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Dendrite growth and low coulombic efficiency are two major factors that limit the utilization of Li metal
electrodes in future generations of high-energy-density rechargeable batteries. This article reports the
first study on metal-organic framework (MOF) materials for boosting the electrochemical performance
of Li metal electrodes and demonstrates the power of molecular-structure functionalization for realizing
desirable ion transport and Li metal nucleation and growth. We show that dendrite-free dense Li
deposition and stable Li plating/stripping cycling with high coulombic efficiency are enabled by
modifying a commercial polypropylene separator with a titanium-based MOF (NH,-MIL-125(Ti)) material.
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Introduction

Lithium ion batteries based on intercalation chemistry face
substantial challenges in meeting the increasing energy density
demand from modern electric vehicles and electrochemical
energy storage.™” As a potential solution, batteries with new
chemistry beyond the Li ion intercalation technology, e.g. Li-S
and Li-O, batteries, have attracted extensive attention because
of their high energy densities.>* Such rechargeable Li batteries
use Li metal as the anode, which is essentially the ultimate form
of high-capacity anode material for batteries based on Li ions.
Despite their ultrahigh theoretical capacity (3860 mA h g~") and
low standard electrode potential (—3.040 V vs. SHE), Li metal
anodes suffer from low efficiency and short cycle life due to
uncontrolled dendrite growth and side reactions with the elec-
trolyte.>” Sharp filaments of Li dendrites can pierce separators
and cause an internal short circuit.®*° In addition, an unstable
and thick solid electrolyte interlayer (SEI) is more likely to form
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Li* transference numbers and uniform and dense early-stage Li deposition.

on Li moss or dendrites, which irreversibly consumes the Li
ions in the electrolyte and hinders Li ion transportation during
electrochemical processes."* ™

Many approaches have been explored to address these issues
and unlock the full potential of Li metal anodes. Ceramic and
polymer electrolytes with high mechanical strength have been
used to suppress Li dendrite growth, though many solid elec-
trolytes suffer from low ionic conductivities at ambient
temperature as well as poor contact (high interfacial resistance)
with electrodes.* For liquid electrolytes, their compositions
are modified for facilitating uniform and stable SEI forma-
tion.”®**" 3D structured Li anodes have been developed for
achieving improved Li plating/stripping by reducing surface
areal current densities.*** Artificial interface layers have also
been utilized to protect Li metal anodes during the electro-
chemical discharging/charging cycle.**** Modification of sepa-
rators, e.g. coating commercial separator membranes with
various ceramic nanoparticles such as Al,O3, TiO,, or h-BN, is
another strategy to improve the cycling stability of Li metal
anodes.*** While these inorganic components can increase the
mechanical strength of separators, they may also hamper Li ion
diffusion; furthermore, they lack chemical interactions with the
ions in the electrolyte to regulate Li ion transportation and
redox. Although all the approaches have demonstrated effec-
tiveness in improving the efficiency and cycle life of Li metal
anodes to some extent, the achieved electrochemical perfor-
mances are still far from the standards required for practical
battery applications. New approaches and materials must be
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considered for further advancing the science and technology in
the field.*>*

Here we for the first time demonstrate the utilization of
metal-organic framework (MOF) structures for suppressing Li
dendrite growth and increasing the cycling stability of Li metal
anodes. By coating an NH,-MIL-125(Ti) MOF material on
a commercial separator membrane (Celgard 3501), we prepare
a composite separator that can enable dendrite-free dense Li
deposition and long-term reversible Li plating/stripping
without introducing additional electrochemical resistance.
With the MOF-decorated separator, we achieve more than 200
cycles of Li deposition and removal on Cu foil with average
coulombic efficiency (CE) as high as 98.5%, under a current
density of 1 mA cm ™ and a charging/discharging capacity of 1
mA h em™>. We also realize 1200 h of cycling for a symmetrical
Li|Li cell under 1 mA em > and 1 mA h em™? conditions. We
further discover that the amine functional groups in the MOF
structure make critical contributions to the superior electro-
chemical performance by interacting with the ions in the elec-
trolyte, rendering higher Li ion transference numbers and
inducing uniform Li nucleation and growth.

