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Highly chemoselective ruthenium(i)-catalyzed
direct arylation of cyclic and N,N-dialkyl
benzamides with aryl silanesy

Pradeep Nareddy, Frank Jordan and Michal Szostak™

The ruthenium(i)-catalyzed oxidative cross-coupling of C(sp?)—H bonds with organosilanes has been
accomplished for the first time. This novel protocol enlists challenging cyclic and N,N-dialkyl
benzamides as weakly-coordinating substrates to achieve highly regioselective C(sp?)—H arylation as

a proof-of-concept, taking advantage of the attractive features of organosilanes as coupling partners.

This innovative method is characterized by very high chemoselectivity, installing halide functional groups
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(I, Br, Cl) that are incompatible with Ru(i)-carboxylate systems employing halides as cross-coupling

partners, while obviating the need for sensitive organometallic reagents and cryogenic temperatures

DOI: 10.1039/c7sc00156h

rsc.li/chemical-science bioactive structural motifs.

Introduction

The Hiyama cross-coupling reaction is recognized as one of the
most powerful methods for producing carbon-carbon bonds
because of the wide substrate scope and significant attributes of
organosilicon reagents, including low toxicity, high-functional
group tolerance, and ready availability, which offer synthetic
advantages over classic organoboranes.'” Recent advances in
the direct cross-coupling of unactivated C-H bonds with
organometallics have substantially increased the utility of C-H
functionalization methods.* These versatile processes circum-
vent the need for prefunctionalization, while providing multiple
alternative sources of carbon nucleophiles under mild, func-
tional group tolerant oxidative conditions.®

Recently, ruthenium(u) catalysts have been identified as
particularly promising alternatives to other metals using
common directing groups to control the C-H activation site-
selectivity in broadly wuseful synthetic molecules.® The
economic advantages of ruthenium precursors’ and the fact
that ruthenium(u) catalysts do not require the formation of ate-
type complexes that necessitate substrate deprotonation®
supports the invention of new catalytic reactivity.>'® The key
advances as reported by the groups of Oi/Inoue,*® Acker-
mann®“ and Dixneuf*™ described C-H arylation using aryl
halides as precursors and strongly coordinating directing
groups by carboxylate assistance. Unfortunately, despite
significant advances, these methods suffer major limitations,
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typical to the classic directed-ortho-metallation (DoM) techniques, employing benzamides to afford

such as (i) low tolerance for synthetically valuable aryl halide
functional handles,” and (ii) low reactivity for the direct aryla-
tion of weakly coordinating groups (Fig. 1A).

Strategies for the direct cross-coupling with organosilanes
via C-H functionalization are difficult to achieve due to low
nucleophilicity of organosilicon reagents.">* As a consequence,
only a few synthetically useful methods for direct C-H Hiyama
cross-coupling have been reported.* These methods involve Pd,
Rh and Ni catalysis, while employing strongly-coordinating
directing groups, substrates that are electronically-biased, or
contain acidic protons to form ate-complexes after deprotona-
tion.” Unfortunately, despite potential advantages, ruthenium-
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Fig. 1 (A) Ruthenium-catalyzed arylation using aryl halides (previous
studies), and (B) highly chemoselective Ru(i)-catalyzed C—H arylation
using organosilanes (this study).
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Fig. 2 Examples of biologically-active biaryls bearing tertiary amides.

catalyzed direct arylation using organosilicon reagents remains
elusive. Moreover, direct C-H arylation with organosilanes
using weakly coordinating neutral directing groups remains to
be reported.™

