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We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic
Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or
few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from
molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed
parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for
highly reactive systems, bond duration should be a model parameter that is chosen to maximize the
predictive power of the resulting statistical model. We demonstrate our method on a high temperature,
high pressure system of reacting liquid methane, and show that the learned KMC model is able to
extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of
elementary reactions enables us to isolate the most important set of reactions governing the behavior of
key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the
chemical reaction network which can be solved either as an integer program or efficiently using L1
regularization, and compare our results with simple count-based reduction. For our liquid methane
system, we discover that rare reactions do not play a significant role in the system, and find that less
than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to
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MD simulation data can be reused to contribute to an increasingly large and accurate genome of
elementary reactions and rates.
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can enable faster and larger simulations without diminishing
accuracy, and which exhibit useful predictive capabilities under

1 Introduction

In many fields of chemistry, biology, and materials science, the
atomistic behavior of complex systems is studied using molec-
ular dynamics (MD) simulations. These computations may
involve thousands of atoms, and the resulting data is both
detailed and complex, often corresponding to hundreds of
molecular species undergoing thousands of reactions. Under-
standing the key chemical processes underlying this rich
collection of data has thus become a grand scientific challenge.

On the other hand, MD simulations often require weeks of
computation on high-performance parallel machines to
produce data for a timeframe of merely nanoseconds or less.
For many physical phenomena of interest, these time and
system size restrictions present a significant limitation for
meaningful modelling. Thus in recent years, there has been
a growing need for scale-bridging models and algorithms that
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different thermodynamic conditions."

One important way to reduce atomistic simulations both
computationally and as a physical model are kinetic Monte
Carlo (KMC) methods.> Given a set of states and transition rates
between them, KMC methods enable stochastic simulation of
a system's traversal through the given states over time. Because
the simulations are now occurring on the timescale of transi-
tions between states rather than atomic vibrations as in
molecular dynamics, KMC methods greatly increase the speed
of computation over the same timeframe. However, these
methods require all of the states and transition rates to be
known a priori; usually these are encapsulated by a small event
table of key chemical processes derived from chemical intui-
tion, with transition rates carefully computed from energy
barriers derived using transition state theory, which can be very
expensive. Such approaches quickly become intractable at high
temperatures in condensed phases, where thousands of reac-
tions or more can occur.

In this work, we propose a statistical framework for
analyzing the complex chemistry simulated with molecular
dynamics to build a KMC model corresponding to the same
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system. Rather than using a small event table of chemically
intuited reactions with expensively calculated reaction rates, we
use molecular dynamics data to generate a large event table of
all observed elementary reactions with statistically estimated
rates. We discuss in depth how bond duration should be chosen
to optimize the predictive power of the KMC model, and
demonstrate the ability of the resulting models to extrapolate in
time. We then systematically reduce the model to gain chemical
insight. Previously in Yang,* an L1-regularization based model
reduction algorithm was proposed. Here we describe how our
data-driven approach first leads to an integer program, and how
the Li-regularization based method described in Yang® is
a convex relaxation of the integer program. Our data-driven
model reduction algorithm is computationally efficient,
requires minimal a priori information about the chemical
system, and employs a single parameter that controls the
tradeoff between the size of the reduced KMC model and the
resulting modelling error. We compare the predictive power of
the integer programming and L1-regularization based methods
for the first time with the simple reduction method of elimi-
nating infrequent reactions. Our results are demonstrated
throughout on a system of high temperature high pressure
liquid methane, under conditions similar to shock compres-
sion. Liquid methane is thought to be a major component of gas
giant planetary interiors, and thus understanding its chemistry
has important applications to planetary physics.

Molecular dynamics simulations using ab initio potentials
from electronic structure theory have recently been shown to
reveal new reaction pathways in complex chemistry* and to
enable probing of high temperature high pressure conditions
for which microscopic mechanisms are difficult to analyze
experimentally.® Researchers have also discovered ways to
predict chemical reactions from reactants and reagents using
neural networks.® In combination with these techniques for
finding new reactions, our statistical framework could eventu-
ally be used to build a comprehensive kinetic Monte Carlo
model for complex chemistry that can be increasingly refined to
include more elementary reactions and better rates, which can
then be systematically reduced for particular systems of
interest, enabling rapid simulation capabilities over a wide
range of chemical compositions and thermodynamic
conditions.

1.1 Background

In communities that study large-scale chemical reaction
networks, model reduction is an important area of research.
One common starting point is to model a system of interacting
reactions as a deterministic set of ordinary differential equa-
tions. The combustion community, for example, has built sets
of reference chemical reaction networks such as GRI-Mech 3.0
(ref. 7) consisting of hundreds of reactions with corresponding
temperature and pressure-dependent reaction rates, which can
then be simulated under different conditions using an ODE
solver. The combustion community and others have studied
model reduction from the viewpoint of solving an optimization
problem over this set of coupled ODEs. Existing algorithms
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focus on various global optimization methods such as integer
programming®** and genetic algorithms.”> While these
methods have had some success, they are generally expensive
and highly parameterized. Integer programming is NP hard,
and therefore difficult to employ on arbitrarily large chemical
reaction networks. Often, pre-reduction of the networks are
necessary before optimization methods can be used efficiently.
Genetic algorithms on the other hand often require extensive
parameterization, which means the optimization problem must
be fine-tuned for each individual system. This is a barrier to fast
development of reduced models for systems for which chemical
intuition is not readily available.

The biochemistry community has also studied the problem
of model reduction. Some popular methods include lumping of
species, graph theoretic approaches, and quasi-steady state
approximations, as reviewed by Radulescu et al.** In contrast to
combustion, where molecular species are generally studied in
large molar quantities, many biochemical systems of interest
involve small enough concentrations that the stochastic prop-
erties of the chemical system are important. Thus, in addition
to modeling chemical networks as deterministic systems of
ordinary differential equations, the biochemistry community
also uses stochastic models, including both discrete-time
Markov state models and continuous-time Markov models.
When built directly from data, the finite state space for these
models can be very large; thus both efficient parameter esti-
mation and model reduction are very active areas of research.**

Finally, many scientific communities use sensitivity analysis
to reduce event tables for kinetic Monte Carlo simulations.”
One commonly used method is Principal Components Analysis
(PCA) of the rate sensitivity matrix,'® whose elements are the
partial derivatives of the lognormalized species concentrations
with respect to reaction rate parameters. Thresholds are chosen
for the number of principal components to consider in the
reduced mechanism, and also for identifying the significant
elements of each principal component. This procedure must be
done at multiple time points to build a collective reaction
mechanism. The main drawback of this method is that it
requires careful application of all of these different thresholds,
and in fact some thresholds may need to be chosen simulta-
neously. It also requires many stochastic simulations to build
each element of the sensitivity matrix at multiple time points,
which can be prohibitively expensive for a large number of
species and reactions. A modified version of this method in
combination with some other approaches has been fully auto-
mated in Nagy and Turanyi.”” The required input is a full
reaction mechanism.

1.2 Our approach

In this work, we present a systematic framework for building
a reduced KMC model to represent any chemical system that
can be modeled well by some chemical master equation. The
full process is outlined in Fig. 1.

A given chemical system is characterized by its potential
energy surface. We begin by sampling from this surface using
molecular dynamics simulation, which produces a time series

This journal is © The Royal Society of Chemistry 2017
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Fig. 1 Schematic of our overall approach. A given chemical system is
described by its potential energy surface. We first sample from this
surface via molecular dynamics simulations. We then use parameter
estimation to derive a stochastic model consisting of elementary
reactions and corresponding reaction rates from the molecular
dynamics data. This modelis called the full stochastic model because it
includes all reactions observed from the molecular dynamics simula-
tion. We apply one of several model reduction techniques to reduce
the full stochastic model by eliminating reactions. Finally, we compare
the dynamics of the reduced stochastic model to the molecular
concentration trajectories observed in the molecular dynamics
simulations.

of the system as it traverses phase space. It is important to
emphasize that this time series should be considered as only
one sample of a trajectory on the potential energy surface.
Molecular dynamics simulations are initialized with random
initial velocities, and as such multiple runs of the same simu-
lation can and do produce significant differences in the
sampled trajectories, as shown in Fig. 2. In fact, the chaotic
nature of molecular dynamics simulations ensures that
computationally, no matter how small the differences in initial
conditions, two distinct molecular dynamics simulations will
diverge significantly from each other in phase space after
a short amount of time." Note that these differences in phase
space do not necessarily mean the macroscropic properties of
the system have changed; this suggests there can be significant
redundancies in representing a chemical system in phase space.
It may thus be informative to consider a transformation that
collapses regions of phase space into points in molecular
concentration space, separated by energy barriers. In this work,
we first explore the process of building a chemical reaction
network in molecular concentration space from a molecular
dynamics simulation in phase space via parameter estimation.
We define a chemical reaction network to be a set of elementary
reactions and their corresponding rates of reaction. The use of
elementary reactions ensures that the resulting network is
applicable over a wide range of chemical compositions, whether
or not the system is at equilibrium. To extract molecules and
reactions from phase space data, we will use bond length and
bond duration criteria. Then for a given set of reactions and
molecular concentrations, we will use maximum likelihood
estimation to estimate the corresponding rates of reaction.