Results and discussion

NH,-MIL-125(Ti) is an amine-functionalized form of the Ti-based
MIL-125 MOF structure. The structure of MIL-125(Ti) is illustrated
in Fig. S1.+ The NH,-MIL-125(Ti) structure features TigOg(OH),
nodes and 2-aminobenzene-1,4-dicarboxylate linkers (Fig. 1a and
b), with two types of cages corresponding to the octahedral
(~12.55 A) and tetrahedral (~6.13 A) interstitial sites of the close
cubic packing. The triangular windows of the cages are in the size
range of 5-7 A.*»*® The NH,-MIL-125(Ti) was synthesized by
a solvothermal method (see the ESI for experimental detailst).
The product exhibits a nanodisk-like morphology with an average
diameter of 1.5 pm (Fig. S2a and bt). The X-ray diffraction (XRD)
pattern shows a similar structure to that of MIL-125(Ti) (Fig.-
S2ct). The NH,-MIL-125(Ti) material was coated onto a commer-
cial polypropylene (PP) separator membrane to prepare the
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Fig. 1 MOF-decorated separator. (a) Illustration of the structure of
NH,-MIL-125(Ti). (b) One node of the MOF structure. (c) MOF film
coated on PP separator membrane. (d) Top-view SEM image of the
pristine separator. (e) Top-view SEM image of the MOF-decorated
separator. (f) Cross-sectional view of MOF-decorated separator.
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composite separator (Fig. 1c). The surface morphology and
microstructures of the pristine and coated separators were
imaged with scanning electron microscopy (SEM). The MOF-
decorated separator is fully covered with disk-shaped micropar-
ticles (Fig. 1e), clearly distinguishing it from the pristine separator
with its macroporous structure (Fig. 1d). As shown by the cross-
sectional image of the MOF-coated separator (Fig. 1f), the MOF
layer is about 20 um thick with the MOF particles adhering closely
to the surface of the PP film.

Coin-type Li|Cu cells with pristine and NH,-MIL-125(Ti)-
coated separators were assembled to investigate electro-
chemical Li plating/stripping. 1 M lithium Dbis(trifluoro-
methane)sulfonimide (LiTFSI) in 1,3-dioxolane (DOL)/1,2-
dimethoxyethane (DME) (1 : 1 volumetric ratio) solution with
2 wt% LiNO; additive was used as the electrolyte. The CE,
namely the charge of Li removal with respect to that of Li
deposition on Cu, was used as the performance index to eval-
uate the reaction reversibility and its stability upon cycling. The
cells were first discharged and charged at a current density of
0.5 mA cm™? with a cut-off capacity of 0.5 mA h ecm ™2 for 200
cycles, and then cycled under 1 mA cm ™ >-1 mA h cm™? condi-
tions (Fig. 2a). For the Li|Cu cell with the pristine separator, an
initial CE of 92% with an overpotential (defined as the differ-
ence between the charging and discharging potential plateaus)
of 0.08 V was observed (Fig. 2a and b). After 20 cycles, the CE
increased to 99% and the cell entered a steady-cycling state
under the 0.5 mA cm ™ 2-0.5 mA h cm ™2 conditions. However, 43
cycles after the cell entered the 1 mA cm ™ -1 mA h em ™2 cycling
stage, the CE started to fluctuate violently due to a local internal
short circuit of the cell. Incorporation of the MOF component
significantly extends the cycle life of the Li metal anode. The
Li|Cu cell with the NH,-MIL-125(Ti)-coated separator was able
to be stably cycled for 200 cycles at 0.5 mA cm™>-0.5 mA h cm 2
followed by another 200 cycles at 1 mA cm >-1 mA h cm ™2
(Fig. 2a). The initial CE of the cell was 94% with an overpotential
of 0.21 V (Fig. 2a and c). After 10 discharging/charging cycles,
the CE increased to 99% and the overpotential decreased to
0.08 V, which is comparable with that of the cell with the pris-
tine separator. After 200 consecutive cycles at 0.5 mA cm ™, the
current density was increased to 1 mA cm >, and the cell
maintained very low roundtrip capacity loss (average CE of
98.5%) with stable discharging/charging voltage profiles for
another 200 cycles (Fig. 2¢). The performance is among the best
reported for Li|Cu cells working under equivalent conditions
with other protecting strategies like 3D porous Cu,* inter-
connected hollow carbon nanospheres,*” polymer films,** poly-
mer fibers®*? and a Cu nanowire membrane,* most of which
maintain high CE for 100-150 cycles at 1 mA cm ™2 (Table S17).
At higher current densities of 1.5 and 3 mA cm ™2, the cell with
the NH,-MIL-125(Ti)-coated separator can be cycled at high
efficiency for ~150 and 60 cycles, respectively (Fig. S31). A Li|Cu
cell with the NH,-MIL-125(Ti)-coated separator but without the
LiNO; additive in the electrolyte was also assembled and
measured under 1 mA cm~>-1 mA h em™? conditions. The cell
had poor cycling stability with coulombic efficiency lower than
80% (Fig. S41), suggesting that the MOF material cannot replace
LiNO;, likely in facilitating a stable SEI layer,** even though the