To realize the full potential of the ruthenium(u)-catalysis
platform it is critical that new organometallic reagents become
available as cross-coupling partners for direct C-H activation
and that highly chemoselective processes tolerating a range of
readily modifiable functional handles by weak neutral coordi-
nation are developed. Herein, we report the first example of
ruthenium(u)-catalyzed direct cross-coupling of C(sp*)-H bonds
with organosilanes (Fig. 1B). The manuscript describes the first
example of transmetallation from silicon to ruthenium
(including Ru(0)-catalysis)” through C-H bond activation, and
is the broadest in scope for Hiyama cross-coupling reactions
using any metal for (sp*)-C-H activation reported to date.** The
reaction uses cyclic and N,N-dialkyl benzamides as weakly-
coordinating substrates to achieve highly regioselective C-H
arylation to give high value amide biaryls (Fig. 2).** The feasi-
bility of transmetallation from Si to Ru opens the door to
a variety of C-H functionalization reactions by this activation
manifold, enlisting a versatile, user-friendly and functional
group tolerant cationic Ru(u)-catalysis platform. Notably, our
protocol is characterized by a wide substrate scope tolerating an
array of halide functional groups that are incompatible with
Ru(u)-carboxylate-catalyzed arylations using aryl halides,>*?
while obviating the need for sensitive organometallic reagents
and cryogenic temperatures typical to the classic directed-ortho-
metallation (DoM) employing benzamides.'***

Results and discussion

Recently, our group has pursued the development of a direct
cross-coupling between cyclic benzamides and boronic acids via
Ru(u)-catalyzed C(sp”)-H activation.'® As part of our program in
functionalization of amides,” we hypothesized that the same
amide substrates could also be engaged in the markedly more
challenging direct C(sp®)-H arylation using organosilanes. Over
the past decade, methods for C(sp®)-H functionalization in
activated N-acyl-pyrrolidine substrates have been identified.'®
The ability to switch the reaction selectivity by judicious choice
of the catalytic system represents an attractive strategy for
organic synthesis.”

We selected the reaction of pyrrolidine amide (1a) and tri-
methoxyphenylsilane (2a) as our model system. After extensive
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optimization (ESIT), we were delighted to identify a very simple
reagent system consisting of [RuCl,(p-cymene)], (5 mol%),
AgSbF¢ (20 mol%) and CuF, (3.0 equiv.), affording the desired
product in 87% isolated yield (>98 : 2 mono-/diarylation selec-
tivity, >98% conversion) (Table 1, entry 17). Selected optimiza-
tion results are shown in Table 1. Importantly, exclusive
reaction selectivity for the arylation of aromatic C(sp*)-H bond
in the presence of a weakened pyrrolidinyl C(sp*)-H bond was
observed."® Likewise, the reaction proceeded with full mono-/
diarylation selectivity, which is often a complicating feature of
other C-H manifolds, including Ru(u)-carboxylate catalysis.*®

The central challenge in optimization experiments was to
identify a catalytic system that would activate organosilane®?
and reoxidize ruthenium catalyst to complete the cycle.* Initial
screenings using KF, CsF, AgF, TBAF, CuF, in the presence of
various established Ru(0) re-oxidants (Ag,0, Ag,CO3, Cu(OAc),,
Cu(OTf),)*° led to low or no formation of the desired cross-
coupling product 3a (see ESI{), presumably due to incompati-
bility of the activation/oxidation events. We hypothesized that
identification of a single activator/oxidant would facilitate the
catalyst turnover. The use of CuF, delivered the desired product
with excellent selectivity. The developed process represents (i)
the first example of a Ru(u)-catalyzed direct C-H arylation using
organosilanes, and (ii) the first example of a direct C-H Hiyama
cross-coupling using neutral weakly-coordinating directing
groups.®™

Table 1 Optimization of Ru(i)-catalyzed C-H arylation of 1la with
phenyltrimethoxysilane®

