, 2, 075004.

12 K. Paeng and L. J. Kaufman, Macromolecules, 2016, 49,
2876–2885.

13 H. Qian, M. P. Sheetz and E. L. Elson, Biophys. J., 1991, 60,
910–921.

14 L. C. Elliott, M. Barhoum, J. M. Harris and P. W. Bohn, Phys.
Chem. Chem. Phys., 2011, 13, 4326–4334.

15 C. Ribrault, A. Triller and K. Sekimoto, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2007, 75, 021112.

16 S. Burov, S. M. Tabei, T. Huynh, M. P. Murrell,
L. H. Philipson, S. A. Rice, M. L. Gardel, N. F. Scherer and
A. R. Dinner, Proc. Natl. Acad. Sci. U. S. A., 2013, 110,
19689–19694.

17 I. Hanasaki and Y. Isono, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2012, 85, 051134.

18 I. Hanasaki, S. Uehara, Y. Arai, T. Nagai and S. Kawano, Jpn.
J. Appl. Phys., 2015, 54, 125601.

19 Y. Matsuda, I. Hanasaki, R. Iwao, H. Yamaguchi and
T. Niimi, Anal. Chem., 2016, 88, 4502–4507.

20 P. J. Bosch, J. S. Kanger and V. Subramaniam, Biophys. J.,
2014, 107, 588–598.

21 C. Metzner, C. Mark, J. Steinwachs, L. Lautscham, F. Stadler
and B. Fabry, Nat. Commun., 2015, 6, 7516.

22 M. Ott, Y. Shai and G. Haran, J. Phys. Chem. B, 2013, 117,
13308–13321.

23 F. Persson, M. Linden, C. Unoson and J. Elf, Nat. Methods,
2013, 10, 265–269.

24 Z. Ghahramani, Int. J. Pattern Recognit. Artif. Intell., 2001, 15,
9–42.

25 J. E. Bronson, J. Fei, J. M. Hofman, R. L. Gonzalez, Jr. and
C. H. Wiggins, Biophys. J., 2009, 97, 3196–3205.

26 K. Okamoto and Y. Sako, Biophys. J., 2012, 103, 1315–1324.
27 Y. Gu, X. Di, W. Sun, G. Wang and N. Fang, Anal. Chem.,

2012, 84, 4111–4117.
28 S. Habuchi, S. Fujiwara, T. Yamamoto, M. Vacha and

Y. Tezuka, Anal. Chem., 2013, 85, 7369–7376.
29 L. O. Mair and R. Superfine, Soft Matter, 2014, 10, 4118–4125.
30 M. Kanke, E. Tahara, P. J. Huis In’t Veld and T. Nishiyama,

EMBO J., 2016, 35, 2686–2698.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Se

pt
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 1

0/
24

/2
02

5 
10

:3
8:

56
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8cp02566e


24108 | Phys. Chem. Chem. Phys., 2018, 20, 24099--24108 This journal is© the Owner Societies 2018

31 A. R. Webb, Pattern Recogn., 2000, 33, 2045–2054.
32 C. M. Bishop, Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics), Springer-Verlag Inc., New York, 2006.
33 H. Shen, L. J. Tauzin, W. Wang, B. Hoener, B. Shuang,

L. Kisley, A. Hoggard and C. F. Landes, Anal. Chem., 2016,
88, 9926–9933.

34 M. J. Skaug, J. N. Mabry and D. K. Schwartz, J. Am. Chem.
Soc., 2014, 136, 1327–1332.

35 C. Yu, J. Guan, K. Chen, S. C. Bae and S. Granick, ACS Nano,
2013, 7, 9735–9742.

36 S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo
and H. Misawa, Nature, 2000, 408, 178–181.

37 A. M. Kloxin, A. M. Kasko, C. N. Salinas and K. S. Anseth,
Science, 2009, 324, 59–63.

38 MathWorks, Statistics and Machine Learning Toolbox,
https://jp.mathworks.com/products/statistics.html.

39 R. Weiss, S. Du, J. Grobler, D. Cournapeau, F. Pedregosa,
G. Varoquaux, A. Mueller, B. Thirion, D. Nouri, G. Louppe,
J. Vanderplas, J. Benediktsson, L. Buitinck, M. Korobov,
R. McGibbon, S. Lattarini, V. Niculae, csytracy, A. Gramfort,
S. Lebedev, D. Huppenkothen, C. Farrow and A. Yanenko,

hmmlearn: Hidden Markov Models in Python, with scikit-learn
like API, http://hmmlearn.readthedocs.io/en/latest/.

40 J. Kirstein, B. Platschek, C. Jung, R. Brown, T. Bein and
C. Brauchle, Nat. Mater., 2007, 6, 303–310.

41 C. Hellriegel, J. Kirstein and C. Bräuchle, New J. Phys., 2005,
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