This journal is © The Royal Society of Chemistry 2017
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Fig.2 Li|Cu cells with pristine and NH»-MIL-125(Ti)-coated separators. (

a) CE of consecutive Li plating/stripping cycles. The first 200 cycles were

performed at a current density of 0.5 mA cm™~2 with a cut-off capacity of 0.5 mA h cm™2, and the following 200 cycles were under 1 mA cm~2-1

mA h cm™2 conditions. (b) Voltage profiles for the cell with the pristine se
separator.

MOF layer is highly effective in increasing efficiency and
extending the cycle life in the presence of the LiNO; additive.
The MOF-coated separator was also assessed with a carbonate
electrolyte. While the cells generally exhibit lower CE than those
with the ether based electrolyte, the cell with the NH,-MIL-
125(Ti)-coated separator still clearly outperforms that with the
pristine separator (Fig. S57).

parator. (c) Voltage profiles for the cell with the NH,-MIL-125(Ti)-coated

We also fabricated symmetric Li|Li cells to further investi-
gate the effect of NH,-MIL-125(Ti) on the cycling stability of Li
metal anodes. The cells were first cycled for 20 cycles at 0.25 mA
em ?-0.5 mA h ecm ™ followed by 20 cycles at 0.5 mA cm™>-1.0
mA h em™? (Region I and II in Fig. 3a). Then the current density
was increased to 1.0 mA em > for long-term cycling with a cut-
off capacity of 1 mA h em™? (Region III in Fig. 3a). The cell with
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Fig. 3 LilLi cells with pristine and NH,-MIL-125(Ti)-coated separators.
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(a) Voltage profiles and (b) voltage hysteresis (difference between the

voltage of Li stripping and that of Li plating) of Li metal plating/striping in symmetric LilLi cells with pristine and NH,-MIL-125(Ti)-coated

separators. (c) Voltage profiles for specific cycles of the Li|Li cell with the
DME with 2% LiNO3 additive.
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the pristine separator could only be cycled under the 1 mA
cm~>-1 mA h em™? conditions for 86 cycles before it was short-
circuited (Fig. 3a and b). In contrast, the cell with the NH,-MIL-
125(Ti)-coated separator could sustain stable cycling for more
than 1200 h (Fig. 3a), corresponding to more than 500 consec-
utive cycles. Under equivalent cell configurations and
measuring conditions, the cycling performance is favourably
comparable to other Li|Li cells reported in the literature (Table
S1t), placing our MOF-coated separators among the most
effective approaches to stable Li metal electrodes operating with
liquid electrolyte.

For the Li|Li cell with the NH,-MIL-125(Ti) coated separator,
the average voltage hysteresis of Li plating/stripping was 0.2 V at
the start of the 1 mA cm™>-1 mA h em ™ cycling stage (Region III
in Fig. 3a). It then gradually decreased to 0.1 V after about 100
cycles, and remained quite stable for 1200 h before a dramatic
increase took place (Fig. 3b). The voltage profile was also quite
stable throughout the long-term cycling measurement (Fig. 3c),
indicating reversible Li plating/stripping. With another set of
Li|Li cells, we monitored their electrochemical impedance over

Fig. 4 Morphology of Li metal deposited on Cu electrode after 130
cycles under 0.5 mA cm™2-1.0 mA h cm~2 conditions. (a, b) Top-view
SEM images of Li deposited on Cu in the cell with the pristine sepa-
rator. Inset of (a) is a digital photo of the Li layer on Cu. (c) Cross-
sectional SEM image of the deposited Li layer under the pristine
separator. (d, e) Top-view SEM images of Li deposited on Cu in the cell
with the NH,-MIL-125(Ti)-coated separator. Inset of (d) is a digital
photo of the Li layer on Cu. (f) Cross-sectional SEM image of the
deposited Li layer in the cell with the NH,-MIL-125(Ti)-coated
separator.
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cycling (Fig. S6t1). The cell with the NH,-MIL-125(Ti)-coated
separator exhibited an initial charge transfer resistance of
~100 Q, considerably higher than that of the cell with the
pristine separator (~40 Q). This is possibly due to insufficient
and slow infiltration of the MOF pores with the liquid electro-
Iyte at the initial stage. After 150 charging/discharging cycles,
the resistance decreased to ~20 Q and remained low
throughout the rest of the 450 cycles.