HONT Si(OMe);  [RuCla(p-cymene)l, R R
AgSbFg, CuF,
(0] + _— X (0]
@? solvent, 140 °C ‘ = @
1a 2a 3a
Entry Conditions Yield” (%)
1 a (1.2 equiv.), CuF, (1.0 equiv.), DCE <5
2 a (1.2 equiv.), CuF, (2.0 equiv.), DCE 30
3 a (1.2 equiv.), CuF, (3.0 equiv.), DCE 41
4 a (1.5 equiv.), CuF, (3.0 equiv.), DCE 49
5 a (1.5 equiv.), CuF, (3.5 equiv.), DCE 70
6 a (2.0 equiv.), CuF, (4.0 equiv.), DCE 87
7 a (2.0 equiv.), CuF, (3.0 equiv.), DCE 93
8 a (2.5 equiv.), CuF, (2.5 equiv.), DCE 68
9 a (2.5 equiv.), CuF, (3.0 equiv.), DCE 83
10 a (2.5 equiv.), CuF, (3.5 equiv.), DCE 90
11 a (2.5 equiv.), CuF, (3.5 equiv.), dioxane 60
12 a (2.5 equiv.), CuF, (3.5 equiv.), CH;CN 22
13 a (2.5 equiv.), CuF, (3.5 equiv.), THF 90
14 a (2.5 equiv.), CuF, (3.5 equiv.), toluene <5
15 a (2.5 equiv.), CuF, (3.5 equiv.), DMF 42
16 a (2.5 equiv.), CuF, (3.5 equiv.), DMAc 10
17 a (2.0 equiv.), CuF, (3.0 equiv.), THF >98 (87)°
18 a (2.5 equiv.), CuF, (5.0 equiv.), DCE 89

“ Conditions: amide (R'R” = pyrrolidine, 1.0 equiv.), [RuCl,(p-cymene)],
(5 mol%), AgSbF, (20 mol%), PhSl(OMe) (2.0 equw) CuF, (3.0 equiv.),
DCE, 140 °C (0.20 M), 20 h. ” Determined by "H NMR and/or GC.
¢ Isolated yield. See ESI for full details.
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With the optimized conditions in hand, the scope of this new
Ru(u)-catalyzed direct arylation was explored (Table 2). The
cross-coupling of electronically-diverse amide substrates,
including electron-neutral (3a-b), electron-rich (3¢) and
electron-deficient (3d) substrates proceeded uneventfully.
Importantly, our protocol exhibits an excellent chemoselectivity
profile, accommodating an assembly of functional groups
poised for further manipulation, such as strategically-positioned
fluorides (para, ortho, 3e-f), chlorides (3g-h), bromide (3i),
iodide (3j), nitro (3k) and ester groups (31). Moreover, polyarenes
(3m, >98 : 2 regioselectivity) and heterocycles are well-tolerated
(3n-0). Notably, the remarkable functional group tolerance for
halides (I, Br, Cl) affords handles for palladium-catalyzed cross-
coupling post-functionalization. The results provide the first
example of an aryl iodide tolerated in Hiyama C-H cross-
coupling,"* clearly a testament to the high chemoselectivity
profile of the cationic oxidative Ru(u) catalysis platform.*®

Table 2 Ruthenium(i)-catalyzed C—H arylation of tertiary amides with
phenyltrimethoxysilane®?

{ \ [RuCly(p-cymene)],
N (5 mol%)

AgSbFg (20 mol%)

.

N o) . CuF; (3.0 equiv) X o)
R + Ph—Si(OMe); ——————————— R
Zén THF, 140 °C, 20 h Z @
1 2 3
Ar'-Ar?

()

N

e
MeO™ 7 “ph

3c: 92% yield

2

o
=
o,
;;z@
=

o

3b: 79% yield

F

i<

3e: 61% yield

X

%

=
o

3f: 83% yield

<

N
Cl o ‘ XN
Ph Br = Ph
Cl
39: 65% yield 3h: 60% yield 3i: 64% vyield

3m: 91% yield (rr >98:2)

¢ Conditions: amide (1.0 equiv.), [RuCl,(p-cymene)], (5 mol%), AgSbF,
(20 mol%), PhSi(OMe); (2.5 equiv.), CuF, (3.0 equiv.), THF, 140 °C

o

O,N
3k: 65% yield

Ph
3n: 90% yield

e

MeO,C P
31: 60% vyield

0
\

<

Ph
3o0: 78% yield

(0.20 M), 20 h. ? Isolated yields. See ESI for full details.
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Table 3 Ruthenium(i)-catalyzed C—H arylation of tertiary amides with
various organosilanes®

