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xygen undergoes metal-free [3 +
2]-annulations with allenes and nitrosoarenes
under ambient conditions†

Jinxian Liu,‡ab Manisha Skaria,‡a Pankaj Sharma,a Yun-Wei Chiang a

and Rai-Shung Liu *a

The cycloadditions of molecular dioxygen with neutral p-bond motifs rely heavily on singlet-state 1O2,

whereas ground state 3O2 is chemically inactive. Here we report novel [3 + 2]-annulations among

ground-state 3O2 (1 bar), allenes, and nitrosoarenes at low temperatures, efficiently yielding dioxygen-

containing oxacycles. With less hindered 1-arylallene derivatives, these dioxygen species undergo

skeletal rearrangement to 3-hydroxy-1-ketonyl-2-imine oxides. These cycloadditions represent valuable

one-pot O,N,O-trifunctionalizations of allenes. Our EPR experiments confirm the presence of 1,4-

diradical intermediates from an allene/nitrosoarene mixture, which manifest the hidden diradical

properties of nitrosoarenes.
Introduction

Cycloadditions of two or three p-bond molecules are powerful
tools to access carbo- or heterocycles. Ground-state 3O2 has low-
lying LUMO orbitals, but its triplet state greatly reduces its
chemical reactivity toward neutral molecules1 unless a metal
catalyst is present. The cycloadditions of 3O2 dioxygen rely
nearly exclusively on prior photo-activation to form singlet-state
1O2 (ref. 1) that reacts with dienes,2 olens3 or even arenes4 in
[n + 2]-cycloadditions (n ¼ 2 and 4, Scheme 1, eqn (1)). This
photolytic process requires a sensitizer in a cold bath (�40 �C)
over a protracted period (>12 h) because highly energetic 1O2

might produce byproducts from the oxygen-ene reactions5 and
oxidative C]C cleavages.6 In the case of allenes, singlet dioxy-
gen afforded a complicated mixture of undesired
compounds.7a,b

As ground-state 3O2 is a free p-molecule and is available
everywhere; its metal-free [n + 2]-cycloadditions with commonly
used unsaturated hydrocarbons would provide a clean and
cheap synthesis of valuable 1,n-diols, although there is no
literature precedence. As far as we are aware, only 1,4-diradical
precursors such as o-benzocyclobutanes,8 1,2,6,7-octate-
traenes,9 2,3-dimethylenebicyclo[2.2.0]hexane10 and other 1,4-
diazo species11 reacted with ground-state 3O2 in thermal [4 + 2]-
ua University, Hsinchu, Taiwan, Republic

ongyan University, Fujian, China

ESI) available. CCDC 1507477, 1507478,
ographic data in CIF or other electronic

is work.
cycloadditions; these precursors are too uncommon to show
general utility. We recently achieved metal-catalyzed annula-
tions of N-hydroxy allenylamines with nitrosoarenes via a single
radical process.7d In search of a breakthrough in dioxygen
chemistry, we developed facile [3 + 2]-cycloadditions among
nitrosoarenes, allenes and ground-state 3O2 to efficiently afford
N-(1,2-dioxolan-4-ylidene)aniline oxides (eqn (2)). Particularly
notable are the ambient conditions: �15 to 0 �C, 3O2 (1 bar), no
light, no catalyst and no additive. Importantly, these facile spin-
forbidden dioxygen annulations reveal a new role of nitro-
soarenes as effective diradical precursors that is synthetically
signicant in nitroso chemistry.12 In the context of nitroso/
alkene and nitroso/alkyne reactions,13 theoretical calculations
by Houk12e,f suggested the intermediacy of the diradical species,
but these transient species could not be trapped with dioxygen
or other small molecules.
Scheme 1 Cycloadditions of unsaturated hydrocarbons with 1O2 and
3O2.

This journal is © The Royal Society of Chemistry 2017
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Fig. 1 O,N,O-Trifunctionalizations of allenes and selected natural
products.

Table 2 O,N,O-Trifunctionalizations of allenes with O2 and ArNOa,b

a [1] ¼ 0.1 M. b Product yields are reported aer purication using
a silica column.
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2-Amino-1,3-diols are present in numerous natural products
with diverse biological activity (Fig. 1).14 Catalytic O,N,O-tri-
functionalization of allenes is a new appealing tool to assess
these motifs, as noted by the work of Schomaker, who reported
Rh-catalyzed intramolecular cyclizations of homo-
allenylsulfamate esters via a two-step sequence.15a In contrast,
our one-pot intermolecular O,N,O-functionalizations employ
common and cheap nitrosoarenes, allenes and oxygen.
Results and discussion

Table 1 presents the optimized yields of a O,N,O-trifunctionalized
molecule 3a from a mixture of allene 1a, nitrosobenzene 2a (n
equiv.) and O2 (1 bar). When 1.5 equiv. of nitrosobenzene 2a was
used in cold THF (�15 �C), the yield was 43% (entry 1). The yield of
3a increased to 63%with nitrosobenzene in three fold proportions
(entry 2). In other solvents, the yields of 3a were 50% in toluene,
54% in CH3CN, and 58% in DCM (entries 3–5). The yield of 3a
decreased substantially to 10% in THF at 25 �C (entry 6). The
reaction under N2 failed to yield the desired product 3a in
a traceable amount (entry 7).16 Compound 3a assumes an E-
conguration with its hydroxyl cis to the nitrone oxygen to form
a hydrogen bond. This structure was inferred from X-ray diffrac-
tion measurements of its relative 3b17 (Table 2 entry 1).
Table 1 Optimization of reaction conditions