We performed SEM imaging to examine the morphology and
microstructure of Li deposited on Cu after 130 consecutive Li
plating/stripping cycles (stopped after the Li plating step) at 0.5
mA cm™ 2 with a cut-off capacity of 1.0 mA h em™? (Fig. S71). For
the cell with the pristine separator, a Li layer of brown/black
colour was observed on the Cu electrode (Fig. 4a). SEM imaging
revealed extensive dendritic Li particles in the submicron size
range (Fig. 4a and b). From the cross-sectional image, it is clear
that the deposited Li layer has a loosely packed structure with
a thickness >60 pm (Fig. 4c). In contrast, a shiny Li metal layer of
silver/white colour was observed on the Cu electrode for the cell
with the NH,-MIL-125(Ti)-coated separator (Fig. 4d). The depos-
ited Li layer comprises much larger particles (4 pm in diameter)
with round edges (Fig. 4d and e). The cross-sectional image
reveals that the deposited Li layer has a densely packed structure
with a thickness of ~17 um (Fig. 4f), which is only 1/4 of the
thickness of the Li layer deposited under the pristine separator.
Taken together, the NH,-MIL-125(Ti) layer plays a key role in
electrochemical Li deposition by rendering a compact Li layer of
large particles with round edges. The reduced surface area is
beneficial for suppressing parasitic side reactions on the exposed
Li surface. The round and dense morphology also lowers the
probability of piercing the separator. All these contribute to the
observed superior cycling stability of the Li metal anode protected
by the NH,-MIL-125(Ti)-coated separator. The disassembled NH,-
MIL-125(Ti)-coated separator was analyzed by XRD. The result
suggested that the MOF structure remained intact after 130 cycles
(Fig. S87).

To study the effect of MOF molecular structures on
improving the cycling stability of Li metal anodes, we synthe-
sized the MIL-125(Ti) MOF structure and compared the elec-
trochemical performance of Li|Cu cells with pristine, MIL-
125(Ti)-coated and NH,-MIL-125(Ti)-coated separators at
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various current densities with a cut-off capacity of 1.0 mA h
cm~? (Fig. 5 and S91). At a low current density of 0.25 mA cm ™2,
the cell with the pristine separator lasted for about 150 cycles
before the CE started to drop significantly (Fig. 5a). The cell with
the MIL-125(Ti)-coated separator maintained a high CE for
more than 200 cycles, outperforming the one with the pristine
separator, but being considerably inferior to the cell with the
NH,-MIL-125(Ti)-coated separator which showed more than 300
stable cycles with an average CE of 99.0% (Fig. 5a). The same
trend in cycling stability was found at higher current densities.
At 0.5 mA cm 2, the two cells with the pristine and the MIL-
125(Ti)-coated separators lasted for 100 and 150 cycles with
CE >95.0%, respectively, while the cell with the NH,-MIL-
125(Ti)-coated separator was able to run for 250 cycles with an
average CE of 98.2% (Fig. 5b). At 1 mA cm ™2, the cell with the
NH,-MIL-125(Ti)-coated separator was stably cycled for 220
cycles with an average CE of 97.5%, outperforming the other
two cells with the pristine and MIL-125(Ti)-coated separators
which lasted for only 85 and 118 cycles before the CE dropped
below 95.0% (Fig. 5c). The results clearly demonstrate that the
amine functional groups in the NH,-MIL-125(Ti) MOF structure
play a key role in boosting the Li metal anode performance.
To understand how the NH,-MIL-125(Ti) MOF regulates
electrochemical Li deposition and enhances Li plating/
stripping cycling stability, we measured the Li ion trans-
ference numbers (¢;+) associated with the three different sepa-
rators filled with liquid electrolyte. The transference numbers

