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and biological activity of
chlorinated lipids: a study of danicalipin A and
selected diastereomers†

J. Boshkow, ‡ S. Fischer, ‡ A. M. Bailey, S. Wolfrum and E. M. Carreira *

The syntheses of (+)-16-epi- and (+)-11,15-di-epi-danicalipin A (2 and 3) are reported. The conformations

of the parent diols 5 and 6 as well as the corresponding disulfates 2 and 3were determined on the basis of J-

based configuration analysis and supported by calculations. The impact of configuration on membrane

permeability in Gram-negative bacteria and mammalian cell lines was assessed as well as cytotoxicity.

Although diastereomer 2 showed similar behavior to natural (+)-danicalipin A (1), strikingly, the more

flexible C11,C15-epimer 3 had no effect on permeability and proved equally or more toxic towards

multiple cell lines.
Introduction

(+)-Danicalipin A (1) is a prominent member of the chlor-
osulfolipid family of natural products isolated in the 1960's
from microalgae, which were later anecdotally associated with
seafood poisoning (Fig. 1A). More recently, it has captured the
interest of research groups globally.1,2 Hexachlorosulfolipid 1 is
the main polar component in the agellar membrane of the
golden-brown alga Ochromonas danica. The presence of other
unusual, rare lipids renders its membrane a fascinating system
for study.3 Coinciding with our interest in halogenated
compounds of relevance to drug discovery and halosulfolipids,
we set out to identify ways of investigating the chemical prop-
erties and biological activities of (+)-danicalipin A (1).4,5 Halo-
genation is known to inuence electronic properties,
lipophilicity, and metabolic stability of bioactive molecules.6,7

Additional subtle effects may be manifest in conformational
preferences8 especially in aliphatic systems as notably high-
lighted by Hoffmann,8b O'Hagan,8c and more recently by Gade-
mann.8d We were interested in the question: Do congurational
isomers 2 and 3 (Fig. 2B and C) exhibit differences, chemically
or biologically, from the natural product? Herein we report the
syntheses of diastereomers 2 and 3 and accompanying struc-
ture–activity studies. Strikingly, a signicant deviation of
toxicity and membrane permeability was revealed and corre-
lated to exibility.

Many biologically active natural products feature character-
istic congurational patterns that enable seemingly exible
ürich, HCI H335, Vladimir-Prelog-Weg 3,
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molecules to adopt dened shapes.9 For example, the congu-
ration of polyketides has been linked to their biological mode of
action. Vicinal dichlorides and chlorohydrins are known to be
conformationally biasing in simple systems when compared to
the parent hydrocarbons.10,11 In contrast to polyketides,
complex polychlorinated natural products have not been the
focus of stereochemical investigations to date. The enigmatic
biological role of (+)-danicalipin A (1) and its structure, in
particular its chlorination pattern, render it an ideal target to
probe a link, if any, between conguration and bioactivity.
Therefore, we set out to identify diastereomers whose confor-
mations would differ from 1.
Fig. 1 Identification of interesting danicalipin A isomers. (A) Informa-
tion of the stereotetrad set by a spectroscopic database. (B) Confor-
mation of the 1,3-anti motif (R1 s R2). (C) Possible conformations of
the 1,3-syn motif (R1 s R2).
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Fig. 2 (A) (+)-Danicalipin A (1) and danicalipin A diol (4), (B) (+)-16-epi-
danicalipin A (2) and 16-epi-danicalipin A diol (5), (C) (+)-11,15-di-epi-
danicalipin A (3) and 11,15-di-epi-danicalipin A diol (6); R ¼
(CH2)8(CCl2)CH2OY. Lowest-energy structures (DFT) of diols 4, 5, and
6 shown in ball-and-stick models; 3D representation of the C11 to C16
array superimposed on a diamond lattice using JBCA and DFT (along
the principle chain: g+ ¼ +60�, g� ¼ �60�, t ¼ 180�).

