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nformational changes and ligand
binding: from kinetics to thermodynamics†

Yong Wang, João Miguel Martins and Kresten Lindorff-Larsen *

The behaviour of biomolecular systems is governed by their thermodynamic and kinetic properties. It is thus

important to be able to calculate, for example, both the affinity and rate of binding and dissociation of

a protein–ligand complex, or the populations and exchange rates between distinct conformational states.

Because these are typically rare events, calculating these properties from long molecular dynamics

simulations remains extremely difficult. Instead, one often adopts a divide-and-conquer strategy in which

equilibrium free-energy differences and the fastest state-to-state transition (e.g. ligand association or

minor-to-major state conversion) are combined to estimate the slow rate (e.g. ligand dissociation) using

a two-state assumption. Here we instead address these problems by using a previously developed

method to calculate both the forward and backward rates directly from simulations. We then estimate

the thermodynamics from the rates, and validate these values by independent means. We applied the

approach to three systems of increasing complexity, including the association and dissociation of

benzene to a fully buried cavity inside the L99A mutant variant of T4 lysozyme. In particular, we were

able to determine both millisecond association and dissociation rates, and the affinity, of the protein–

ligand system by directly observing dozens of rare events in atomic detail. Our approach both sheds light

on the precision of methods for calculating kinetics and further provides a generally useful test for the

internal consistency of kinetics and thermodynamics. We also expect our route to be useful for obtaining

both the kinetics and thermodynamics at the same time in more challenging cases.
1 Introduction

Biomolecular processes are governed by their kinetic and ther-
modynamic properties, and the ability to determine these
properties underlies both our fundamental understanding of
biology, as well as our ability to optimize drug molecules or
enzymes. Calculating protein–ligand binding thermodynamics,
quantied in terms of binding free energies DGbinding or the
equilibrium dissociation constant Kd, and kinetics character-
ized by association and dissociation constants (kon and koff), is
a problem of critical importance in computational biology and
computer-aided drug design.1,2 When ligand binding can be
described as a two-state system (Fig. 1), these quantities are
related via

DGbinding ¼ kBT ln

�
Kd

C0

�
¼ kBT ln

�
koff

konC0

�

where kB is the Boltzmann constant, T is the temperature and C0

¼ 1 M is the standard reference concentration.
derstrøm-Lang Centre for Protein Science,
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tion (ESI) available. See DOI:
Similarly to ligand binding, thermodynamics and kinetics
are also linked in biomolecular conformational transitions, for
example in protein folding. Indeed, one of the standard tests for
whether protein folding conforms to a two-state model involves
comparing the free energy difference estimated by equilibrium
measurements with the value from kinetics.3

In principle, molecular dynamics (MD) simulations can
provide a one-shot solution for calculating all of these proper-
ties. MD may, however, be limited by its inability to sample the
long-timescale biological processes and the whole conforma-
tional space. Thus, although it has been possible to calculate
rates (kfolding and kunfolding) and thermodynamics (DGfolding) from
a single, long trajectory of protein folding,4 this has only been
possible at temperatures where DG z 0. To our knowledge, the
same problem has so far not been solved for ligand binding or
for cases where the two rates differ substantially in magnitude.

Instead of pursuing a one-shot solution, one may take
a divide-and-conquer strategy in which the thermodynamics
and kinetics are calculated separately using different, but
complementary techniques.5–8 For the calculation of thermo-
dynamics, several different methods have been developed.
These methodologies can be categorized roughly into two types:
enhanced sampling methods9 and alchemical methods.10,11 The
enhanced sampling methods, including umbrella sampling
(US),12 non-equilibrium approaches13 and metadynamics,14 are
This journal is © The Royal Society of Chemistry 2017
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Fig. 1 A two-state model that demonstrates the relationship between
kinetics and thermodynamics in protein–ligand binding. The free
energy difference between the unbound and bound states is related to
the binding affinity by DGbinding ¼ kBT ln(Kd/C