[RuCl,(p-cymene)]»

R (5 mol%) Rl
AgSbFg (20 mol%)
@/go CuF; (3.0 equiv)
+ Ar—Si(OMe);
2 THF, 140°C, 20 h
1 2
Entry Organosilane 2 Product 3 Yield® (%)

1 @Si(OMe)s 2a <N> 3a 87
X
@suoem \ °
2 2b Z 3a 83

MeOSi(OMe)g
3 2¢

3p 89

MeO Si(OMe),

2d 3q 57

.
Oz

)
»

Ze o 3r 91
»

F3COSi(OMe)3
5
CFs
FOSi(OMe);,
6 of O o 3s 69
L
N
CIOSi(OMe)3
7 2g O o 3t 77
I Cl
N
BrOSi(OMeh
8 2h O o 3u 67
O Br
MeQO N
9 sioMe);  2i ° 3v 64
3 ! OMe

% See Table 2. See ESI for full details.
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The scope of this direct arylation with respect to organo-
silane component evaluated (Table 3). Triethox-
yphenylsilane was similarly effective as trimethoxyphenylsilane
(Table 3, entry 1 vs. entry 2).*>* The optimized conditions were
found to be general using various arylsilanes, including
electronically-diverse aryltrimethoxysilanes containing methyl
(3p), methoxy (3q), trifluoromethyl (3r) groups on the ring.
Moreover, the reaction tolerates sensitive halide functional
handles such as fluoro (3s), chloro (3t) and bromo (3u),
furnishing arylation products in good yields. Arylation with
a meta-substituted organosilane proceeded uneventfully (3v). At
present, ortho-substituted organosilanes are not compatible
with the reaction conditions. It is particularly noteworthy that
electrophilic chloro and bromo substituents are well-
accommodated. The results provide the first example of
a direct C(sp®)-H Hiyama cross-coupling tolerating a bromo-
substituent on the silane,"” demonstrating the practicality of
our Ru(u)-catalyzed protocol. The reaction scope using weakly-
coordinating directing groups compares favourably with
methods employing boronic acids by strong coordination,*
which is unusual for C-H functionalization processes involving
organosilanes.™

We were pleased to find that the reaction could be extended
to a host of cyclic and alicyclic N,N-disubstituted benzamides to
afford biaryl motifs with synthetically-valuable piperidinyl (3v),
sterically-demanding N,N-(i-Pr), (3w), and simple, unhindered
N,N-(Et), (3x), N,N-(Me), (3y) substitution (Table 4)."** It is
worth noting that arylation of dimethylbenzamide under these
conditions also proceeds in 60% yield (not shown). Taken
together, the results demonstrate high levels of selectivity across
sterically- and electronically-diverse amide substrates, thus
opening the door for the development of future techniques for
direct Ru(u)-catalyzed C-H Hiyama cross-coupling to afford N-
containing substrates."® The observed selectivity has the poten-
tial to supersede the classic DoM and Ru(u)/Ru(wv) techniques.®**

was

Table 4 Ruthenium(i)-catalyzed C—H arylation of tertiary amides with
phenyltrimethoxysilane®

[RuCly(p-cymene)],

RO R p-oyme RO R
AgSbFg (20 mol%)
N o) . CuF, (3.0 equiv) A o)
R + Ph—Si(OMe); — = gL
F THF, 140 °C, 20 h 7 @
1 2 3

Ar'-Ar2

o [e] N o
[ =
MeO Ph MeO Ph MeO Ph

3w: 59% yield 3x: 67% yield

Me.. .M
N SaN-E

3y: 77% yield 3z: 61% yield

% See Table 2. See ESI for full details.
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Arylation selectivity in meta-substituted amides was evalu-
ated (Table 5). The reaction proceeds with exquisite arylation
regioselectivity using an electron-withdrawing CF; (3aa) and
a neutral Me group (3ab), while the use of a strongly electron-
donating MeO substituent resulted in mixture of regioisomers
(3ac). In all examples, only monoarylated products were formed
(>98 : 2 selectivity).