This journal is © The Royal Society of Chemistry 2017
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Fig. 2 Six independent molecular dynamics simulations of the same
system under the same thermodynamic conditions, resulting in
somewhat different molecular concentration trajectories due to
different initial velocities. Each colored line corresponds to a projected
molecular concentration trajectory derived from a single molecular
dynamics simulation. The dotted black line corresponds to the mean
of these trajectories. We see that although the general trends are the
same across simulations, the number of molecules at any given time
can fluctuate between simulations. The average difference (in the root
mean square sense) between each molecular concentration trajectory
and the mean trajectory is about 8.0, 5.9, and 3.3 molecules for CH,4,
H,, and C;He, respectively.

The parameters of the chemical reaction network are both
the set of elementary reactions, and their corresponding rates of
reaction. The parameter estimation procedure thus involves all
steps taken to determine both reactions and rates. We charac-
terize the complexity of the reaction network by the number of
parameters it has; thus the fewer the number of reactions, the
less complex the model. We will show how bond duration in
particular affects the number of reactions chosen.

The set of elementary reactions and reaction rates give rise to
a full stochastic model of the chemical system where the
probability of being in any given state in the space of molecular
concentrations is governed by the chemical master equation.™
The chemical master equation can be simulated exactly using
Gillespie stochastic simulation®® (equivalent to KMC), in
a matter of minutes rather than weeks for the corresponding
molecular dynamics simulation.

From the full stochastic model, we can then study how to
reduce the chemical reaction network to only the set of
elementary reactions that maximizes the predictive power of the
model on the concentration trajectories of a particular set of
significant molecules. When the set of significant molecules is
considered to be all observed molecules, it enables reduction of
noise from the system, e.g. it removes reactions in the derived
chemical reaction network that may arise from atomic vibra-
tions rather than actual elementary reactions. When the set of
molecules is limited to a few key molecules, model reduction
can isolate the portion of the reaction network most relevant to
the dynamics of those molecules. When model reduction
decreases the order of magnitude of the fastest rates of reaction
in the system, it can also significantly speed up Gillespie
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simulation of the important dynamics. We will study the results
of three different methods for model reduction: one naive
method rooted in physical intuition, one systematic method
based on statistics and optimization, and one computationally
efficient method that well-approximates the systematic method.

In each step of this process, there will be error in the
modeled system. First, the accuracy of the molecular dynamics
simulations depends crucially on the accuracy of the potential
function used to model the potential energy surface. Second,
deriving the full stochastic model from the molecular dynamics
simulation assumes, among other things, a well-stirred system.
Finally, the reduced stochastic model is by construction
a reduction most relevant for the region in concentration space
under study, and may become less applicable the further away
the trajectory of the system moves from the sampled region.
These and other sources of error in each step of the approxi-
mation will be discussed in more detail below. Nevertheless, we
will show that it is possible to derive a significantly reduced
stochastic model that can approximately reproduce the molec-
ular concentration trajectories of significant molecules derived
from molecular dynamics, with the complexity of the system
increasing as more molecular species are tracked.

2 Molecular dynamics simulation

The system we will use in this study is high temperature high
pressure liquid methane, under conditions similar to that
found in shock compression. We use LAMMPS*"** to simulate
a computational cell of 216 methane molecules at 3300 K and
40.53 GPa for approximately 0.55 nanoseconds. We use the
ReaxFF potential with the parameters of Mattsson et al.,* which
has been shown to be able to capture complex chemistry under
extreme conditions.> The integration timestep is set to 0.12
femtoseconds. Six independent molecular dynamics simula-
tions are generated under these same thermodynamic condi-
tions by initializing each with different velocities. To check for
system size effects, we also simulated a cell of 125 methane
molecules under identical conditions, and found that the
systems contained a comparable ratio of both small molecules
such as CH, and H, and larger carbon clusters.

3 Full stochastic model

Given a single molecular dynamics simulation, we use bond
length and duration criteria to compute the observed concen-
tration of molecules and the observed set of reactions at every
time step. From this information, we use maximum likelihood
estimation to estimate the rate coefficients for each reaction.
The set of observed reactions and corresponding rate coeffi-
cients define a chemical reaction network that can be simulated
with the Gillespie Simulation Algorithm to satisfy the chemical
master equation.

3.1 Bond length and duration criteria

From the time series of atomic positions given by the molecular
dynamics simulation, we identify molecular species and
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corresponding chemical reactions. Atoms are considered to be
bonded if their distance is below a given threshold for a given
duration of time, 7. Similarly, previously bonded atoms are not
considered unbonded unless their distance is above a given
threshold for a time period of 7. A schematic of this bond
duration criteria is shown in Fig. 3. The bond length criteria we
used is reported in previous work:*® 1.98 angstroms for C-C,
1.09 angstroms for H-H, and 1.57 angstroms for C-H. These
values were obtained from radial distribution functions under
similar thermodynamic conditions using the same potentials.

The bond duration criteria ¢ has an important effect on the
chemical reaction network obtained. We note that it is impor-
tant to choose 7 such that the bond duration is short enough for
all reactions to be considered elementary, but also long enough
such that atomic vibrations that happen to extend past the given
bond length are not included as reactions.*® Different bond
duration criteria lead to different molecular concentrations,
chemical reactions, and reaction rates. In particular, one naive
way to reduce the number of distinct reactions observed, and
thus the apparent complexity of the chemical system, is to
increase t; in the limit of infinite 7, no reactions will be
observed.

Fig. 4 shows how the number of unimolecular, bimolecular,
and other reactions observed in a single molecular dynamics
simulation varies with © (the counts are averaged over the six
independent MD simulations computed). Note that there are
a small number of trimolecular reactions, but only a nominal
number of more complex reactions. Generally in the gas phase,
elementary reactions are no more than bimolecular. In the high
temperature high pressure liquid phase, it may be possible for
trimolecular and higher order reactions to occur, but a large
number of higher order elementary reactions is unlikely.
Atomic vibrations are likely to account for many of the observed
reactions at small 7.

For each value of t, we observe a set of reactions from the
molecular dynamics trajectory and use maximum likelihood
estimation (discussed below) to derive a corresponding set of
reaction rates. This gives us a different stochastic model for
each value of 7. Choosing the optimal value of 7 is therefore

bonded 7
not bonded

bonded |7
o

original signal from
bond length criteria

1 Suiseasoul

not bonded

v

time

Fig. 3 Schematic of how bond duration 7 is used to smooth out the
signal of whether or not atoms are bonded. Two atoms are not
considered bonded unless the bond has endured for t timesteps. Two
atoms that were previously bonded are not considered unbonded
unless the bond has been broken for t timesteps. Note that as t
increases, fewer events are detected.

This journal is © The Royal Society of Chemistry 2017
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Fig. 4 As the chosen bond duration t increases, there are fewer of all
types of reactions, thus decreasing the overall complexity of the
system. For small 7, it is likely that many of the observed reactions
actually correspond to atomic vibrations. Note that in our high pres-
sure, high temperature system, some trimolecular and more complex
reactions may reasonably be considered elementary.

a model selection problem: we select 7 to maximize the agree-
ment between the molecular dynamics simulation and the
corresponding stochastic model. Fig. 5 shows how the choice of
affects the error between the molecular concentrations computed
from the molecular dynamics simulation and that simulated by
the corresponding full stochastic model (we discuss in detail how
error is computed below). The errors are averaged over the indi-
vidual stochastic models corresponding to each of the 6 MD
trajectories. Error for the three highest concentration stable
molecules found in the system are shown. The effects of choosing
too large (underfitting) or too small (overfitting) © are most
apparent for the two highest concentration molecules, CH, and
H,. In the remainder of this study, we will use a bond duration
criteria of T = 0.096 picoseconds, approximately corresponding to
minimal error as shown in Fig. 5.