0). The free energy
differences between the unbound and bound states with the transition
state, DG‡

on and DG‡
off, are related to the on and off rates,

kon ¼ Aon e�DG
‡
on=kBT and koff ¼ Aoff e�DG

‡
on=kBT , respectively. The pre-

exponential factors Aon and Aoff are hard to measure and usually
unknown. The complex of L99A mutant of T4L (orange) with benzene
(black) serves as the model system to illustrate the bound and
unbound states of protein–ligand systems.
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based on the idea that an external bias is added to the original
force eld so as to make rare events occur more rapidly, but in
a way that the unbiased free energy difference can be calculated
by reweighting techniques.15 The alchemical methods,
including free-energy perturbation (FEP)16 and thermodynamic
integration,17 are based on the idea that free energy differences
can be calculated via a computationally convenient but not
necessarily physical path because the free energy is a state
function and path-independent.

While the free energy can oen be calculated without knowing
or studying the physical pathways that connect the reactant and
product states (e.g. the bound and unbound states), the calcula-
tion of kinetics is generally more time-consuming and compu-
tationally expensive because the full physical reaction pathways
have to be explored. It is still challenging but now possible to
perform MD simulations up to a few milliseconds.18 Focusing on
ligand-binding, it has recently been demonstrated that it is
possible to observe spontaneous binding of ligands to their
targets, e.g. the cancer drug dasatinib to Src kinase,19 the ‘beta
blocker’ drugs propranolol and alprenolol to the b2-adrenergic
receptor,6 a transition state analogue to the purine nucleoside
phosphorylase enzyme8 and benzamidine to the serine protease
trypsin.20–22 These observations demonstrate that the overall
drug-binding process can successfully be observed starting from
unbound states either in a few long trajectories6,8,19,20 or multiple
shorter trajectories (analysed e.g. with the help of Markov state
models or the weighted ensemble path sampling).21,23,24 The
success of these examples results, in part, from the fact that the
binding rate (1/son ¼ kon[L]) can be accelerated by simply
increasing the ligand concentration [L]. However, to the best of
our knowledge, unbiasedMD simulations have yet not been used
to determine the mechanism and kinetics of ligand escape for
This journal is © The Royal Society of Chemistry 2017
a tight protein–drug complex. Although it is potentially possible
to determine the off rates

�
koff ¼ Aoff e�DG

‡

off=kBT
�
from the height

of the free energy barriers, DG‡
off, this requires good reaction

coordinates that represent the entire set of slowly varying degrees
of freedom and also a good estimate of the pre-exponential factor
Aoff to convert barrier height to a rate. Finding good reaction
coordinates and calculating the pre-exponential factor are other
challenging tasks. Thus, koff has usually been estimated from
DGbinding and kon, while assuming two-state kinetics.6,8

Inspired by the work of Grubmüller25 and Voter,26 Tiwary and
Parrinello recently developed an enhanced sampling method,
coined ‘infrequent metadynamics’,9,27 to calculate the rate of
a state-to-state transition. Metadynamics is an enhanced
sampling method that discourages the system from sampling
already visited conformational regions by continuously adding
an external history-dependent repulsive potential at the present
value of a small number of slowly changing order parameters,
called collective variables (CVs).14 The traditional objective of
metadynamics simulations is to reconstruct the underlying free
energy surface, or potential of mean force (PMF), as a function
of the CVs used in the simulations or other order parameters. In
standard metadynamics simulations it is very difficult to obtain
kinetic properties.28,29 The key idea of infrequent metadynamics
is to bias the system with a frequency slow enough so that the
transition state regions are not substantially biased; therefore
the sequence of basin-to-basin transitions are unaffected and
rates can be estimated by applying transition state theory. This
method has recently been used to reproduce the kinetics of
conformational change of a mutant of T4 lysozyme,30 unbinding
of the inhibitor benzamidine from trypsin,31 the unfolding of
the villin head-piece,32 and state-to-state transitions of other
model systems.7,27,33