Entry Solventa Gas n T (�C) t (h) Yieldb (%)

1 THF O2 1.5 �15 2 43
2 THF O2 3 �15 2 63
3 Toluene O2 3 �15 2 50
4 MeCN O2 3 �15 2 54
5 DCM O2 3 �15 2 58
6 THF O2 3 25 2 10
7 THF N2 3 �15 10 —

a [1a] ¼ 0.1 M. b Product yields are reported aer purication using
a silica column.

This journal is © The Royal Society of Chemistry 2017
To assess the reaction scope, we applied these optimized
conditions to additional mono- and 1,3-disubstituted allenes 1b–
1g; Table 2 summarizes the results. For phenylallene 1a, its cor-
responding reactions with 4-methyl-, 4-methoxy- and 3,5-dime-
thylphenylnitroso species afforded 3-hydroxy-1-ketonyl-2-imine
oxides 3b–3d in 54–68% yields (entries 1–3). Varied arylallenes 1b–
1e (Ar ¼ 4-MeC6H4, 4-ClC6H4, 4-BrC6H4 and 3-thienyl) yielded
desired compounds 3e–3h in satisfactory yields (50–74%, entries
4–6). 3-Substituted phenylallenes 1f and 1g (R¼ n-Bu and Ph) were
also effective substrates for these cycloadditions (entries 8–10).

Notably, the reaction of sterically hindered 3-cyclohexyl-1-
phenylallene 1i with 4-methoxyphenylnitroso 2c and O2 (1
bar) afforded dioxygen-containing oxacycle 4a together with
desired product 3l; the yields were 45% and 28%, respectively.
Species 4a assumes an anti-conguration (dr > 20 : 1) according
to its 1H NOE spectra; this new compound was efficiently con-
verted to compound 3l in hot THF (eqn (3)), via a Kornblum–

DeLaMare rearrangement.22

(3)

The kinetic stability of dioxygen-containing oxacycle 4a is
enhanced with a suitable steric environment. We further tested
the reactions on various 1-aryl-1-methylallenes 1j–1m with 4-
methoxyphenylnitroso 2c and O2 (1 bar) in THF (0 �C), generating
dioxygen-containing compounds 4b–4e (Ar ¼ 4-RC6H4, R ¼ H,
Me, MeO, Br) in satisfactory yields (Table 3, entries 1–4). The
molecular structure of compound 4b was conrmed by its X-ray
Chem. Sci., 2017, 8, 5482–5487 | 5483
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Table 3 [3 + 2]-Cycloadditions among O2, allenes and
nitrosoarenesa,b

a [1] ¼ 0.1 M. b Product yields are reported aer purication using
a silica column.

Table 4 [3 + 2]-Cycloadditions among allenes and nitrosoarenes
under N2

a,b

a [1] ¼ 0.1 M. b Product yields are reported aer purication using
a silica column.
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diffraction pattern.17 Various 1-aryl-3,3-dimethylallenes 1n–1q
(Ar ¼ 4-RC6H4, R ¼ H, Me, MeO, Br), electron-rich nitrosoarenes
and O2 were also amenable to such cycloadditions, yielding
desired compounds 4f–4m in satisfactory yields (60–72%, entries
5–12) except 4k in only 38% yield. This dioxygen cycloaddition was
applicable to cyclohexylidene-derived phenylallene 1r, affording
compound 4n in 66% yield (entry 13). Compounds 4 serve as the
rst examples of the cycloadditions of ground-state 3O2 with
unsaturated hydrocarbons at low temperatures.

An electron-decient nitrosoarene is an inapplicable
substrate, as shown by eqn (4). Under O2, the reaction of
trisubstituted allene 1p with 4-chlorophenylnitroso species 2f in
cold THF (0 �C) afforded nitroso-containing cycloadduct 5a in
53% yield; the dioxygen-containing product, ca. 5%, was
unstable for isolation (eqn (4)). In contrast, the same allene 1p
could deliver dioxygen-containing species 4j and 4k using
electron-rich nitrosoarenes under the same conditions (entries
9–10, Table 3).