Table 5 Ruthenium(i)-catalyzed C-H arylation of meta-substituted
tertiary amides with phenyltrimethoxysilane®

{ \ [RuCly(p-cymene)] / \
(25 mol%) : H N

HoN AgSbFg (20 mol%)
N NS ) CuFp (30equiv) X< g
\ + Ph—Si(OMe); ———M8M8MMMM ||
Zéy THF, 140 °C, 20 h 7 @
1 2 3
Ar'-Ar? i \,—/\ i
N N N Ph "N
FsC M MeO MeO
3 o © o ¢ o o
Zph Ph Ph 7
3aa: 79% yield 3ab: 85% yield 3ac/3ac': 60% yield

(rr > 95:5) (rr > 95:5) (rr = 50:50)

% See Table 2. See ESI for full details.

Table 6 Electronic and steric effects in ruthenium(i)-catalyzed C-H
arylation with organosilanes®

Entry Structure Hammett p Hammett p*
N
1 o —0.93 —0.60
Pz
rriH
N
2 +1.28 +0.78
(L °
=
eiH
3 Si(o""e)s +0.98 +0.61
Entry Structure Charton v Taft Es
(&, ®
+1.93 +0.98

“Entries 1, 2 and 4: values determined in the reaction with
phenyltrimethoxysilane (2a). Entry 3: values determined in the
reaction with phenyl(pyrrolidin-1-yl)methanone (1a). See ESI for full
details.
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Scheme 1 Deuterium incorporation studies.

A series of Hammett and Taft studies was conducted to shed
light on the mechanism of this unique Ru(u)-catalyzed Hiyama
C-H cross-coupling (Table 6, see ESI{). Moreover, deuterium
incorporation studies revealed reversibility of the C-H activa-
tion step in both the amide substrate (34% H/D exchange)
(Scheme 1A) and the ortho-arylated product (>98% H/D
exchange) (Scheme 1B), providing evidence for facile cyclo-
metallation. Overall, these mechanistic findings strongly
support reversible C-H functionalization® with coordination to
amide oxygen to facilitate transmetallation.”

A mechanism for this C-H arylation could involve a rate-
limiting transmetallation and/or reductive elimination preceded
by C-H cleavage equilibrium as suggested by the H/D exchange
and the observed electronic effects on the amide substrates and
arylsilanes (Scheme 2). The mechanism could involve a cationic
Ru as suggested by the Hammett plot with substituents para to
amides and the use of AgSbFs for cleaving C-H bond by an
intermolecular fluoride base. The rate limiting transition state

&

LA,

Q*

Scheme 2 Synthesis of benzylic biaryl amines.

\ R .\ R

Fliu(”) \_/ fﬁg

Ar

THF,0°CtoRT 1,00 oh

4: 93% yield

Ar—Si(OR)s
CUF2

Scheme 3 Proposed catalytic cycle.
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may involve a F-bridged [ArRu-F-SiAr]” anion for trans-
metallation. Studies to elucidate the mechanism are ongoing.

The present method provides rapid access to valuable biaryl
amides."® Moreover, the strategy could be employed to quickly
access benzylic biaryl amines.”” For example, reduction of 3a
with LiAlH, smoothly gave the biologically-relevant pyrrolidine
in 93% yield (Scheme 3). Biological activity of such benzylic
biaryl amines is well-established.?*

Conclusions

In conclusion, we have described the first example of ruth-
enium(n)-catalyzed cross-coupling of C(sp®)-H bonds with
organosilanes. The reaction occurs with excellent arylation
selectivity using versatile, user-friendly, and commercially
available ruthenium(u) catalyst system. Low toxicity of arylsi-
lanes, the functional group tolerance for aryl halides and the
formation of high value biaryl products by weak coordination
make this protocol very attractive. We envision that the new
Ru(u)/CuF, catalyst system in which CuF, acts as a dual silane
activator and Ru re-oxidant will find broad use in organic
synthesis. The Ru(u)-based strategy could significantly expand
the use of organosilicon compounds in C-H functionalization.
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