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Dual hydrogen-bonding organocatalysts have gained significant
popularity recently, particularly the use of (thio)urea catalysts."
Ever since Jacobsen's serendipitous 1998 landmark discovery of
the thiourea-catalysed asymmetric Strecker reaction,” building
on pioneering urea work by Curran and others,* chemists have
been looking for new double hydrogen-bonding motifs to
exploit for organocatalytic purposes.

Corey introduced guanidinium-based dual hydrogen bond
donor catalysts as early as 1999,* while Rawal demonstrated
squaramide-based organocatalysis in 2008.> Based on our
recent development of the squaramide-related croconamide
organocatalysts and our concurrent work with thiourea-like
thiosemicarbazones,® we became interested in developing
organocatalysts structurally related to thioureas as well.

In this proof-of-principle study, we establish thio-
semicarbazones (Fig. 1a) as a new class of organocatalysts that
act as unique catalysts for the tetrahydropyranylation of alco-
hols under mild conditions, and we perform a double Hammett
investigation of the reaction mechanism using a range of
catalysts and a range of phenol substrates (Fig. 1b). The
resulting double Hammett plot (Fig. 1c) gives experimentally-
based insights into the electronic requirements of both the
catalyst and phenol substrates in the transition state, and
allows us to propose a mechanism of the reaction based solely
on experimentally-gathered evidence.
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tetrahydropyranylation by 50-fold. Hammett investigations of both the organocatalyst and the substrate
indicate an oxyanion hole-like reaction mechanism.

Inspired by the thiourea catalysts developed by Schreiner
and co-workers,” catalyst 1b (Fig. 2) was synthesised and used
(10 mol%) to develop conditions for a kinetics-based catalyst
screening. While 1b was able to afford turnover in several non-
polar solvents (1: 1 DHP/solvent), CH,Cl, proved to be most
suitable (see Table S1 in the ESIT). Addition of benzoic acid co-
catalyst further improved reactivity, allowing for full conversion
within hours under relatively dilute conditions (10 eq. of DHP).
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Fig. 1 (a) Thiosemicarbazone organocatalyst scaffold used in this
study. (b) Optimised conditions for Hammett investigations of the
thiosemicarbazone-catalysed tetrahydropyranylation of phenols. (c)
Hammett plot for catalyst () and substrate ().
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Fig. 2 Catalysts 1la—h, 3a—b, and 4.

Though benzoic acid gave a sizeable 1.5-fold rate increase in
the presence of catalyst 1b (Fig. S1 and Table S2 in the ESI for
detailst), benzoic acid itself, i.e. without catalyst, did not afford
any turnover, underscoring the positive catalytic effect of the
thiosemicarbazone. Use of 2-(4-nitrophenyl)ethanol, 2, ensured
simple reaction monitoring by HPLC-UV (290 nm). Kinetics
studies confirmed first-order dependence with respect to both
DHP and alcohol concentrations, and the overall second-order
rate constant, k,, was determined by non-linear regression
(see ESI for detailst) for a range of thiosemicarbazones, 1a-h
and 3a-b (Fig. 2). The best previously reported thiourea catalyst
for this reaction, 4,”” was used for comparison.

Thiosemicarbazone catalysts are highly tuneable, and there
is an apparent trend favouring catalysts that have electron-
withdrawing groups (EWGs) (Table 1). This is in accordance
with results described by the Schreiner lab, who found that
EWGs improve the efficacy of thiourea catalysts, with 4 being
the most prominent example.® This indirectly suggests that the

Table 1 Second-order rate constants, k,, from catalyst screening®

o}

U DHP
(10eq.)
HO\/\@\ Catalyst (5 mM) @.ﬂo\/\@\
Benzoic acid (5 mM)
2 NO, CH,Cl, NO
(50 mm) 20°C

2

Catalyst kP (oM s Catalyst kP (oM ts™h
(None) No conversion 1f Conv. too low

la 6.8 £0.2 1g Conv. too low

1b 37711 1h Solubility too low
1c 129 £ 5 3a 1.83 £ 0.05

1d 532 3b 12.38 £ 0.07

1le 101 £3 4 2.55 + 0.03

“ Obtained by non-linear regression (see ESI). > Standard errors on best
fit.
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thiosemicarbazones used in this study function in a similar
manner to thiourea catalysts, e.g. via dual hydrogen-bonding
from the two NH-groups.”