Fig. 3 (A) Prior strategies to access the anti-dichloride and (B) the
anti-chlorohydrin in (+)-danicalipin A (1), (C) different configurations in
diastereomers 2 and 3.
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Results and discussion
Target selection

Collectively, there are 34 992 possible staggered conformations
(C10 to C17) for the 16 diastereomers of (+)-danicalipin A (1,
2187 conformers per diastereomer). Consideration of previous
work suggests that various derivatives of 1 (Y ¼ H, SO3

�, Ac,
TBS) have similar conformations.12 Consequently, the parent
diols were chosen as the focus of our efforts in this study.
Utilization of a conformational database of stereodened tri-
chlorinated hexane-1,3-diols10,13 (Fig. 1) narrowed the selection
This journal is © The Royal Society of Chemistry 2017
of low-energy conformers centered around the C13 to C16
stereotetrad to 18 structures (see ESI†).

According to models generated from the database, 5 and 6
were suggested to display dened structures different from
danicalipin A diol (4, Fig. 2). Examination of models for 4, 5,
and 6 revealed one, zero, and two gauche interactions in the C11
to C16 region, respectively. Conformational DFT analysis of 4
led to a structure that was in agreement with one produced from
a solution-state NMR study (ttttg+).14–16 Calculations also sup-
ported the predicted all-trans arrangement in the chlorinated
segment of 16-epi-danicalipin A diol (5, ttttt). A priori, substit-
uents in a 1,3-syn relationship (cf. C11 to C13 in 6) ought to give
rise to two energetically similar conformers (tg� or g+t,
Fig. 1).9c,d,17 Yet, in 11,15-di-epi-danicalipin A diol (6), compu-
tations showed a preference for one (tg�tg�t). In order to gain
insight into their solution-state conformations, diols 5 and 6
were prepared through de novo synthesis.
Chem. Sci., 2017, 8, 6904–6910 | 6905
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Syntheses of diastereomers

In prior syntheses of (+)-danicalipin A (1), the anti-relative
conguration of the C15,C16-vic-dichloride employed trans-
olen dichlorination18a,b,d,e or cis-epoxide2a,18c opening (Fig. 3A).
The anti-conguration of the C14,C15-chlorohydrin was set by
substrate-controlled diastereoselective transformations
(Fig. 3B).2a,18 The relative conguration present in 2/5 and 3/6
precluded the implementation of these earlier strategies
(Fig. 3C).

Synthesis of 16-epi-danicalipin A. The synthesis of (+)-16-epi-
danicalipin A (2) (Scheme 1) commenced with the asymmetric
organocatalytic epoxidation of (E)-non-2-enal (7) using the
(S)-Jørgensen–Hayashi catalyst,19 followed by reduction and
protection of the hydroxy group as its pivaloate ester. The
enantiomeric ratio was determined to be >20 : 1 byMosher ester
analysis of the free alcohol (not shown).

Opening of epoxide 8 with NCS and PPh3 in toluene at 90 �C
afforded a vicinal dichloride,20a which was deprotected using
(iBu)2AlH to give 9. Dess–Martin oxidation of alcohol 9 afforded
an unstable and highly volatile a,b-dichloroaldehyde, which
was directly subjected to chloroallylation conditions. For this
purpose, g-chloroallylaluminum reagent 10 was generated in
situ from allyl chloride, LiTMP and Et2AlCl.21 As expected, the
stereochemical outcome followed both the Felkin–Anh and
Cornforth models with d.r. > 6 : 1. Protection of the secondary
hydroxy group provided trichloride 11. Hydroboration and
Scheme 1 Reagents and conditions: (a) (S)-Jørgensen–Hayashi
catalyst (10 mol%), H2O2, CH2Cl2, r.t., e.r. > 20 : 1; (b) NaBH4, MeOH,
0 �C, 62% over 2 steps; (c) PivCl, pyridine, CH2Cl2, r.t., 82%; (d) PPh3,
NCS, toluene, 90 �C; (e) (iBu)2AlH, CH2Cl2,�78 �C, 78% over 2 steps; (f)
DMP, NaHCO3, CH2Cl2, r.t.; (g) 10, THF,�78 �C, d.r. > 6 : 1; (h) TBSOTf,
Et3N, CH2Cl2, r.t., 47% over 3 steps; (i) Cy2BH, THF, 0 �C, then
NaBO3$4H2O, r.t., 69%; (j) DMP, CH2Cl2, r.t.; (k) (+)-Ipc2B(allyl), THF,
�100 �C to r.t., 83% over 2 steps, d.r. > 5 : 1; (l) Ghosez's reagent,
CHCl3, then Et3N, r.t., 86%; (m) 14 (3 equiv.), Grubbs II (10 mol%),
CH2Cl2, 45 �C, then PtO2 (10 mol%), H2 (1 atm), r.t., 90%; (n) AcCl,
MeOH, 80 �C, 84%; (o) SO3$pyridine, THF, r.t., 87%.