3.2 Chemical master equation

The stochastic model we will use is governed by the chemical
master equation, which gives the probability at any time ¢ of
being in a given state in molecular concentration space.*

15 CH4

= | @+

2 C2H6

5 |

g10f-
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1072 10 100

7 (ps)

Fig. 5 Root mean square error between molecular dynamics simu-
lations and the corresponding stochastic model as a function of the
bond duration criterion t for the three highest concentration mole-
cules. The error is computed according to eqn (6) and averaged over
all six molecular dynamics simulations. For smaller 1, there is likely to
be error from atomic vibrations. For larger 1, the reactions identified
are unlikely to be elementary. The dotted line indicates the optimal
choice of T we use for the remainder of our study.
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Consider a chemical system at thermal equilibrium and
constrained to a constant volume. Suppose furthermore that the
set of reactions that can occur in the system is not appreciably
affected by the spatial position of the molecules; when this
assumption is true we say that the system is well-stirred. Then
we can associate with every reaction j a propensity function a;(x),
which is defined such that g;(X(¢))d¢ is the probability, given the
vector of molecular concentrations X(¢) at time ¢, that reaction j
will occur once inside the fixed volume in the next infinitesimal
time interval [¢, ¢ + df). It can be shown® that in a chemically
homogeneous system, this propensity function is proportional
to the number of possible combinations of the reactant mole-
cules given the current concentrations of each molecular
species, that is ai(X(¢)) = k#h(X(t)), where k; is the constant
reaction rate coefficient and #; is a function of the molecular
concentrations that gives the combinatorial number of times
that reactant molecules in the system could have achieved the
given reaction. If reaction j is unimolecular, and there are X,,(t)
molecules of reactant molecule m in the fixed volume at time ¢,
then 7/(X(t)) = X,,(¢). If reaction j is a bimolecular reaction
between two different species m and m', then h{(X(t)) = X,,,(¢)
X,(t), and if it is a bimolecular reaction between the same

1
molecular species, #;(X(t)) = EXm(t)(Xm(t) —1). In our data-

sets, we also observe a small percentage of trimolecular reac-
tions. We treat these using the same combinatorial argument as
above, e.g. for trimolecular reactions m + m’ + m” — products,
we set 1(X(t)) = Xn(t)Xw(£)X,(t), with suitable modifications if
any of the reactants are the same molecular species.

An important observation to make about the propensity
function is that while it is generally nonlinear in the molecular
concentrations (except in the unimolecular reaction case), it is
always linear in the reaction rate coefficients ;. This is a key
property that we will exploit later for model reduction.

A system of reactions with corresponding propensity func-
tions can be simulated via the Gillespie stochastic simulation
algorithm described below to satisfy the chemical master
equation exactly. In our framework, the system of reactions was
selected via bond length and duration criteria. Therefore, it
remains to derive propensity functions by estimating the reac-
tion rate coefficients.

3.2.1 Tau-leaping approximation. The propensity functions
a/X(t)) are defined with respect to infinitesimal time intervals [z,
¢t + dt). However, for a molecular dynamics simulation with
integration timestep At, we only have information about the
number of times each reaction occurs within time intervals of
a fixed length A¢. Thus, we cannot estimate the parameter k;
directly. Nevertheless, if we assume At is small enough such
that a;(X(¢)) is approximately constant throughout [¢, ¢ + At) for
all reactions, then we can approximate the number of times
each reaction j occurs in the time interval by conditionally
independent Poisson random variables #; with parameter u;
equal to the propensity function times the time interval®”

wAX(1) = a(X(D)Al = kh(X(1)At (1)

_ w'e B

Pr(2; = n|X(1)) i
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For each reaction j, we have an observation of #;|X(¢) at all ¢ for
which 2(X(¢)) # 0. It is important to note that the #; are all
conditionally independent at any particular ¢; we assume that
within the time interval [z, ¢ + Af), the probability of any reaction
J firing does not depend on whether or not any of the other
reactions are also firing, but rather only on the molecular
concentrations at time ¢. This approximation is true when At is
small enough so that few reactions are firing and the concen-
trations of all reactants is large enough that the few which are
firing do not interfere with each other.

For some reactions, the number of observations is on the
order of the total number of timesteps sampled in our molec-
ular dynamics simulation. We can use any statistical point
estimation technique to estimate k; from these samples. For
others, there is as few as just one observation of the random
variable. In this case no point estimation technique will be
reliable, but we will proceed with a likely overestimate of ;.

3.2.2 Maximum likelihood estimation. We will use
maximum likelihood estimation®*?? to estimate the ;. For each
reaction j, our observations n(t,t+At) of #;|X(¢) are conditionally
independent but not identically distributed Poisson random
variables. The likelihood of observing a particular sequence of
nt,t+At) can be expressed equivalently as

{= H Pr
so that the log likelihood is given by

Zlog Pr(2; = ni(1,t + At)|X(1)) (4)

2; = ni(t, 1+ An)|X(1)) (3)

¢ =1log(2)

Maximizing ¢ and plugging in expressions 1 and 2 above, the
resulting maximum likelihood estimate for the reaction rate

coefficient k; is
an (t,¢+ A1)

b= Ath/ )

Since we are estimating each reaction rate separately, they
will be estimated with different accuracy. In particular, we are
likely to overestimate the rates of reaction for rarely possible
reactions, since we will have very few nontrivial observations of
#i|X(t) over which we are taking the maximum likelihood. As we
will discuss below, model reduction helps to maximize predic-
tive power by removing unimportant reactions for which we
may have very noisy estimates of the reaction rate, increasing
overall confidence in the model.

3.2.3 Gillespie stochastic simulation. Given a set of reac-
tions and reaction rates, we can simulate the chemical master
equation exactly using the Gillespie algorithm,***° which
models the time evolution of the chemical system in molecular
concentration space by using random sampling to choose
reaction events that cause transitions of the system from one
concentration state x to another. The algorithm draws from the
joint probability distribution p(t,j|X,t), which is defined so that
p(tj|X,t)dr is the probability, given the current vector of
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molecular concentrations X(t) = x, that the next reaction to
occur in the system will be reaction j, and will happen in the
infinitesimal time interval [t + 7, ¢ + 7 + dt]. At each step in the
Gillespie simulation, we first choose the next reaction to occur
based on the probability distribution

4(x)
2o

where we recall aj(x) are the propensity functions associated
with each reaction. Then we compute the time until the next
reaction occurs, which can be shown to follow the distribution
of an exponential random variable

pUlex,1) =

p(x.0) = ag(x)exp(—ay(x)7)

Z“J

occurs over the course of the Gillespie simulation is by
construction chosen from among the predetermined set of
reactions and rates, this algorithm will not exhibit any events
that were not observed in the molecular dynamics simulation.

where a,(x . We note that since any reaction that

3.3 Error metric

When comparing the molecular dynamics simulations and
Gillespie stochastic simulations, we consider the time series of
molecular concentrations for each molecule separately. We use
the root mean square error between the molecular dynamics
simulation and the mean of S stochastic simulations:

Z (XMD[I} - ES{XGSSA[I}})Z
=1 7 (6)

EI'I'MG =

Here T is the total number of sampled timesteps of the
molecular dynamics simulation; since the Gillespie simulation
is technically a continuous time model, we can simply sample it
at all times for which we have a corresponding MD sample. This
error metric captures the difference between the full stochastic
model and the molecular dynamics simulation of the potential
energy surface, as well as stochastic fluctuations in a single MD
simulation and in the finite set of S number of Gillespie simu-
lations. We note that there may be some cancellation of error
between these effects. We attempt to smooth out the stochastic
fluctuations in the Gillespie simulations by averaging over S
simulations, but in contrast there will be unavoidable fluctua-
tions of the system captured by the single MD simulation. Note
that the magnitude of this error term is dependent on the
number of stochastic simulations S used to compute the mean
stochastic trajectory, as well as the magnitude of fluctuations in
the single molecular dynamics trajectory.