The data presented in Table 1 indicate that EWGs on the
imine C-phenyl are better able to afford turnover than EWGs on
the thiourea N-phenyl. Thus, there is a modest rate increase
going from 3a-catalysis to 1a-catalysis (3.7-fold), while a larger
improvement is seen when going from 3a to 3b (6.8-fold). A
possible explanation for this phenomenon might be inferred
from the X-ray crystal structure of 1b (Fig. 3a and b). Due to the
steric demand of the thiocarbonyl, the N-phenyl cannot be in
the same plane as the central thiosemicarbazone moiety. The C-
phenyl, on the other hand, forms a planar, fully conjugated
system with the thiosemicarbazone moiety. Therefore, the
EWGs on the C-phenyl withdraw electron-density via both
inductive and mesomeric pathways, while the EWGs on the N-
phenyl can only exert electron-withdrawing effects by way of
induction.

Despite having an additional EWG, the catalytic efficacy of
1d was found to be inferior to 1c. This is in contradiction to the
hypothesis that more EWGs lead to higher catalytic effect, but as
is evident from the X-ray crystal structures, the additional nitro
group on 1d forces the imine C-phenyl out of the plane of the
thiosemicarbazone moiety (Fig. 3c and d). It appears that the
added electron-withdrawal from the additional nitro group is
overcome by this perturbation of the conjugated system.

The CgFs-substituted catalyst 1e performs almost as well as
1c, while the 2-pyridinyl derivative 1f failed to give useable
conversion. In accordance with the observed trend, catalyst 1g,
with the strongly electron-donating dimethylamino group,
failed to give appreciable turnover.

All but the slowest of the working thiosemicarbazone cata-
lysts give higher k,'s than previously reported thiourea 4. While
4 remains one of the most efficient organocatalysts reported
under high reagent concentration conditions (as low as
0.001 mol% catalyst loading in neat DHP),”” the best thio-
semicarbazone (1c) gives a 50-fold increase of k, compared to
thiourea 4 under the more dilute conditions in this study.

The transient nature of the intermediates in non-covalent
hydrogen bond-catalysed reactions makes mechanistic investi-
gations of reactions involving non-covalent organocatalysts
difficult.*'® The lack of tangible evidence of unique reaction
intermediates to substantiate and validate mechanistic
proposals has made indirect methods the main source of
mechanistic insight, e.g. computational methods that account
for solvent using continuum models.™ In spite of tremendous
effort and great improvements, identifying the mechanistic
pathway in organocatalytic reactions remains a difficult task,"
and reports of experimental methods to gain mechanistic
insight into non-covalent organocatalysis are relatively few and
relatively far between.® Many rely on inferring catalytic proper-
ties from catalyst-substrate complexes identified by e.g. spec-
troscopy,"® while other methods rely on relatively cumbersome
physico-chemical analyses of the catalysts.™

A Hammett analysis gives experimental insight into the
nature of the transition state of a chemical reaction by deter-
mining the linear free energy relationship between the
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Fig.3 Crystal structures of selected catalysts, C: grey, H: white, F: green, N: blue, O: red, S: yellow. (a) Front and (b) top view of 1b (ethanol). (c) 1c
(CH,Cly/methanol). (d) 1d (ethanol, disorder of CFz groups omitted for clarity).

logarithm of relative reaction rate constants and Hammett's o
values.” In spite of the widespread use of organocatalysts and
the demand for insight into the way in which they operate, there
are very few examples of Hammett analyses performed with
focus on the organocatalyst, and none of these investigations
were expanded to also include a Hammett analysis of the
substrate."®

To gain mechanistic insight on this new class of organo-
catalysts, we exploited the ease of derivatisation of thio-
semicarbazones. A range of thiosemicarbazone catalysts all
bearing different substituents in the p-position on the imine C-
phenyl were used to determine k,'s for the tetrahydropyr-
anylation of 4-methoxyphenol (i.e. different X's in Fig. 1b). In
parallel, a range of p-substituted phenols were selected as
substrates and tetrahydropyranylated using 1c (i.e. different Y's
in Fig. 1b). This allowed us to perform a double Hammett
analysis: one Hammett plot to investigate the effect of electron-
withdrawing and electron-donating substituents on the catalyst
and one Hammett plot to investigate the effect of the substit-
uents on phenol substrates (Fig. 1c).

For the catalysts, Hammett's o}, values were used to obtain
a plot with good linear correlation (-, Fig. 1c)."” The positive
slope (p = 1.48) is in agreement with the previous notion that
EWGs on the catalyst leads to faster reactions.

For the phenols, a similar plot was made against the Ham-
mett g;,~ values to obtain a plot with good linear correlation (-,
Fig. 1¢).”” The negative slope (p = —0.57) reveals a decrease in
electron-density (build-up of positive charge or loss of negative
charge) on the phenol in the transition state.