Here we use MD simulations with the aid of infrequent
metadynamics to address the relationship between thermody-
namics and kinetics in three systems of increasing complexity.
In systems of slow conformational transitions and ligand
association/dissociation, we show that infrequent metady-
namics provides the necessary accuracy and efficiency to
determine the kinetic and thermodynamic properties. To
distinguish the thermodynamic properties obtained from
different sources, we term the free energies from enhanced
sampling methods (e.g. metadynamics) or alchemical methods
(e.g. FEP) as ‘thermodynamic DG’, while the free energies
calculated from the forward and backward rates we call ‘kinetic
DG’. We in particular show that thermodynamic and kinetic DG
values are generally consistent, even in cases where the rates are
estimated from biased simulations or when the free energy
landscape contains multiple intermediate states. In total, we
provide a novel and feasible route to calculate kinetics and
thermodynamics at the same time, and a useful consistency
check for the calculated kinetic and thermodynamic
parameters.

2 Results and discussion

In order to examine the accuracy and applicability of the
proposed strategy, we applied it to three biomolecular systems
Chem. Sci., 2017, 8, 6466–6473 | 6467
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of increasing complexity. We rst applied it to the conforma-
tional transition between a and b conformers of the alanine
dipeptide (Ala2), a mostly two-state system. We then proceeded
to study the conformational transitions between four meta-
stable states of a ve-residue peptide (Nme-Ala3-Ace). Finally,
we applied the idea to the binding of a ligand to an internal,
buried cavity in the L99A mutant of T4 lysozyme (L99A T4L).
While the two peptide systems are sufficiently simple that the
kinetics can be estimated from multiple, unbiased simulations,
we demonstrate that infrequent metadynamics allows us also to
determine kinetic and thermodynamic parameters for ligand
binding to T4 lysozyme, further increasing the complexity of the
test and the applicability of the method.
2.1 First example: two-state transitions in alanine dipeptide

The alanine dipeptide is perhaps the simplest ‘biological
molecule’ and has been widely used as a model system for
computational biologists since the rst solvation simulation by
Karplus et al. almost four decades ago.34 Although this system
has a simple topology, it shows a sufficiently complicated free
energy landscape involving multiple conformational states
(Fig. S1†). For simplicity, we projected the conformational space
onto the slowest-relaxing degree of freedom, the dihedral angle
F, to coarse-grain the system into two stable states, a and
b (Fig. S2†). These two states are separated by high transition
barriers, thus making the a 4 b transition a typical rare event.

We estimated the free energy difference DGPMF
a–b between the

two states to be 2.6 � 0.1 kcal mol�1 by summing the pop-
ulations on the both sides of the barrier. To calculate the kinetic
DGkine

a–b , we obtained the transition times, sa/b and sb/a for
both directions (a to b and b to a) using the statistics from 40
independent unbiasedMD simulations (Table 1). Due to the low
computational cost to sample this model system, these simu-
lations could be performed without enhanced-sampling tech-
niques. From the calculated rates, we estimated DGkine

a–b to be
kBT ln(sb/a/sa/b) ¼ 2.8 � 0.2 kcal mol�1, in excellent agree-
ment with thermodynamic DGkine

a–b obtained from the potential
of mean force.
2.2 Second example: four-state transitions in a ve-residue
peptide

We then proceeded to a more complex system, a ve-residue
peptide Ace-Ala3-Nme, whose energy landscape has multiple
local minima, and where it is non-trivial how best to describe
the free energy landscape by one or a few order parameters.35,36

Using a recently described approach, called SGOOP (spectral
gap optimization of order parameters), Tiwary et al. designed
a one-dimensional reaction coordinate for this system
Table 1 Transition times and kinetic and thermodynamic DG between
a and b states of Ala2

sa/b (ns) sb/a (ns) DGkine
a–b (kcal mol�1) DGPMF

a–b (kcal mol�1)