6906 | Chem. Sci., 2017, 8, 6904–6910
subsequent oxidation furnished unstable aldehyde 12. Brown
allylation was performed using (+)-Ipc2BCl and allylmagnesium
bromide in THF at �100 �C.22 The homoallylic alcohol was
obtained in high yield (83%) and d.r. (>5 : 1).

Based on the knowledge gained in our research group,2a this
allylic hydroxy group was converted to the corresponding
chloride in high yield and with complete inversion utilizing
Ghosez's reagent.23 This highly reactive a-chloroenamine is
proposed to be ionized in situ to a keteneiminium ion, which is
readily attacked by nucleophiles (e.g. the free secondary hydroxy
group at C11). Hence, fragment 13 was synthesized in 12
steps from commercially available material. One-pot cross
metathesis/hydrogenation with known olen 14 (ref. 2a)
established the complete C22 chain.24 The two TBS groups were
removed with an excess of acetyl chloride in MeOH at 80 �C.
Final sulfation with SO3$pyridine gave (+)-16-epi-danicalipin A
(2) in 87% yield.

Synthesis of 11,15-di-epi-danicalipin A. In a similar manner,
the synthesis of (+)-11,15-di-epi-danicalipin A (3) (Scheme 2)
commenced by epoxidizing (E)-non-2-enal (7) enantiose-
lectively19 and subjecting the formed epoxyaldehyde to stabi-
lized Wittig reagent 15. Subsequent epoxide opening under
modied Yoshimitsu's conditions20b (PPh2Cl/NCS in CH2Cl2)
Scheme 2 Reagents and conditions: (a) (R)-Jørgensen–Hayashi
catalyst (10 mol%), H2O2, CH2Cl2, r.t., e.r. > 20 : 1; (b) 15, CH2Cl2, 0 �C,
61% over 2 steps; (c) NCS, Ph2PCl, CH2Cl2, r.t., 45%; (d) AD-mix b,
NaHCO3, MeSO2NH2, tBuOH/H2O (1 : 1), 0 �C, 70%, d.r. ¼ 6 : 1; (e) p-
nitrobenzenesulfonyl chloride, Et3N, CH2Cl2, 0 �C, 74%; (f) (iBu)2AlH,
toluene,�78 �C; (g) MePPh3Br, KN(TMS)2, THF�78 to 0 �C, 91% over 2
steps; (h) TMSCl, EtOAc; r.t.; (i) TBSOTf, Et3N, CH2Cl2, r.t., 76%, d.r. ¼
8 : 1; (j) Cy2BH, THF, 0 �C to r.t., then NaBO3$4H2O, 0 �C to r.t., 85%; (k)
DMP, CH2Cl2, r.t.; (l) (�)-Ipc2B(allyl), THF, �100 �C to r.t., then
NaBO3$4H2O, 0 �C to r.t., 73% over 2 steps, d.r. > 10 : 1; (m) 14 (3
equiv.), Grubbs II (10 mol%), CH2Cl2, 45 �C, then PtO2 (10 mol%), H2

(1 atm), 66%; (n) Ghosez's reagent, CHCl3, 0 �C to r.t., then Et3N, 0 �C to
r.t., 78%; (o) AcCl, MeOH, 80 �C, 93%; (p) SO3$pyridine, THF, r.t., quant.