3.4 Results

Fig. 6 shows two out of the six molecular dynamics simulations
we computed, and corresponding Gillespie simulations of the
stochastic model constructed from them. We can see that the

©
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Fig. 6 Two examples of Gillespie stochastic simulations of the
chemical system compared to the molecular dynamics simulations
they were trained from, when all of the molecular dynamics data are
used. We see that both achieve reasonable agreement, especially in
comparison to fluctuations between MD simulations as shown in
Fig. 2. Differences in accuracy of the Gillespie simulations compared to
the molecular dynamics are due to a variety of factors, including
approximations made by the model as well as the stochasticity
involved in a single simulation.

stochastic model quite reasonably reproduces the molecular
dynamics, albeit with differing levels of accuracy. This is both
due to the stochasticity involved in a single simulation, as well
as because the stochastic model includes several approxima-
tions, which we discuss below.

To understand whether the stochastic model is able to
extrapolate in time and to different regions of molecular
concentration space, we show in Fig. 7 the results of building the
set of reactions and rates using only the first 12, 25, 50, and 100
picoseconds of molecular dynamics data. We see that with just
the first 25 picoseconds of data, the model is able to predict the
molecular concentrations of CH, and H, for up to approximately
200 picoseconds and 500 picoseconds, respectively. However, as
Fig. 8 shows, data from times out to 150 picoseconds in the
molecular dynamics simulation is needed to capture the growth
of large carbon clusters, since reactions involving these clusters
do not start appearing until later in time.

3.5 Limitations of the model

In constructing the stochastic model from molecular dynamics
data, we have discussed above several approximations that were
made. The most important was the tau-leaping approximation,

CH4 H2
” 250 ”
=MD
4] @
=] ==train 12 ps = 100
o 200 . 5]
@ ==train 25 ps @
<] train 50 ps []
E 150 —train 100ps | [0
5 ol R
100 s train 50 ps
c 1< 0 =train 100 ps
=} 1 1 ]l >
c 50 c
0 200 400 600 0 200 400 600

time (ps) time (ps)

Fig.7 Time extrapolation: we use only the first 12, 25, 50, or 100 ps of
available MD data to build a KMC model, then test model predictions at
longer timescales. The colored lines show the molecular concentra-
tions of CHy4 (left panel) and H (right panel) averaged over 20 Gillespie
simulations of the corresponding models. The black line corresponds
to the true molecular concentrations from MD. While 12 ps of data is
not enough to sufficiently model either molecule, 25 ps of data is
enough to model CH4 for 200 ps and H; for 500 ps.
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Fig. 8 Time extrapolation of carbon-containing clusters: since larger
molecules with more than 5 carbon atoms do not appear in the system
until after about 50 ps, we find that training data from times out to 150
ps is needed to capture their presence and growth in the chemical
system over 550 ps. All colored lines showing molecular concentra-
tions of carbon clusters are averaged over 10 Gillespie simulations.

which assumed the time interval [¢, ¢ + At) is small enough and
molecular concentrations are large enough such that all reac-
tions occurring within the time interval are independent. We
also assume the reactions are elementary so that the k; are
dependent only on the molecular concentration of the reac-
tants. The estimated k; are constructed with different confi-
dence levels.

There are also several other approximations that come into
play in the stochastic model. First, Poisson random variables
can theoretically take on infinitely large positive integer values,
albeit with very small probability. However, this is not the case
with the number of reactions that are possible within a given
time interval; that number is inherently limited by the number
of reactant molecules available. Thus for example when there
are only enough reactant molecules for one reaction to occur,
we are actually observing a Bernoulli random variable. This may
affect the accuracy of some of the k;, but the larger wu(X(t)), the
less this will have an effect.

Second, diffusion and local environment effects are simpli-
fied away from our model. Unlike the molecular dynamics
simulation, the stochastic model has no knowledge of spatial
arrangements of the molecules and assumes distance between
reactants does not play an appreciable role in the rates of
reaction.

4 Model reduction

Having built our full stochastic model, we now seek to reduce it
by eliminating as many reactions as possible while minimizing
any loss in the predictive power of the model. Why do we believe
that this can be meaningfully achieved? Firstly, there is more
information in the phase space data generated from molecular
dynamics than there is in its coarse-grained projection onto
molecular concentration space. The information that can not be
transferred from our phase space data to our statistical model
in molecular concentration space shows up as noise in the
statistical model. Model reduction helps ensure that the model
is not overfit to this noise. Furthermore, independently of
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modeling error, there are reactions that, for a particular region
in concentration space, are physically unimportant to the
overall concentrations of a subset of important molecules. We
would like to find the smallest set of reactions that have
predictive power for the dynamics of a subset of important
molecules.

We explore three methods for model reduction. First, we use
the naive method of simply eliminating infrequent reactions.
Second, we set up model reduction as an optimization problem.
The optimization problem can be solved exactly with integer
programming, but any exact algorithm is NP-hard and quickly
becomes computationally expensive as the size of the reaction
network grows. We show how L1 regularization can be used to
solve a convex relaxation of the problem that scales poly-
nomially in the size of the network. The results from all three
methods reveal that the majority of reactions can be eliminated
from a stochastic model that seeks to predict the dynamics of
only a few important molecules over a given time range, and
that rare events do not play a large role in this chemical reaction
network.

4.1 Count-based estimator

One intuitive way to reduce a given chemical reaction network is
to simply remove the most infrequently observed reactions,
until the dynamics of the system are affected beyond some error
threshold. For some minimum count f, we eliminate reaction j
from the stochastic model if

> ont e+ a0 <f )

where nj(t,t+At) are our observations of the number of times
that reaction j occurred in the time interval [¢, ¢ + Af) as
described above in Section 3.2.2. Note that this method is
different from eliminating reactions with the lowest reaction
rates kj, since n(t,t+At) depends on both the reaction rate k; and
the molecular concentration X(¢) at time ¢.

In the results that follow, we take n(t,t+At) to be observations
from the molecular dynamics simulations as described above.
Note that Gillespie simulations also keep track of the reactions
occurring at all times, so it is possible to alternatively observe
n(t,t+At) from Gillespie simulations of the full stochastic model
by binning the trajectory into fixed time intervals. This naive
method is only possible when we have complete data for the
number of each reaction occurring within every time interval.
Since we are using molecular dynamics simulations or Gillespie
stochastic simulations to generate our data, we can satisfy this
requirement. This method would not be possible, for example, if
our full system was described instead with a system of ordinary
differential equations, or with incomplete experimental data.

It is interesting to consider how this method treats rare
events. If rare but important events are observed in the given
molecular dynamics trajectory, this method can only remove
reactions that are more rare than the important rare event, thus
possibly retaining a large number of frequent but unimportant
reactions. However, if there are no important rare events
observed in the system, then we can expect this naive estimator
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to perform quite well. Note that no model reduction technique
based on sampled data can find rare events that were not
observed. In fact, what we find is that the count-based estimator
removes two types of reactions from the system: frequently
possible but rarely observed reactions (reactions involving
reactants with large concentrations but very low rates), and
rarely possible but observed reactions (reactions involving
reactants with very small concentrations). The former should
have very good maximum likelihood estimates since the large
concentrations of reactants means that we have many timesteps
where wX(¢)) # 0, and thus many samples of the random
variable #;|X(t) = nj(t,t+At). Conversely, the latter should have
very poor, likely overestimated maximum likelihood estimates
due to the small number of nontrivial samples of #;|X(t), and
removing them helps increase the confidence in the overall
dynamics of the remaining reaction network.

4.2 Conditional moments estimator

The count-based estimator has many limitations. In particular,
it does not have a lot of granularity in choosing reactions to
remove from the network; all reactions with the same count
must be removed simultaneously. Thus it is possible that
a reduced model given by the count-based estimator could be
further reduced. This means its performance is also dependent
on the specific system being studied; systems with important
rare events will be difficult to meaningfully reduce with the
count-based technique.