Based on these double Hammett investigations, several
possible reaction pathways were considered. Traditional
Brgnsted acid-catalysed tetrahydropyranylation via an oxo-
carbenium ion formed by protonation of DHP by the thio-
semicarbazone catalyst was ruled out. The best catalyst (1c) was
found to have a pK, value of 11.5 + 0.1 (DMSO) (see ESI for
detailst), and since this is less acidic than benzoic acid (pK,

7980 | Chem. Sci,, 2017, 8, 7978-7982

11.1, DMSO),"® which itself does not promote the reaction, this
type of mechanism was rejected.

'H NMR titrations in CDCl; revealed that 1c forms a 1:1
adduct with 4-methoxyphenol with a low binding constant, K,,
of 1.71 £ 0.03 m~ ', while DHP was found to have a significantly
weaker interaction with 1c¢ (K, below the detection limit affor-
ded by "H NMR titrations) (details in ESIf). This suggests
a mechanism in which DHP does not interact with the catalyst
itself, but rather with a catalyst-substrate adduct.

Based on a thorough evaluation of the available data, plau-
sible mechanistic pathways (see further details in the ESI}), and
comparison to similar reactions,” we suggest a mechanism in
which the catalyst-phenol complex reacts with DHP to form the
product via a not fully synchronous cyclic proton transfer,
which in its entirety results in the same product that would be
formed via a formally forbidden [2 + 2] cycloaddition mecha-
nism. After initial build-up of negative charge on the phenol
oxygen, stabilised by double H-bonding from the organocatalyst
(pre-TS, Fig. 4) in the so-called “oxyanion hole”*»7%*4 the
partial negative charge on the phenol oxygen is lost in the
ensuing transition state (TS, Fig. 4). This is in agreement with
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Fig. 4 Proposed catalytic cycle for the thiosemicarbazone-catalysed
tetrahydropyranylation of phenols.
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the Hammett analysis of the phenol substrates, which supports
a mechanism going via a loss of (partial) negative charge on the
phenol in the transition state.

The best catalysts are the strongest hydrogen bond donors,
since they most efficiently afford preorganisation of the reactants
to form the pre-TS and stabilisation of the transition state, TS, in
accordance with the oxyanion stabilisation concept.*?7?*«
Further "H NMR investigations revealed a 1 : 1 interaction (K, =
46 + 4 m~ ") as well as chemical shift changes consistent with an
electrophilic interaction upon titration of 1c with benzoic acid.
Such an interaction results in a more electron-deficient catalyst
and thus can seemingly explain the slight increase in reaction
rate (1.5-fold with 1b and 2-(4-nitrophenyl)ethanol, Table S2,
ESIt) seen with addition of benzoic acid.

This mechanistic proposal runs parallel to the previously
proposed mechanism for thiourea-catalysed tetrahydropyr-
anylations by Kotke and Schreiner, who, based on computa-
tional results, identified a mechanism going via a cyclic
transition state, though they emphasised that the overall addi-
tion must be “highly asynchronous” since a thermal [2 + 2]
cycloaddition is formally forbidden.” The study presented in
this report represents the first kinetics-based experimental
evidence for the importance of oxyanion stabilisation in the
mechanism for this reaction.

While tetrahydropyranylations are an important chemical
tool,” an interesting analogous reaction is formation of 2-deox-
yglycosides by use of glucal enol ether substrates. Inspired by
McGarrigle and co-workers,*® we used 1c at 1 mol% to afford 2-
deoxygalactosylation of alcohol 2 using galactal 5 (Fig. 5).

It was found that catalyst 1c affords formation of the desired
product, 6, by HPLC-UV-MS. Full turnover was achieved in ca.
40 hours when using only catalyst 1c, while use of benzoic acid
and catalyst 1c in combination resulted in full turnover in ca.
28 hours. No appreciable turnover was detected when using
benzoic acid in the absence of 1c. This demonstrates that thio-
semicarbazones are also attractive catalysts for other reactions.
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Fig. 5 Formation of 2-deoxygalactoside 6 as a function of time when
using catalyst 1c in combination with benzoic acid (both 1 mol%) (=), 1c
(1 mol%) only (=), or benzoic acid (1 mol%) only (+).
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In summary, we have illustrated the first use of thio-
semicarbazones as organocatalysts. Guided by kinetics, an
optimised catalyst structure, 1c, was identified. A double
Hammett analysis, along with NMR and pK, data, allowed us to
suggest an asynchronous cyclic transition state. The fact that
thiosemicarbazones function in a similar manner to the well-
proven thiourea catalysts gives rise to optimism regarding the
future use of thiosemicarbazone catalysts in other reactions.
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