View Article Online
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were measured from Li|Li symmetric cells with AC impedance
(Fig. S107) and potential impulse techniques (Fig. 6a-c, see the
ESI for experimental detailst).>® With the pristine separator, the
Li ion transference number was 0.49-0.59 (Fig. 6a), agreeing
well with the values reported in the literature for the same
electrolyte.* Switching to the MIL-125(Ti)-coated separator did
not change the Li ion transference number (Fig. 6b), indicating
that the MIL-125(Ti) MOF structure has negligible interactions
with the ions in the electrolyte. With the NH,-MIL-125(Ti)-
coated separator, the Li ion transference number increased
significantly to 0.64-0.78 (Fig. 6¢). We believe the increased Li
ion transference number is due to interactions between the
amine groups of the NH,-MIL-125(Ti) MOF structure and the
ions in the electrolyte. In the literature there have been reports
on modified separators that induce increased Li" transference
numbers.***®* Amine groups are regarded as strongly interactive
with ions, thereby facilitating dissociation of ion pairs and
promoting Li" transport.’**® However, the exact interaction
mechanism has still yet to be revealed.

During electrochemical Li deposition, the negatively polarized
Li metal surface provides electrons to reduce the adjacent Li
cations for Li metal plating. As the lithium cations are consumed
by reduction and the anions are expelled by the electric field, an
ion depletion layer forms. When the ionic concentration near the
electrode surface drops to zero after a certain time (Sand's time),
the electroneutrality is violated and the local space charge leads
to nucleation and growth of Li dendrites.®®** Li ion flux to sustain
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Fig. 6 Liion transference number and early-stage Li metal deposition. Steady-state current measurements and Li ion transference numbers for
(a) pristine separator, (b) MIL-125(Ti)-coated and (c) NH,-MIL-125(Ti)-coated separator filled with 1.0 M LiTFSI in DOL/DME with 2% LiNOs. (d—f)
Digital photos, and (g—i) optical microscopy and (j—1) SEM images of deposited Li metal for disassembled Li|Cu cells with (d, g and j) pristine
separator, (e, h and k) MIL-125(Ti)-coated and (f, i and |) NH,-MIL-125(Ti)-coated separator. Li deposition was performed for the cells at 0.5 mA

cm~2 for 15 min.
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mass transport and subsequent reduction is therefore important
for dendrite-free Li metal deposition. Compared with the pristine
and MIL-125(Ti)-coated separators, the NH,-MIL-125(Ti)-coated
separator renders higher ¢;+ and thus lower ¢,,ion, leading to
alonger Sand's time.”*** As a result, with the same electrolyte, Li
ion transportation in the cell with the NH,-MIL-125(Ti)-coated
separator is more effective in maintaining uniform Li metal
deposition.

To further verify this hypothesis, we conducted short-time Li
deposition (0.5 mA cm™> for 15 min) for the Li|Cu cells with
different separators and then imaged the Cu electrodes with
optical microscopy and SEM. The Cu electrode of the cell with
the pristine separator was nonuniformly covered with Li crys-
tallites (Fig. 6d and g). Sparse Li protrusions can be seen in the
SEM image (Fig. 6j). Such non-uniform early-stage Li deposition
is likely to result in dendritic growth since subsequent deposi-
tion will preferably occur at the protrusions. In fact, sparse
nucleation has been proved to be a successful strategy for
growing anisotropic structures such as nanowires or dendrites
in metal electrodeposition.®® For lithium deposition with the
MIL-125(Ti)-coated separator, more evenly distributed Li depo-
sition was observed (Fig. 6e and h). However, the Li layer
showed a mossy rod-like morphology (Fig. 6k). In contrast, the
deposited Li in the NH,-MIL-125(Ti)-containing cell appeared to
be a uniform layer (Fig. 6f and i) with densely packed round
particles (Fig. 61). Such a morphology in the early stage of Li
deposition can support uniform and compact Li growth, and
thus alleviate side reactions with the electrolyte and reduce the
probability of short circuit.

Conclusions

We have for the first time investigated using MOF materials and
their molecular structure functionalization to facilitate stabi-
lized cycling of Li metal anodes. Coating separators with NH,-
MIL-125(Ti) enables long-cycle-life Li|Cu and Li|Li cells with
dendrite-free Li deposition and high-efficiency Li plating/
stripping. The high electrochemical performance is attributed
to higher Li" transference numbers and uniform Li nucleation
as a result of the interactions between the electrolyte and the
NH, groups in the MOF structure. This study provides a new
approach of utilizing MOF materials for Li anode protection
and highlights the influence of substituents in the molecular
structures on electrode performance.
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