We introduce a principled method for reducing reactions
from the network by finding alternative networks that contain
fewer reactions while minimizing the differences between the
probabilistic  distributions of their resulting molecular
concentration trajectories over time. In order to describe this
difference between stochastic models, we consider how
molecular concentration changes between consecutive time-
steps for each model. The change in concentration of all
molecular species follows a distribution corresponding to
a linear combination of Poisson random variables - the sum
over all reactions of the number of times each reaction happens
times each reaction's effect on molecular concentrations. This
distribution will have a mean and a covariance, both condi-
tional on the molecular concentration at the current timestep.
We seek to minimize the differences between the reduced
model versus the full model on the conditional means and
covariances of the change in concentration, at all relevant
starting concentrations. This is formulated as a loss function
between the two evaluated at sampled timesteps/starting
molecular concentrations, which we describe in detail below.

Note that in contrast to the previous step in our framework
where we were building the full stochastic model from molec-
ular dynamics data and both reactions and rates were param-
eters, here when determining the reduced stochastic model we
consider the set of reactions to be fixed, and only the rates are
parameters.

We eliminate reactions by setting their corresponding reac-
tion rate to 0. We would thus like to find a set of reaction rates
such that as many rates as possible are 0 (e.g. the set of reaction
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rates is sparse), while minimizing the loss function between the
reduced model and the full stochastic model.

We sample relevant regions of concentration space from the
full stochastic model by running Gillespie simulations and
recording molecular concentrations at fixed time intervals At.
In this work, we use one Gillespie simulation to produce the
sample data. In practice, we can improve the estimator by
sampling from multiple Gillespie simulations, or also including
samples from the projected molecular dynamics trajectory.

4.2.1 Notation. Consider a chemical reaction network with
m molecules and r reactions, which we have sampled T'+ 1 times
with a timestep of At between samples. At each sampled step ¢,
denote by X(¢) € R™ the vector of molecular concentrations.
Also, denote by y.., = X(t+1) — X(¢) the vector of changes in
molecular concentration between timesteps.

Let the matrix R € R™ x R" denote the matrix of elementary
reactions, where each reaction is represented by the column
vector R;. For example, consider the following two reactions
involving molecular species A, B, C:

A+B—>C

2C - A

Then the corresponding R; are

-1 1
Ri=|-1], R=1]0
1 )

where the entries of each R; correspond to the stoichiometric
coefficients of molecules A, B, and C, respectively in each
reaction.

4.2.2 Linear system. First, we note that at any given time-
step, y+1 can be expressed as the sum of all reactions that
occurred between timesteps ¢ and ¢ + 1. In vector notation, this
is

Vit :iR/n/(t?l+At) (8)

Jj=1

ity ~ R (@(X(0)1) ©)

It is in general very hard to solve for the distribution of this
random variable exactly since it is a linear combination of
Poisson random variables. However, it is not difficult to
compute the first and second moments. By linearity of expec-
tation, we have that

MWNMOZE{%HRm}ZZEZRMAXUDAPZE:&RWAXUDAI
J=1 J=1

(10)

Similarly, for the covariance we note that all of the #; are
independent of each other, so that
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Zivilxo = RAX(1)R" (11)
where /(X(t)) is a diagonal matrix whose /™ entry is a,(X(£)At =
kihi(X(2))At.

Now that we have linear expressions for the means and
covariances of y,.1|x( in terms of k, we can set up an optimi-
zation problem to find the sparsest K, such that the distribu-
tions of Y41 |x(y are minimally affected in the least squares sense
over means and covariances. Given 7 + 1 samples from a simu-
lation, we have T samples of y.|x(), which allows us to
construct T pairs of u;.1|xq), Ze+1]|x@ Which we stack into a large
vector to obtain

Halxry RD,
Zolxq) Di(j,/)RiR"
= At k (12)
ﬂT+1|x(r) RDr
2“T+l‘x(r) DT(jvj)RjRjT

where D is a diagonal matrix whose /™ entry is h;X(¢)) and the
expression Dy(j,/)R;R;" indicates that each column corresponds
to the expansion of that expression into a vector for a particular
J. We then scale the variable k by the maximum likelihood
estimated k. from the full stochastic model (see Section 3.2.2).
This is both to increase the numerical stability of the problem,
and to ensure that model reduction treats each reaction equally
regardless of scaling. We then have that

,U~2|x(1) RD,
Zolxqy D (j,j)RiR;" .
= At diag(kes) k (13)
HT+1|x(T) RDy
2T+I|X(T) DT(j7j)RfR/T
b A
=b = Ak (14)

We compute u, and X, using ke so that, by construction, b =
A1 and k = 1 is an exact solution of this system. 4 is generally
a very tall matrix. The number of rows of A is T x (m + m(m + 1)/
2). That is, for each sampled timestep (1, ..., T), there are m rows
for u, and m(m + 1)/2 rows for the upper triangular entries of
symmetric X, (recall m is the number of distinct molecular
species). The number of columns of A is the number of reac-
tions r.

The rank of A4 is difficult to determine a priori since it
depends on the particular values and zero patterns of each D,
but we note that it is usually undetermined until there are
a large number of datapoints. This is because R is under-
determined since every column must be stoichiometric. In
general, the larger the number of timesteps T, the greater the
rank of 4; it is possible for A to be full rank for large enough 7.

4.2.3 Loss function. In the previous step we have expressed
the mean and covariance of the change in molecular concen-
trations y, as a linear function of the dimensionless scaled
reaction rate coefficients l}J Now, for a given complexity A we
attempt to find the set of kJ that minimizes the least squares
error in the means and covariances over all sampled timesteps,
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subject to the constraint that a maximum of A of the rate coef-
ficients Rj are nonzero.

4.2.4 1QP formulation. Our estimator for the set of sparse
reaction rate coefficients can be expressed as the solution to an
integer programming problem

mjnHAﬁ — sz (15)
k
subject to k € {0, 1} (16)
> k=2 (17)
J

Integer programs are NP hard, and computationally expen-
sive in practice (possibly even intractable) for very large reaction
networks. However, we note that since we have a simple
quadratic objective and only linear constraints in addition to
the integer constraint, there exist modern algorithms that can
solve the problem in very reasonable time in practice. We use
TOMLAB and the CPLEX branch and cut algorithm in this
work.?!

4.2.5 LASSO formulation. For very large systems, however,
the IQP formulation may still be prohibitively expensive. Convex
relaxation of integer programs has emerged in recent years as
an important way to compute good approximate solutions to
these difficult problems in guaranteed polynomial time. The
convex relaxation for the IQP problem above is given by

mjn||AR—b|‘2 (18)
subject to k e [0, 1] (19)
(20)

Zf(jsa
7

After solving for k, we apply a threshold to eliminate
numerically zero rates. If lA(J <, then we set lA(] = 0. In this work
we choose ¢ = 0.01. This large value of ¢ is possible because we
observe a phase separation in the Rj; they are either close to 1 or
approximately 0, and ¢ is chosen to reflect the observed
boundary. The reaction rate coefficients for reaction j are then
set to be kesfstf(j. Thus we remove reactions if we find that the
estimated reaction rates can be reduced by more than 99%.

This is a convex problem because the objective is quadratic
and the constraints are all linear. Since the Rj are allowed to be
any real value between 0 and 1, the solution is no longer guar-
anteed to be A-sparse. However, we note that it is closely related
to the LASSO problem and L, regularization,*** which has been
the subject of intensive study in recent years due to its ability to
promote sparsity. The constrained form of the LASSO is given by

m&n”AlE—sz (21)

subject to|k; | = Z k| =2 (22)
J
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A geometric interpretation for why L; regularization tends to
lead to sparse solutions is depicted in Fig. 9. The shape of the L,
constraint means that with high probability, a solution to the
least squares problem will satisfy the constraint at a vertex on
some coordinate axis (or hyperplane in higher dimensions),
which naturally leads to zero entries in the solution.

Our problem is equivalent to the LASSO problem with an
additional box constraint that Rj € [0, 1]. Although the
geometric interpretation must be modified in this case, we can
see from our results that for our problem, a sparse solution is
still obtained.

We note that in this formulation, the rate coefficients of the
final reduced model are allowed to decrease in magnitude from
their estimated values k.. This is consistent with our earlier
intuition that the estimated rate coefficients that are more likely
to be inaccurate, because they correspond to rarely possible
reactions, are likely to be overestimates but not underestimates.