This journal is © The Royal Society of Chemistry 2017
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gave vicinal dichloride 16 in 45% yield, along with 28% of an
elimination product (see ESI†). To overcome the inherent
preference of the molecule for anti-functionalization,18 a,b-
unsaturated ester 16 was dihydroxylated under catalyst-
controlled Sharpless' conditions25 in high yield (70%) and d.r.
(8 : 1) favoring the all-syn product. Prolonged reaction times
furnished substantial amounts of elimination products, further
demonstrating the instability of the all-syn motif. Surprisingly,
aer selective nosylation of the a-hydroxy group26 cis-epoxide 17
directly formed in situ. Reduction of the ester with (iBu)2AlH
was followed by Wittig reaction to give a terminal olen.
According to previous results by our group,4a,27 epoxide opening
with TMSCl in EtOAc occurred with inversion of conguration
(d.r. ¼ 8 : 1).

With a route to all-syn trichloride 18, we pursued the
same approach as for (+)-16-epi-danicalipin A (2). Thus,
hydroboration/oxidation preceded Dess–Martin oxidation and
Brown allylation.22 When homoallylic alcohol 19 was subjected
to Ghosez's reagent,23 an inseparable 1 : 1 mixture of tetra-
chloride and conjugated diene was isolated (not shown).28

Although this mixture could then be taken forward to 20,
a higher yielding procedure resulted from cross metathesis of
homoallylic alcohol 19 with 14 using Grubbs 2nd generation
catalyst, and direct reduction of the olen.24 The secondary
alcohol could then be substituted using Ghosez's reagent,
without concomitant elimination. Deprotection and sulfation
of 20 was then achieved via the same procedure as for (+)-16-epi-
danicalipin A (2).29
Biological investigations

The consequence of the congurational differences in disul-
fates 1, 2, and 3 on biological activity was then examined. We
have previously reported that (+)-danicalipin A (1) affects the
Fig. 4 Membrane permeability enhancement in bacteria: fluores-
cence response due to nuclear staining of E. coli DH5a by Hoechst
33342 as a function of the concentration of 1, 2, or 3 as well as
positive and negative control experiments. Data are normalized to
the untreated results. The significance of each result vs. DMSO is
shown above the bar: p < 0.033 ¼ *; p < 0.01 ¼ **; p < 0.001 ¼ ***;
p < 0.0002 ¼ ****.

This journal is © The Royal Society of Chemistry 2017
integrity of cell membranes in Gram-negative bacteria (E. coli
DH5a) and mammalian cell lines (Hepa 1–6, HT-29).2a

In the assay, incubation of E. coli with 1 compromised
bacterial membranes, an effect quantied by measuring an
increase in uorescence of a DNA stain.30 At 125 mM concen-
trations of (+)-danicalipin A (1), incorporation of Hoechst 33342
into E. coli was increased 5-fold over the negative control
(Fig. 4),31 while incubation with (+)-16-epi- danicalipin A (2)
showed a 3-fold increase. Remarkably, no permeability
enhancement was observed with (+)-11,15-di-epi-danicalipin A
(3) even at toxic concentrations $ 250 mM (see ESI†).

Additional experiments were conducted in Hepa 1–6 murine
liver cells to assess permeability enhancement (Table 1). At
25 mM concentrations, both (+)-danicalipin A (1) and (+)-16-epi-
danicalipin A (2) compromised cell membranes as shown with
a Hoechst 33342/Sytox Green assay (cf. A/B with C/D),2a,32

consistent with positive control (20% EtOH, see ESI†). By
contrast, using the same assay, we observed that (+)-11,15-di-
epi-danicalipin A (3) resulted in minimal Sytox Green staining
(E/F, Table 1) similar to negative control (1% DMSO, see ESI†).