(4)

(5)
5484 | Chem. Sci., 2017, 8, 5482–5487
Under nitrogen, trisubstituted allene 1p reacted with 4-
methylphenylnitroso 2b in cold THF to form nitroso-containing
cycloadduct 5b in 60% yield (eqn (5)). The stereochemistry and
its E-conguration of this new compound was conrmed by its
X-ray diffraction pattern.17 Such a new reaction represents a new
and useful O,N,N-functionalization of allenes. A preliminary
survey of the reaction scope is summarized in Table 4. We tested
the reactions on 1,3-di- and 1,1,3-trisubstituted allenes 1g and
1t that reacted with nitroso-arenes (R ¼ H, Cl, CO2Et) to afford
nitroso-containing cycloadducts 5c–5g in reasonable yields (58–
83%). Furthermore, the anti-conguration of compound 5c was
determined by X-ray diffraction.17

Dioxygen-containing heterocycles 4 are readily reduced with
Pd/C, H2 (1 atm) in MeOH (23 �C)18 to cleave their O–O bonds,
satisfactorily yielding desired 1,3-dihydroxy-2-imine oxides 6.
These reductions highlight the utility of molecular oxygen to
afford 1,3-dihydroxy-2-amino derivatives. Several instances of
affording tertiary 1,3-alcohol derivatives are illustrated in eqn
(6) and (7); their chemical yields exceed 65%. Under these
reductions, the valuable nitrone functionalities of these acyclic
1,3-diols remain intact as indicated by their HRMS and 13C-
NMR spectra.

(6)

(7)
This journal is © The Royal Society of Chemistry 2017
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Fig. 2 Observed and simulated EPR spectra.

Scheme 2 A plausible mechanism.
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The facile cycloadditions among allenes, nitrones and
ground-state O2 are very astonishing because an intersystem
crossing (ISC) must be involved for one key intermediate. To
investigate the mechanism, we examined the reaction of 1-
phenyl-3-cyclopropylallene 1s with 4-methylphenylnitroso
species 2b under O2, yielding compound 3m in 71% yield; this
transformation did not induce cyclopropane cleavage because
of the stability of the phenylallylic radical A (eqn (8)).19 We thus
exclude the intermediacy of the dicarbon radical A0, although
analogous carbon radicals were postulated for the o-quinodi-
methine species.8 We isolated compound 7 in 13% yield from
the reaction of 1-phenylallene 1a with PhNO (1.2 equiv.) and
TEMPO (2 equiv.) under N2, indicating the formation of dir-
adical intermediates (eqn (9)). We employed EPR to characterize
the diradical species from a mixture of 3,3-dimethyl-1-
phenylallene 1n and nitrosobenzene 2a in THF at 0 �C (0.5 h).
Fig. 2 (top) shows the EPR signal of the diradical species; the
intensity of this signal remains unchanged for 5 h under N2.
The simulation analysis was performed using the EasySpin
program.20 The satisfactory t was achieved with a two-
component simulation (bottom). The abundant component
(70%) corresponds to nitrogen-centered diradicals (g¼ 2.00616,
aN ¼ 10.7 G and 3.0 G).21 The minor component corresponds to
a monoradical nitroxide with aN ¼ 10.7 G. Notably, when
recorded at T < 130 K, the spectrum exhibits a well-known
nitroxide rigid-limit lineshape in accordance with the above
simulation result; the coupling of unpaired electrons with the
nitrogen center is evident.

(8)

(9)

Scheme 2 depicts a plausible mechanism to rationalize the
remarkable facility of such dioxygen annulations. We postulate
This journal is © The Royal Society of Chemistry 2017
that allene 1 reacts initially with nitrosobenzene to form 1,4-
diradical species A, which is likely to be a major component, as
detected in the EPR spectra; its nitroxy and allylic radicals are
expected to couple with nitrogen in two magnitudes, i.e. aN ¼
10.7 G and 3.0 G respectively.21 The capture of molecular
dioxygen 3O2 by 1,4-diradical species A forms peroxy diradical B
in a triplet state, as the two radical centers of species B are
remote from each other, rendering an intersystem crossing
(ISC) feasible. Aer a change of spin state, singlet-state diradical
B0 is expected to form primary 1,2-oxaziridine diradical C
through a 3-exo-trig cyclization that is more feasible than an
alternative 5-endo-trig cyclization.23 A nal radical–radical
coupling of resulting species C forms precursor D, and ulti-
mately yields desired 1,2-dioxolanes 4. This proposed path
rationalizes the formation of compound 7 from the TEMPO
experiment (eqn (9)) well. The trapping of the 1,4-biradical
generates single radical species F that undergoes a rapid 3-exo-
trig cyclization to form benzylic radical G. A second trapping of
this species with the TEMPO radical is expected to yield species
I that is prone to hydrolysis on a silica column to yield observed
product 7.

Conclusions

Prior to this work, singlet state oxygen 1O2 failed to react with
allenes to give useful oxygenated products.7 This study reports
the rst examples of metal-free [3 + 2]-cycloadditions among
allenes, nitrosoarenes and ground-state 3O2 (1 bar) at low
temperatures, efficiently yielding dioxygen-containing oxa-
cycles.24 With less hindered 1-arylallene derivatives, the result-
ing oxacycles undergo skeletal rearrangement to 3-hydroxy-1-
ketonyl-2-imine oxides. These transformations highlight
a cheap, efficient and clean synthesis of 1,3-dihydroxy-2-amino
derivatives. Our experimental data indicate that an initial attack
of a nitrosoarene at an allene generates a diradical species that
is detectable with EPR. We envisage that the concept of nitro-
soarenes as diradical precursors will inspire new synthetic
concepts.
Chem. Sci., 2017, 8, 5482–5487 | 5485
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