4.2.6 Improving the model. We note that the estimator
based on conditional moments described here is a framework
upon which several variations can be built. We can adjust the
number of sampled timesteps and number of sampled Gillespie
simulations in order to increase the accuracy of the estimator.
Computationally, we are not limited by the number of samples
used to construct A, because our algorithm only requires
knowledge of A”A, which can be built efficiently and corrected
for stability using the singular value decomposition.

However, it might be desirable, for example, to weight the
rows of A so that the error metric is not biased by the relative
concentrations of the molecules. When row weighting is desir-
able, the construction of A”W'WA is computationally expensive,
although it is still memory efficient.

4.2.7 Error metric. There are several types of errors that
arise from the model reduction. The first error comes from the
difference between the reduced stochastic model and the full
stochastic model. The second error comes from the difference
between the full stochastic model and the molecular dynamics
simulation of the potential energy surface. Finally, there will
always be some level of error caused by stochastic fluctuations.
However, we note that for any given reduced stochastic model,
there may be a cancellation of errors between all three of these

min ||a”z — b]|2
st |zl = 325 o] < A

Fig. 9 Schematic of L; regularization. We try to find the best
approximate solution to a’x = b that satisfies the L, constraint. With
high probability, this leads to a solution on a vertex of the L; ball, which
has sparsity (zero entries) in the solution.
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effects. Thus we report on the error between the reduced
stochastic model and the molecular dynamics simulation. We
also measure the error between the full and reduced stochastic
models. When comparing stochastic models, we prefer the
model with lower mean error as defined by

T
Z H'ES (Xfullm - Afreduced[l‘])2
t=1

T

Errstoch = (23)
where the mean is taken over S stochastic simulations. When
comparing molecular dynamics and the reduced stochastic
models, we use the same error metric as in expression 6 above.

4.3 Results and discussion

We begin by using the first 200 picoseconds of one molecular
dynamics simulation to build a full KMC model, and comparing
the predictive power of corresponding reduced models when
extrapolated to 500 picoseconds of simulation time. The full
model consists of 629 reactions. In Fig. 10, we see that the
count-based method is able to find a reduced model with about
100 reactions that reasonably predicts the molecular concen-
tration trajectories of CH,, H,, and C,H,, while the LASSO
method requires between 300 and 450 reactions to do so.
However, in Fig. 11, we see that the 100 reaction network found
by the count-based method is unable to simulate the growth of
any carbon clusters, which we have defined to include all
molecules containing more than 5 carbon atoms. In fact, the
count-based method is unable to find any reduced models that
reasonably model carbon cluster growth; the only reduced
model that finds any carbon cluster growth at all overshoots
after 500 picoseconds. By contrast, the 450 reaction network
found by the LASSO method is able to do reasonably well.
These results highlight two key differences between the
simple count-based method and our data-driven LASSO

count lasso
%50 %50
o —CH4 o \ (—CH4
340 —H2 840 =—H2
== L2 norm avg = L2 norm avg

Ex Ex |
L - L
D10 HiCm——————= 010
= =
o o 1 1 1 T o 1 1 1

0 200 400 600 200 400 600

number of reactions number of reactions

Fig. 10 Training on the first 200 ps of molecular dynamics data, we
use both the count-based and LASSO methods to reduce the chemical
reaction network and compare how predictive the reduced models
are when extrapolated to 500 ps of simulation time. Errors were
computed using eqn (6) over S = 10 Gillespie simulations. The full KMC
model observed in 200 ps of molecular dynamics data contains 629
reactions. The minimum overall error for CHy4, H,, and C,Hg is ach-
ieved by a reduced model consisting of about 100 reactions using the
count-based method and between 300 and 450 reactions using the
LASSO method. Comparing with Fig. 11, however, we see that the 450
reaction network obtained by LASSO is able to capture carbon cluster
growth, whereas the 100 reaction network obtained by the count-
based method does not result in any carbon clusters.

This journal is © The Royal Society of Chemistry 2017

View Article Online

Chemical Science

(o]

N

N

# of molecules >5 C
o

200
number of reactions

400 600

Fig. 11 We train reduced KMC models with the first 200 ps of
molecular dynamics data, and show the final number of molecules
containing more than 5 carbons after 500 ps of simulation. The blue
points correspond to reduced models built using the count-based
method, averaged over 10 Gillespie simulations. The red line corre-
sponds to reduced models built using the LASSO method, similarly
averaged over 10 simulations. The dotted yellow line corresponds to
the full KMC model averaged over 10 simulations, which is a good
approximation for the MD data. Due to the lack of granularity in the
count-based method, only the full model of 629 reactions is able to
reasonably simulate carbon cluster growth. The next largest reduced
model contains only 247 reactions, and overshoots the carbon cluster
concentration. Using the LASSO method, we see that about 450
reactions are needed to reasonably model carbon cluster growth. We
note that this was also among the best models for the largest
concentration molecules in Fig. 10.

method. First, the count-based method is able to find smaller
reaction networks than the LASSO method that have predictive
power for the largest concentration molecules, but the LASSO
method is able to find reduced reaction networks that have
predictive power for both the largest concentration molecules
and more rare molecules such as carbon clusters. Second, the
count-based method suffers from a lack of granularity. After the
full model of 629 reactions, the second largest model found by
the count-based method consists of only 247 reactions. This
precludes the count-based method from finding any models
with between 247 and 629 reactions that may capture carbon
growth well, such as those found by the LASSO method. By
contrast, the LASSO (and IQP) method is able to sweep param-
eter space with A to find reduced models of any size.

We now consider model reduction using all of the more than
550 picoseconds of the available molecular dynamics data. We
use one molecular dynamics simulation as input to our model
reduction framework, and test the comparison between the
reduced stochastic model and molecular dynamics on
a different molecular dynamics simulation. This allows us to
determine how well the reduced stochastic model generalizes to
slightly different initial conditions and sampling of the poten-
tial energy surface. Since we have 6 MD simulations of the same
system, we have 30 training-test pairs of simulations. We start
comparisons after 10 ps of the molecular dynamics to allow
vibrational modes to equilibrate.

Our results in Fig. 12 and 13 show that the naive method of
removing infrequent reactions seems to be the most predictive
among reduced models of the same size for our methane
system, requiring around 100 reactions out of approximately
2000 observed reactions to simulate the concentration trajec-
tories of CH, and C,H, up to the same accuracy compared to
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Fig.12 Comparison of the molecular concentration trajectories of CHy, H,, and C;Hg observed from a molecular dynamics simulation and a set
of corresponding reduced stochastic models derived using the count-based method (top row) and the LASSO method (bottom row). Note that
the reduced stochastic models are plotted using the mean concentration trajectories over 50 Gillespie simulations (and thus appear to have less
fluctuations than the single MD simulation). The full stochastic model (100% reacts) contains 2000 reactions.

MD Error

RMSE (molecules)
Stochastic Error
N w B
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| |

—_
o
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number of reactions

Fig. 13 We compare the results of three model reduction methods: removing infrequent reactions (freq), solving the integer programming
problem (igp), and solving the constrained lasso problem (lasso). For each method, we adjust a single parameter 1 over a range of values to obtain
a series of increasingly small sets of reactions and corresponding reaction rates. We then simulate each reduced order model using Gillespie
stochastic simulation. We compare the mean molecular concentration trajectories of CH,, H,, and C,Hg obtained over 30 Gillespie simulations
with reference trajectories. In the top row, the reference trajectories are single molecular dynamics simulations. In the bottom row, the reference
trajectories are the mean molecular concentration trajectories obtained from 30 Gillespie simulations over the full stochastic model. This
process is repeated for all 30 pairs of training and test molecular dynamics simulations. All results above are averaged over these 30 pairs, and the
error bars represent standard deviations. To provide a frame of reference for the amount of unavoidable error due to fluctuations in any single
molecular dynamics simulation, the green dotted line in the top row represents the average deviation from the mean molecular dynamics
trajectory among the 6 MD datasets (see Fig. 2). We can see that only around 100 reactions are needed to achieve approximately the same
amount of error in CH4 compared to MD as the full model of almost 2000 reactions.

molecular dynamics as the full stochastic model. This is a 20x Fig. 14 shows how the reactions chosen for the reduced
reduction in the size of the model. Out of the three stable stochastic models differ across molecular dynamics simula-
molecules considered, CH,, H,, and C,Hg, the concentration of tions. For reduced stochastic models with approximately 125
H, is most sensitive to reduction in the stochastic model. reactions, only about 40% of reactions are the same across all of

the different reduced models derived from different molecular

5792 | Chem. Sci., 2017, 8, 5781-5796 This journal is © The Royal Society of Chemistry 2017
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Fig. 14 The reactions chosen by different reduced models may differ
depending on the full stochastic model they were derived from, which
are each constructed from a particular molecular dynamics simulation.
For reduced models of different sizes, the plot shows the fraction of
reactions that are common to all 6 models derived using each model
reduction method from the 6 different full stochastic models corre-
sponding to independent MD simulations. The purple line finds the
percentage of reactions common to all models across all sets of data.

dynamics simulations using our three different reduction
methods, and only about 65% of reactions are the same across
reduced models derived from the count-based reduction
method. This suggests that there are substantial fluctuations
between molecular dynamics simulations that result in differ-
ences between the reduced models. However, the similarity
between reduced models increases as the sparsity of the
network is increased. This suggests that there is a consistent set
of important reactions.