2.3 � 0.6 231 � 56 2.8 � 0.2 2.6 � 0.1

6468 | Chem. Sci., 2017, 8, 6466–6473
( f ¼
X6
i¼1

aiFðqÞ, see Methods) as a linear function of six possible

dihedral torsion angles.36 We used this optimized CV in a stan-
dard metadynamics simulation (see Methods) which allowed us
to obtain a converged free energy landscape (Fig. 2). The land-
scape reveals four free energy basins, separated by substantial
barriers, indicating four conformational states that we labeled
as A, B, C and D, respectively. The PMF allows us to estimate the
free energy differences between states, ranging between 1.6 and
5.6 kcal mol�1 (Fig. 2).

Despite its simplicity, this model system displays a more
complicated free energy landscape with multiple minima, and
may thus serve as a relevant model for some of the complexities
that one would expect to encounter in larger biological systems.
In particular, this system violates the two-state assumption,
allowing us to test the practical utility of our approach and the
accuracy of free energy differences estimated from the kinetics
in such cases. In particular, we asked the question: can we
estimate all six free energy differences between states from the
transition rates between states? If so, how precisely?

We obtained each transition time (e.g. sA/B) from 40 inde-
pendent unbiased MD simulations starting from the corre-
sponding reactant state (e.g. state A) and ending with the
corresponding productive state (e.g. state B) (Table 2). In all
cases but one, we observed complete state-to-state transitions
for all 40 simulations. In the case of A-to-D transitions we
observed only 28 successful events among 50 trials and 300 ms
simulation time in total, and used a maximum likelihood
method37 to estimate of sAD.

The twelve transition times were subsequently used to esti-
mate the six kinetic DGkine values (Table 2). As in the case of the
dipeptide, we nd here also that the values are overall in very
good agreement with DGPMF estimated from the PMF (Fig. 3).
The overall calculation of kinetic DG values achieved a mean
Fig. 2 Potential of mean force of Ace-Ala3-Nme at 300 K in implicit
solvent. Representative conformations are shown next to the free
energy basins. The potential of mean force as a function of the opti-
mized collective variable allows us to estimate the free energy
differences DGPMF between these four basins. The convergence
properties of free energy differences are shown in Fig. S3.†

This journal is © The Royal Society of Chemistry 2017
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Table 2 Comparison between DGkine and DGPMF (in unit of kcal mol�1)
matrix of Ace-Ala3-Nme

sA/D sD/A DGkine
AD DGPMF

AD

10.7 � 2.0 ms 7.7 � 1.0 ns 4.3 � 0.2 5.6 � 0.2

sA/C sC/A DGkine
AC DGPMF

AC

722.4 � 136.6 ns 6.9 � 0.9 ns 2.8 � 0.2 3.5 � 0.2

sA/B sB/A DGkine
AB DGPMF

AB

27.5 � 5.1 ns 1.4 � 0.5 ns 1.8 � 0.3 1.9 � 0.1

sB/C sC/B DGkine
BC DGPMF

BC

23.3 � 4.7 ns 3.0 � 0.6 ns 1.2 � 0.2 1.6 � 0.1

sB/D sD/B DGkine
BD DGPMF

BD

709.7 � 130.0 ns 6.1 � 1.6 ns 2.9 � 0.2 3.7 � 0.1

sC/D sD/C DGkine
CD DGPMF

CD

8.1 � 1.4 ns 0.5 � 0.1 ns 1.7 � 0.2 2.0 � 0.1
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absolute error (MAE) of 0.6 kcal mol�1 and a Pearson correla-
tion coefficient of 0.99 with respect to DGPMF from the
converged free energy landscape.