To enable direct comparison with other known
halosulfolipids and analogs toxicity towards brine shrimp
was examined.2,15,18b,c The observed LC50 values, 1 : 2.5 mM;
2 : 5.7 mM; 3 : 4.5 mM, indicate that conguration has no
inuence on brine shrimp toxicity. Interestingly, the fact that all
diastereomers (1–3) are signicantly more toxic than the parent
non-chlorinated lipid (1,14-docosane disulfate)2a emphasizes
the importance of chlorination on activity. In mammalian-cell
toxicity assays 1–3 showed similar EC50 values against Hepa
1–6 and A549 cell lines (see ESI†). However, C11,C15-epimer 3
was noticeably more toxic towards HT-29 cells (3.7 � 0.6 mM)
than both C16-epimer 2 (10.9 � 0.1 mM) and (+)-danicalipin A
(1, 14.7 � 0.4 mM).

Given the biological data, the answer to the question serving
as the focus of this study is yes: congurational isomers 1–3
display differential biological proles. We were then interested
in understanding the nature of the relationship between
observed bioactivity and conguration. The data resulting from
investigation of disulfates 1–3 by NMR spectroscopy was
insufficient to condently determine their solution-state
conformations. In order to elucidate the limited spectroscopic
data, additional DFT analyses were undertaken.34 The calcu-
lated conformations of the chlorinated segments in 1 and 2
were identical to those found in diols 4 and 5 (Fig. 2), respec-
tively. These were also consistent with data obtained from NMR
spectra. Interestingly, computational analysis of 3 revealed
a small energy difference (DDG ¼ 0.1 kcal mol�1) between two
conformations along C11–C13.35 The inconclusive spectro-
scopic data in conjunction with DFT analysis suggests 3 exists
as a mixture of rapidly interconverting conformers (see ESI†).
Thus, while the chlorinated segments of 1 and 2 have dened
minima in solution, the syn-C11,C13-conguration promotes
exibility for 3.

The biological observations indicate that the conguration
of naturally-occurring (+)-danicalipin A (1) plays a pronounced
role in structurally compromising phospholipid-based
membranes, such as those in E. coli, murine, and human
Chem. Sci., 2017, 8, 6904–6910 | 6907
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Table 1 Membrane permeability enhancement in mammalian cellsa

(+)-Danicalipin A (1) (+)-16-epi-Danicalipin A (2) (+)-11,15-Di-epi-danicalipin A (3)

Hoechst 33342
(sampled cells)

Sytox Green
(cells with compromised membranes)

a Fluorescent images of Hepa 1–6 cells aer incubation with compounds 1, 2, and 3 at 25 mM concentration. Blue: sampled cells, visualized with
Hoechst 33342. Green: cells with compromised cell membranes, visualized with Sytox Green.33
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cell lines. This feature may be relevant to its unspecied role
in the membrane of O. danica. In this respect, the membrane
domains in spermatozoa from the sh Sparus aurata have
been reported to consist of varying proportions of (poly)
unsaturated fatty acids in accordance with their function.
Specically, a high content of such lipids in the agellar
membrane is correlated with improved sperm viability
and motility, as well as increased membrane uidity.36

We speculate that the chlorinated array in 1 acts in analogy to
cis-unsaturation in fatty acids by introducing a kink in the
lipid chain.37 Consequently, we hypothesize that 1 confers
similar effects on motility in the agellum of O. danica.38 This
suggests new directions to advance understanding of this
unicellular organism.

Conclusions

In conclusion, we have synthesized two unnatural diastereo-
mers of (+)-danicalipin A (1), namely, 16-epi- and 11,15-di-epi-
danicalipin A (2 and 3). These were selected by a combined
database/computational approach to examine, for the rst time,
the effect of complex chlorination patterns on chemical and
biological properties. We observed a striking result in which
one of the diastereomers displays a signicantly different bio-
logical prole when compared to the natural product, which can
be correlated to solution-state exibility. Thus, 1 and 2 had an
effect on permeability, while 3 displayed no such activity. Yet, 3
was more toxic against HT-29 cell lines. Noteworthy, compar-
ison of the biological data for 1 and 3 further reveals that there
is no obvious link between toxicity and permeability enhance-
ment. Our work underscores that the congurational pattern of
chlorinated lipids inuences the conformational landscape and
also impacts biological proles. More broadly, stereodened
chlorinated arrays may nd use as conformationally biasing
elements with applications in materials science and medicinal
chemistry.
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