It is difficult to directly compare the set of reactions selected
by the three reduction methods, since the reduced models are
generally of different sizes for the same amount of error.
However, we can attempt to make a comparison between
reduced models of similar sizes. In Fig. 15 we consider
a molecular dynamics simulation with 1848 total observed
reactions, and three similarly sized reduced stochastic models
corresponding to each of our three reduction methods. For A =
250, the integer program gives a reduced model with exactly 250
reactions, the constrained LASSO results in 267 reactions, and
the count-based model most similar in size contained 267
reactions. We can see that the integer program and constrained
LASSO are more similar to each other than they are to the naive
method, but only about half of the reactions in each reduced
model are chosen by all three methods. This suggests that in
some sense, there are opportunities to identify even better
models, and in particular we may be able to gain additional
sparsity by choosing some intersection of their selected
reactions.

While it is easy to understand how the count-based method
chooses the order in which reactions are eliminated, the opti-
mization problems posed by the integer program and con-
strained LASSO are a bit less straightforward. We can see from
Fig. 14 that the yellow and red lines, corresponding to IQP and
LASSO respectively, match quite closely to the purple line rep-
resenting the set of reactions chosen by all three methods. This
means that most of the reactions chosen by all of the LASSO and
IQP models are also chosen by the count-based model; that is,
the reactions that LASSO and IQP consistently choose to keep in

This journal is © The Royal Society of Chemistry 2017
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Fig. 15 Comparison of the reactions selected by each of the three
model reduction methods for a molecular dynamics simulation with
1848 total observed reactions. The total number of reactions in the
reduced model given by the count-based method (COUNT) is 267; the
reduced models given by the integer program (IQP) and its convex
relaxation (LASSO) have 250 and 267 reactions, respectively. While it is
difficult to compare reduced models due to differences in the number
of reactions selected, we have attempted to choose similarly sized
models here; the IQP and LASSO models were derived using the same
4 and subsequently the most similarly sized RARE model was chosen.
We can see that roughly half of the 250 to 267 reactions in each model
are chosen by all three methods. As expected, the IQP and LASSO
models are much more similar to each other, with the 250 reactions
chosen by IQP a proper subset of the 267 reactions chosen by LASSO.

the reaction network tend to be among the most frequent
reactions. However, they also seem to be removing some
frequent reactions in favor of less frequent reactions that have
a larger effect on the least squares error in the mean and vari-
ance of the changes in molecular concentration. Since least
squares errors are sensitive to large elements and we compute
the least squares error over all timesteps, these infrequent
reactions only need to make a significant contribution at some
timesteps, rather than at most timesteps, in order to be noticed
and retained by IQP and LASSO.

In the IQP problem (expression 15), the least squares loss
function used in our conditional moments estimator includes
all of the molecules. This is by design in order to better capture
nonlinear effects in the system. However, it may not result in the
sparsest network possible for the selected important molecules.
The constrained LASSO problem also suffers from this effect. In
contrast, the count-based method is by construction likely to
model the highest concentration molecules the best. This is
because the most frequent reactions tend to involve the highest
concentration molecules (recall that the propensity function
a/X(t)) is proportional to the concentration of the reactants). If
the selected important molecules are also the highest concen-
tration molecules, it is likely to do better than IQP and con-
strained LASSO.

In Table 1 we explore the ability of these model reduction
methods to reveal important reaction pathways for methane
decomposition. For a single molecular dynamics simulation, we
find the smallest reduced model with a root mean square error
approximately less than or equal to the minimum model error
between the full stochastic model and molecular dynamics

Chem. Sci., 2017, 8, 5781-5796 | 5793
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Table1l Importantreactions for methane CH,. Reactions are numbered by the order in which they appear in the molecular dynamics simulation.
The list of 63 reactions is computed from the count-based method for model reduction trained over a single molecular dynamics simulation. All
of the selected reactions are observed within the first 150 ps of the molecular dynamics simulation. This reduced network exhibits an average
error of 8 molecules when tested on the other 5 molecular dynamics simulations

(
(H-C) + H1 = C2 H7 1(C-C) 6(H-C) 1(H-H)

(H-C) 1(H-H) = C2 H5 1(C-C) 5(H-C) + H2 1(H-H)
(H-C) = C2 H4 1(C-C) 4(H-C) + H1

52 C2H71

-C
-C
C
-C
-C
53 C2 H5 1(C-C

5
6
6
6
5

No. Reaction
2 C1 H3 3(H-C) + H1 = C1 H4 4(H-C)
4 C1 H4 4(H-C) = C1 H3 3(H-C) + H1
5 C1 H4 4(H-C) + H1 = C1 H5 4(H-C) 1(H-H)
6 C1 H5 4(H-C) 1(H-H) = C1 H3 3(H-C) + H2 1(H-H)
8 C1 H3 3(H-C) + C1 H4 4(H-C) = C2 H7 8(H-C)
9 C2 H7 8(H-C) = C1 H3 3(H-C) + C1 H4 4(H-C)
11 C2 H6 1(C-C) 6(H-C) + H1 = C2 H7 1(C-C) 7(H-C)
12 C2 H7 1(C-C) 7(H-C) = C2 H6 1(C-C) 6(H-C) + H1
13 C2 H6 1(C-C) 6(H-C) = C2 H5 1(C-C) 5(H-C) + H1
14 H1 + H1 = H2 1(H-H)
15 C1 H4 4(H-C) + C2 H5 1(C-C) 5(H-C) = C1 H3 3(H-C) + C2 H6 1(C-C) 6(H-C)
17 C1 H3 3(H-C) + C1 H4 4(H-C) = C2 H7 1(C-C) 7(H-C)
18 C2 H7 1(C-C) 7(H-C) = C1 H3 3(H-C) + C1 H4 4(H-C)
21 C1 H4 4(H-C) + H1 = C1 H3 3(H-C) + H2 1(H-H)
22 C1 H3 3(H-C) + C1 H3 3(H-C) = C2 H6 1(C-C) 6(H-C)
27 C1 H3 3(H-C) + H2 1(H-H) = C1 H4 4(H-C) + H1
28 C1 H3 3(H-C) + H2 1(H-H) = C1 H5 4(H-C) 1(H-H)
29 C1 H5 4(H-C) 1(H-H) = C1 H4 4(H-C) + H1
35 C1 H3 3(H-C) + C2 H6 1(C-C) 6(H-C) = C3 H9 1(C-C) 10(H-C)
36 C3 H9 1(C-C) 10(H-C) = C1 H4 4(H-C) + C2 H5 1(C-C) 5(H-C)
37 C1 H3 3(H-C) + C2 H6 1(C-C) 6(H-C) = C3 H9 2(C-C) 9(H-C)
38 C3 H9 2(C-C) 9(H-C) = C1 H3 3(H-C) + C2 H6 1(C-C) 6(H-C)
42 C1 H3 3(H-C) + C2 H6 1(C-C) 6(H-C) = C1 H4 4(H-C) + C2 H5 1(C-C) 5(H-C)
43 C2 H5 1(C-C) 5(H-C) + H1 = C2 H6 1(C-C) 6(H-C)
45 C1 H4 4(H-C) + H1 = C1 H5 5(H-C)
46 C1 H5 5(H-C) = C1 H4 4(H-C) + H1
47 C1 H4 4(H-C) + C2 H5 1(C-C) 5(H-C) = C3 H9 1(C-C) 10(H-C)
48 C3 H9 1(C-C) 10(H-C) = C1 H3 3(H-C) + C2 H6 1(C-C) 6(H-C)
49 C2 H5 1(C-C) 5(H-C) = C2 H5 1(C-C) 6(H-C)
50 C2 H5 1(C-C) 6(H-C) = C2 H5 1(C-C) 5(H-C)
(c-C)
(CC)
(c-