We note that although we nd a strong, linear correlation
between DGPMF and DGkine, there appears to be a systematic
deviation from a unity slope. This cannot easily be explained by
lack of convergence of the free energy landscape (Fig. S3†) nor
by how we estimate the rates (Table S1†). Instead we note that
the deviations are only observed for the largest free energy
Fig. 3 Comparison between kinetic DGkine and thermodynamic
DGPMF values in the state-to-state transitions of the five-residue
peptide.

This journal is © The Royal Society of Chemistry 2017
differences which also correspond to state-to-state transitions
that cross one or two metastable states. In such cases, the
processes will in general be multi-exponential and the domi-
nant barrier might differ for the forward and backward reaction.
Encouragingly, however, our results show that DGkine still
provides a rather accurate estimate of the free energy difference
with an acceptable overall MAE, in the current case involving
two metastable states. Overall, our results suggest that in
practice it is possible to estimate the DG even when the free
energy landscape and the intermediates are not fully known.
2.3 Infrequent metadynamics can get accurate kinetics but
with less cost than unbiased MD

Because of the difficulty in unbiased MD simulations to sample
slow transitions such as the A/ D transition in the ve-residue
peptide described above, we further validated the calculation of
sA/D, sA/C and sB/D by employing the recently developed
‘infrequent metadynamics’ approach.9,27 We observed success-
ful transitions in all simulations and estimated the corre-
sponding unbiased transition times by reweighting the biased
simulations (Table 3). The reliability of these estimates was
analysed a posteriori by a Kolmogorov–Smirnov (KS) test,38 in
which the calculated p-value is used to test the null-hypothesis
that the distribution of transition times is Poissonian. Here p <
0.05 would, for example, be indicative that the biased simula-
tions aer reweighting were non-Poissonian, and hence that the
biasing had substantially perturbed the kinetics. In no case do
we nd low p-values, and the rates calculated from the infre-
quent metadynamics are generally very close to those obtained
by unbiased simulations but obtained at 25–100 times less
computational cost (Table 3).
2.4 Biological application: binding affinity estimation from
association and dissociation times of a protein–ligand
complex

The examples above, while simple, indicate that it is possible to
determine thermodynamic properties from kinetics with
reasonable accuracy even when intermediates are present, and
Table 3 Comparison of transition times of Ace-Ala3-Nme obtained
from unbiased MD and infrequent metadynamics

sA/D p-Value Cost

Unbiased MD 10.7 � 2.0 ms 300 ms
InMetaD 16.4 � 4.5 ms 0.41 � 0.26 3 ms

sA/C (ms) p-Value Cost

Unbiased MD 722 � 137 ns 0.34 � 0.24 26 ms
InMetaD 553 � 114 ns 0.50 � 0.28 1 ms

sB/D (ms) p-Value Cost

Unbiased MD 709 � 126 ns 0.48 � 0.25 25 ms
InMetaD 765 � 200 ns 0.34 � 0.23 1 ms

Chem. Sci., 2017, 8, 6466–6473 | 6469
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Table 4 Comparison of simulation and experiment for binding of
benzene to L99A T4L

Simulation Experiment

kon
a 3.5 � 2 � 104 M�1 s�1 8 � 105 M�1 s�1

koff
b 7 � 2 s�1 800 � 200 s�1

Kd 0.3 � 0.1 mM 0.8 � 0.12c/
0.2 � 0.04d mM

DGbinding �5.0 � 0.6 kcal mol�1 �4.2 � 0.1c/
�5.2 � 0.2d kcal mol�1

a p-Value of son is 0.10 � 0.12. b p-Value of soff is 0.38 � 0.26.
c Dissociation constant of 0.8 � 0.12 mM is from ref. 39.
d Dissociation constant of 0.2 � 0.04 mM is from ref. 50.
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that infrequent metadynamics simulations can also be used in
cases where the kinetics is very slow. We thus nally proceed to
illustrate the idea on a more biological and complex example of
binding of a ligand to a protein. In particular, we study the L99A
variant of T4 lysozyme (L99A T4L) in which the truncation of
Leu99 to Ala creates a large internal cavity of volume� 150 Å3. It
has been shown experimentally that this cavity can bind
benzene and a variety of other aromatic ligands with sub-
millimolar affinities, and with association times on the order
of a millisecond (at mM concentration).39–41 Since the binding
site is fully buried inside the protein, ligand binding must be
accompanied by conformational dynamics of the protein, and
L99A T4L has thus become a model for understanding protein–
ligand dynamics and interactions.42–46

Despite intensive research, several questions pertaining to
the mechanism of ligand binding however remain open, in
particular with the conformational dynamics underlying access
to the internal site remaining unclear. Previous NMR experi-
ments have shown that L99A T4L exchanges between a ground
state and an alternative, higher-energy conformational state,
but further structural studies showed that both of states are
sterically inaccessible to incoming ligands.41,45 This poses
a long-standing question of how the ligands access the internal
cavity buried in the protein core.47–49 By using metadynamics
simulations to explore the native state free energy landscape of
L99A T4L in the absence of ligands, we recently discovered
transiently formed tunnels that connect the interior binding
site to the solvent,30 and suggested these to be relevant for
ligand binding.

Here we make a step forward by using enhanced sampling
simulations to observe multiple events during which the ligand
(benzene) either enters into or escapes from the buried cavity in
L99A T4L. This not only provides us with valuable information
on the ligand binding mechanism, but also allows us to deter-
mine ligand association and dissociation rates as well as
binding thermodynamics. Here we focus on the kinetics and
thermodynamics and analyse and describe the mechanistic
aspects in future studies.

We used a total of �12 ms infrequent metadynamics simu-
lations to collect 20 ligand association and 20 dissociation
events. At the ligand concentration (5 mM) used in the simu-
lation, we nd son and soff to be 9 � 5 ms and 168 � 59 ms,
respectively (Fig. S4†). From these values we in turn determined
on- and off-rates and compared these to experiments (Table 4).
Also in this case, the KS test shows compatibility of the data
with a Poisson process, though the relatively lower reliability for
son estimation suggests that binding events are more difficult to
sample than the unbinding events.

From the calculated rates we also calculated the binding
affinity, which we nd to be in good agreement with the two
experimental estimates from either calorimetric analysis50 or
NMR39 (Table 4). To obtain an independent computational
estimate of the binding affinity, we also performed an alchem-
ical free energy calculation on the L99A T4L–benzene complex
using the same force eld. The result obtained (DGFEP

binding ¼
�4.9 � 0.1 kcal mol�1) is within error the same as that obtained
from the ligand kinetics, demonstrating consistence between
6470 | Chem. Sci., 2017, 8, 6466–6473
these two completely different approaches. Finally, we note that
even in a relatively long metadynamics simulation we were not
able to obtain a converged equilibrium free energy landscape,
and so could not estimate DGPMF

binding in this case. The fact that we
can estimate the free energy difference (from the kinetics) even
in the case where equilibrium sampling is not possible,
suggests that the approach could be useful in cases where other
free energy methods are more difficult to apply such as when
charged ligand alchemical modications are needed or exact
binding poses are not well known.

Although we obtained very good agreement between experi-
ment and simulation for the ligand-binding thermodynamics,
we note that both the on- and off-rates are one-to-two orders of
magnitude too slow. Because of the internal consistency
between the calculated rates and thermodynamics we suspect
that the error is due to remaining force eld discrepancies that
manifest themselves in the rates more than in thermodynamics.
Indeed, when parameterizing force elds one oen focuses
accuracy on the populated (free) energy minima.51 Interestingly
we also note a similar discrepancy between experimental rates
of the conformational exchange of L99A T4L30, and suggest that
future research should focus on potential systematic biases in
kinetic properties.
3 Discussion and conclusions

Here we have demonstrated the practical implementation of an
approach that determines free energy differences for biomo-
lecular rearrangements using the kinetics of the process. This is
also possible using e.g. Markov state models, but the simpler
approach taken here provides a convenient way to use enhanced
sampling simulations to estimate the kinetics. We thus show
that the approach is practically feasible and rather accurate,
both in systems that violate the two-state assumption or that
require further enhanced sampling to calculate the slow
conformational rates. In the cases studied here, the free energy
differences could be independently determined either by equi-
librium sampling (peptide conformational dynamics) or free
energy perturbation (ligand binding), and we nd good agree-
ment between the two approaches.