)

58 H2 1(H-H) = H1 + H1

60 C2 H4 1(C-C) 4(H-C) + H1 = C2 H5 1(C-C) 5(H-C)

61 C2 H6 1(C-C) 6(H-C) = C1 H3 3(H-C) + C1 H3 3(H-C)

62 C3 H9 2(C-C) 9(H-C) = C3 H8 2(C-C) 8(H-C) + H1

64 C2 H6 1(C-C) 6(H-C) + H1 = C2 H5 1(C-C) 5(H-C) + H2 1(H-H)

65 C2 H5 1(C-C) 5(H-C) + H2 1(H-H) = C2 H7 1(C-C) 6(H-C) 1(H-H)

67 C2 H7 1(C-C) 6(H-C) 1(H-H) = C2 H6 1(C-C) 6(H-C) + H1

69 C1 H3 3(H-C) + C2 H5 1(C-C) 5(H-C) = C3 HS8 2(C-C) 8(H-C)

71 C1 H3 3(H-C) + C3 HS8 2(C-C) 8(H-C) = C4 H11 2(C-C) 12(H-C)

72 C4 H11 2(C-C) 12(H-C) = C1 H4 4(H-C) + C3 H7 2(C-C) 7(H-C)

73 C4 H11 2(C-C) 12(H-C) = C1 H3 3(H-C) + C3 HS8 2(C-C) 8(H-C)

75 C1 H4 4(H-C) + C3 H7 2(C-C) 7(H-C) = C1 H3 3(H-C) + C3 H8 2(C-C) 8(H-C)
86 C2 H5 1(C-C) 5(H-C) + C2 H6 1(C-C) 6(H-C) = C4 H11 2(C-C) 12(H-C)

87 C4 H11 2(C-C) 12(H-C) = C2 H5 1(C-C) 5(H-C) + C2 H6 1(C-C) 6(H-C)

88 C3 H8 2(C-C) 8(H-C) = C3 H7 2(C-C) 7(H-C) + H1

89 C3 H7 2(C-C) 7(H-C) = C3 H7 2(C-C) 8(H-C)

90 C3 H7 2(C-C) 8(H-C) = C3 H7 2(C-C) 7(H-C)

92 C1 H3 3(H-C) + C3 H8 2(C-C) 8(H-C) = C1 H4 4(H-C) + C3 H7 2(C-C) 7(H-C)
96 C1 H4 4(H-C) + C3 H7 2(C-C) 7(H-C) = C4 H11 2(C-C) 12(H-C)

118 C1 H3 3(H-C) + C4 H10 3(C-C) 10(H-C) = C5 H13 3(C-C) 14(H-C)

119 C5 H13 3(C-C) 14(H-C) = C1 H4 4(H-C) + C4 H9 3(C-C) 9(H-C)

122 C4 H9 3(C-C) 9(H-C) = C4 H9 3(C-C) 10(H-C)

123 C4 H9 3(C-C) 10(H-C) = C4 H9 3(C-C) 9(H-C)

126 C1 H4 4(H-C) + C4 H9 3(C-C) 9(H-C) = C1 H3 3(H-C) + C4 H10 3(C-C) 10(H-C)
172 C5 H11 4(C-C) 11(H-C) = C5 H11 4(C-C) 12(H-C)

173 C5 H11 4(C-C) 12(H-C) = C5 H11 4(C-C) 11(H-C)

178 C2 H5 1(C-C) 5(H-C) + H2 1(H-H) = C2 H6 1(C-C) 6(H-C) + H1

5794 | Chem. Sci,, 2017, 8, 5781-5796 This journal is © The Royal Society of Chemistry 2017
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Table1 (Contd.)

No. Reaction

254 C4 H10 3(C-C) 10(H-C) = C4 H9 3(C-C) 9(H-C) + H1

255 C1 H4 4(H-C) + C4 H9 3(C-C) 9(H-C) = C5 H13 3(C-C) 14(H-C)
256 C5 H13 3(C-C) 14(H-C) = C1 H3 3(H-C) + C4 H10 3(C-C) 10(H-C)

(around 10 molecules). We find that the count-based method
can be used to construct a reduced model that does this with
only 63 reactions. This reduced model exhibits an average test
error of 8 molecules when simulating the remaining 5 molec-
ular dynamics simulations it was not trained on. All of the
selected reactions are observed within the first 150 ps of the
molecular dynamics simulation.

5 Run time of algorithms

While the molecular dynamics simulations required about four
weeks of computation on a parallelized version of LAMMPS, the
Gillespie stochastic simulations require only a few minutes on
MATLAB.

Further model reduction of the stochastic system reduces
the computation time of each Gillespie stochastic simulation
step in a linear fashion, but does not automatically reduce the
number of steps necessary to simulate a finite time interval.
Since the number of steps is the largest contribution to the
computation time of Gillespie stochastic simulation, and it is
controlled by the rate of the fastest reactions, the more fast
reactions that we can eliminate, the faster it will run.

We note that while solving for the reduced stochastic system
with the naive method takes essentially no time, LASSO and IQP
scale differently. In general IQP is NP hard, but for this problem
size it is tractable, albeit slower than LASSO. The constrained
LASSO takes approximately 69 seconds using Matlab's quad-
prog interior point solver, and its computation time is approx-
imately constant with 4; its computational complexity depends
only on the size of the full reaction network to be reduced, in
our case approximately 2000 reactions. For a reaction network
of the same size, the IQP using TOMLAB's CPLEX solver takes as
much as 250 seconds; note that for large enough and small
enough 2, the runtime decreases significantly for IQP because
the feasible set is smaller and may even be faster than LASSO.
However, as the total number of reactions in the full stochastic
system increases, the computation time of IQP grows rapidly.

6 Conclusions

In this study, we find that rare events are unlikely to play an
important role in the decomposition of high temperature high
pressure liquid methane. Our reduced stochastic models show
that only a small subset of the most frequent reactions observed
from the first 150 ps of the molecular dynamics simulation are
necessary to predict methane concentration over time.

The statistical framework we develop in this work to build
reduced KMC models from molecular dynamics is highly

This journal is © The Royal Society of Chemistry 2017

automated and requires minimal system-specific parameteri-
zation. One of the key insights is that bond duration plays
a crucial role in determining model complexity, and thus
should be chosen to optimize the predictive power of the KMC
model rather than be a fixed parameter. We show that the
resulting models are able to extrapolate in time to new regions
of molecular concentration space, which suggests that KMC
models learned from molecular dynamics data can be used to
meaningfully model chemistry that they were not trained on.

Our data-driven model reduction algorithm, perhaps not
surprisingly, results in somewhat larger reaction networks than
simple count-based reduction when maximizing predictive
power for the largest concentration molecules. However, it is
much more granular in being able to find reduced models of
different sizes, and better able to capture the growth of more
rare molecules. Computationally, its integer program formula-
tion is already more efficient than existing model reduction
methods based on integer programming, because it has
a quadratic objective and only simple bound constraints other
than the integer constraint. Replacing the integer constraint
with Li-regularization further transforms the problem to be
computationally tractable at large scales.

As advances in computing power and algorithms enable
increasingly accurate, large-scale molecular dynamics simula-
tions, one of the grand challenges of computational chemistry
and materials science will be interpreting the large amount of
generated data, and using it to build better mesoscale models.
Our results from this work suggest the possibility for a genomic
approach to studying complex chemistry in the future, where
data from expensive molecular dynamics simulations are
reused to build an increasingly large and statistically accurate
database of elementary reactions and rates, from which reduced
KMC models can then be quickly and systematically built for
target chemical systems, obviating the need for any MD
simulations.
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