In other cases (such as conformational exchange in
proteins30), it may be difficult to estimate the free energy
This journal is © The Royal Society of Chemistry 2017
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difference by these methods, and as we demonstrate here the
calculation from kinetics is a viable alternative. Further, our
nding of internal consistency between ligand affinity and rates
in T4 lysozyme lends further support to the precision of the
rates calculated by the enhanced sampling method used. This
suggests also that these approaches can be used more generally
to estimate the kinetics of ligand binding and escape. Further,
we suggest that when calculating the kinetics of ligand binding
and unbinding, it is useful to validate the results by comparing
the kinetic free energy difference with that obtained e.g. from
free energy perturbation.
Table 5 Key parameters for obtaining kinetics from infrequent
metadynamics

Simulation s a (ps) hb (kJ mol�1)
4 Methods
4.1 Collective variables

Ala2.We used the two dihedral anglesF andJ in Ala2 as CVs
in a 120 ns-long well-tempered metadynamics simulation to
obtain the PMF, F(F). Gaussian hills were added every ps, with
a starting height of 1.2 kJ mol�1, width of 0.35, and bias factor of
10. The error bars of the potential of mean force were calculated
from the difference between the free energy obtained by
summing the deposited Gaussians and the one obtained with
time-independent estimator.15

Ace-Ala3-Nme. By using the method of spectral gap optimi-
zation of order parameters, Tiwary et al. designed a one-
dimensional reaction coordinate for the ve-residue peptide,

f ¼ 1

2

X6

i¼1

ai

�
1þ cos

�
qi � qRef

i

��

as a linear function of six possibly relevant dihedral torsion
angles.36 Here qRefi is the reference dihedral angle. We used
qRefi ¼ 1.25 and the coefficients are ai ¼ {0.6228, 0.1201, 0.5643,
0.1102, 0.5153, 0.0403} as optimized previously36 in three
independent well-tempered metadynamics simulations
(Fig. S3†). Gaussian hills were added every ps, with a starting
height of 1.7 kJ mol�1, width of 0.03 unit, and bias factor of 15.

L99A T4L–benzene.We recently used a non-equilibrium bias
potential52 to observe 20 trajectories of benzene escaping from
the cavity of L99A T4L, and found a dominant unbinding
pathway.30 Here, we used contacts between the protein and
ligand observed in these non-equilibrium paths to dene a set
of path CVs,53 SLigpath and ZLigpath describing ligand association and
dissociation. The two CVs quantify the progress along the path
(SLigpath) and the distance away from the reference path
(ZLigpath), respectively. Also, we previously demonstrated that
a protein-centered CV (SPropath) substantially enhances the native
state dynamics of L99A T4L,30 and so we used all three CVs in
the simulations. Parameters and settings for the metadynamics
simulations for Ace-Ala3-Nme and L99A T4L–benzene can be
found in the ESI.†
dep

Transition of Ace-Ala3-Nme 200 0.4
Association of L99A T4L–BNZ 40 0.4
Dissociation of L99A T4L–BNZ 100 0.2

a The deposition frequency of the Gaussian bias. b The height of the
Gaussian bias.
4.2 Kinetics calculation

Briey described, the infrequent metadynamics approach
works by performing dozens (typically 10 to 40) individual
simulations to obtain rst passage times between the individual
basins. These are then corrected by the known acceleration
This journal is © The Royal Society of Chemistry 2017
factors (decrease in barrier height due to the enhanced
sampling) to obtain estimates of the unbiased rates. The
acceleration factor can be calculated by appealing to general-
ized transition state theory:54

a ¼ s/sM ¼ heV(s,t)/kTiM

where the angular brackets denote an average over a metady-
namics run before the rst transition, and V(s,t) is the meta-
dynamics time dependent bias.

As the basin-to-basin transition is a rare event, its charac-
teristic time is expected to be a Poisson-distributed random
variable. In principle, its mean m, standard deviation s and
median tm/ln 2 should be equal. In practice, however, they are
somewhat sensitive to insufficient sampling, and so rather than
simply calculating averages, we estimated the transition time s
from a t of the empirical cumulative distribution function to
the theoretical cumulative distribution function (TCDF):38

TCDF ¼ 1� e�
t
s

A bootstrap approach was used to estimate the errors. To
examine whether the observed times indeed follow the expected
Poisson distribution we used a KS test to obtain a p-value that
quanties the similarity between the empirical and theoretical
distributions. The key parameters for infrequent metadynamics
simulations, including the bias deposition pace and the initial
bias height, are listed in Table 5.

In the unbiased simulations of Ace-Ala3-Nme we used
a maximum likelihood method37 to estimate of sAD because not
all simulations reached the D state:

sMLE ¼

Xn

i¼1

ti þ
XN�n

j¼1

tj

n
�

Xn

i¼1

ti þ
XN�n

j¼1

tj

n3=2

where ti are the transition times for the n successful transition
events and tj are the lengths of theN� n trajectories that have not
transitions yet. In other cases where we could observe successful
transition events in all trials either from unbiased MD simula-
tions or infrequent metadynamics simulations, we calculated the
transition times by tting with TCDF as stated above.
4.3 Model systems and MD details

MD simulations were performed with GROMACS 5.1.2 (ref. 55)
combined with the PLUMED 2.2 plugin for metadynamics.56
Chem. Sci., 2017, 8, 6466–6473 | 6471
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For Ala2 and Ace-Ala3-Nme, the simulations were performed
with Amber ff99SB force eld57 and an implicit solvent model.58

The temperature was kept constant at 300 K using the v-rescale
thermostat.59 Bonds involving hydrogens were constrained
using the LINCS algorithm. A time-step of 2 fs was used.

For L99A T4L–benzene system, the simulations were per-
formed with the CHARMM22* force eld60 in the NPT ensemble
using a periodic cubic box with a side length of 7 nm that
includes �10 000 water molecules. The temperature and pres-
sure were kept constant at 298 K using the v-rescale thermostat59

with a 1 ps coupling constant and at 1.0 bar using the Parri-
nello–Rahman barostat61 with a 2 ps time coupling constant,
respectively. We employed the virtual sites for hydrogen atoms
with a single LINCS iteration (expansion order 6)62 and con-
strained the bonds involving hydrogen atoms using the LINCS
algorithm, allowing simulations to be performed with an inte-
gration time step of 4 fs. The long-range electrostatic interac-
tions were calculated by the means of the particle mesh Ewald
decomposition algorithm with a 0.16 nm mesh spacing.
4.4 DGbinding calculation by alchemical transformation

The DDM methodology63 with the virtual bond algorithm64 was
used for the thermodynamic cycle calculation in GROMACS
5.0.6.55 We ran three replicas for each l value of the decoupling
sequence and the results were combined using the Multistate
Bennett Acceptance Ratio (MBAR).65 The restraint atoms and
potentials used were kept for all protein–ligand state calculations
and replicas, in accordance with the DDM-VBA method, with
increasing harmonic potential restrains starting from 0 and
scaled to maximums of 4184 kJ mol�1 nm�2, 41.84 kJ mol�1

rad�2 and 41.84 kJ mol�1 rad�2 for distance, angles and dihe-
drals respectively.
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