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Expanding a fluorescent RNA alphabet: synthesis,
photophysics and utility of isothiazole-derived
purine nucleoside surrogatesy

Alexander R. Rovira, Andrea Fin and Yitzhak Tor*

A series of emissive ribonucleoside purine mimics, all comprised of an isothiazolo[4,3-d]pyrimidine core, was

prepared using a divergent pathway involving a key Thorpe—Ziegler cyclization. In addition to an adenosine

and a guanosine mimic, analogues of the noncanonical xanthosine, isoguanosine, and 2-aminoadenosine
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Accepted 26th January 2017 were also synthesized and found to be emissive. Isothiazolo 2-aminoadenosine, an adenosine surrogate,
was found to be particularly emissive and effectively deaminated by adenosine deaminase. Competitive

DOI: 10.1039/c65c05354h studies with adenosine deaminase with each analogue in combination with native adenosine showed
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Introduction

With nucleosides so vital to life processes, a wide range of
analogues has been made over the years, both for medicinal
chemistry purposes, as well as biochemical and biological
tools." Among the latter, fluorescent nucleosides are particularly
attractive as both means for biophysical analyses and for
fabricating effective discovery assays. Given that the canonical
nucleobases found in DNA and RNA are practically non-
emissive,> and a limited number of naturally occuring emissive
nucleosides exist,> the design and synthesis of isomorphic
fluorescent nucleosides is of great importance and yet, rather
challenging.* From a synthetic perspective, the construction
of purine-like isomorphic nucleoside mimics, particularly
C-nucleoside analogues, presents formidable difficulties in
linking the heterocycle to the ribose moiety.> From a photo-
physical viewpoint, the unpredictable nature of fluorescent
molecules, particularly within the context of nucleic acids,
propagates a trial and error approach.® Taken together, the
compounded challenges have resulted in very few analogues
which are truly isomorphic and isofunctional.

In 2011 our group designed and synthesized a highly emis-
sive family of fluorescent RNA analogues based on a thiopheno
[3,4-d]|pyrimidine core (Fig. 1a).” These molecules were utilized
in a wide variety of applications and facilitated real-time
monitoring of biologically relevant processes.® One caveat of the
purine-derived RNA analogues, thieno-adenosine (A, Fig. 1a,
X = NH,, Y = H) and thieno-guanosine ("G, Fig. 1a, X = OH,
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preference for the native substrate while still deaminating the isothiazolo analogues.

Y = NH,), was the lack of a distinct hydrogen bond acceptor and
basic site, equivalent to the N7 of native purine systems
(Fig. 1b). This caveat was elegantly exemplified in both the
design of an assay based on an N7-dependent enzyme, adeno-
sine deaminase (ADA), and a related enzyme without an N7
dependency, ADAR2, through the deamination of thieno-aden-
osine to thieno-inosine (™I Fig. 1a, X = OH, Y = H).®*¢

We hypothesized that if this hydrogen bond acceptor was to
be reinstated through the replacement of a thiophene with an
isothiazole ring (Fig. 1), the fluorescent properties of the
molecule, albeit distinct, would likely be preserved while
enhancing isofunctionality by restoring the ability to engage in
hydrogen bonding. The isothiazolo[4,3-d]pyrimidine-based
RNA alphabet, reported in 2015, indeed addressed the defi-
ciency associated with the thiopheno family of emissive nucle-
osides.® Subjected to the same conditions as A, the isothiazolo
adenosine analogue “A was indeed shown to be deaminated
ten-fold faster than the thiopheno analogue by ADA. Given that
these newly synthesized molecules were both emissive and
isofunctional, we have sought to complete this family of RNA
nucleoside analogues by expanding it to non-canonical
members, to both fully assess the unique electronic properties
of this series and increase the fluorescent molecular toolkit for
monitoring RNA-based processes.
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Fig. 1 Thiopheno vs. isothiazolo family.
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Noncanonical nucleosides are naturally occurring and have
been found in a wide variety of biological contexts.'® Isoguanine,
for example, is a reported product of oxidative damage to
DNA." 2-Aminoadenosine is a known analogue of adenosine
that engages in three hydrogen bonds of the W-C type, adding
considerable stability to the double helix."” Xanthine is a known
product of deamination of nucleobases, a sign of miscoding and
mutagenesis in DNA and RNA."™ Xanthosine is methylated
during the early stages of caffeine biosynthesis while xanthosine
monophosphate (XMP) is an intermediate for the biosynthesis
of guanosine monophosphate from inosine monophosphate.**
Emissive analogs of such noncanonical nucleosides can enable
the fabrication of biophysical assays that target biochemical
pathways, involving such purines. Furthermore, possessing
a systematically modified series of emissive nucleosides, which
is based on a single heterocyclic core, also enables greater
insight into electronic trends of such molecules, an aspect of
fluorescent molecule design that is often difficult to accurately
predict.*

Given the unpredictable features of fluorescent nucleosides,
particularly characteristics related to their excited state
dynamics, an inherit risk exists in devoting time and resources
to extensively exploring synthetic pathways.*® Considering the
highly emissive nature of the thiophene core, we found the
corresponding isothiazolo counterparts to be nevertheless
worth pursuing. Herein we report the synthetic design as well as
the photophysical properties of new purine-inspired fluorescent
nucleoside analogues. Perhaps unexpectedly, the syntheses
presented diverse challenges, likely reflecting the scarce
knowledge regarding the isothiazole nucleus and its reactivity.
We thus elaborate not only on the successful pathways, but
rather also on failed attempts, providing further insight into the
chemistry of this largely unexplored heterocycle.”

Results and discussion
Isothiazolo nucleobase construction

In traditional nucleoside synthesis, the heterocyclic core is
commonly furnished before being linked to a sugar moiety via
established glycosylation methods.*® For the development of
fluorescent nucleosides, constructing the heterocyclic frame-
work first allows one to preliminarily evaluate the photophysical
properties of a new nucleobase. This, however, does not address
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Scheme 1 Isothiazolo functional library. Conditions: (a) trifluoroacetic

anhydride, Py, 0 °C to rt, 90 min, 72% yield; (b) KOCN, H,O, acetic acid,
rt, 12 h, 70% yield; (c) dimethylformamide dimethyl acetal, DMF, rt, 12 h,
45% vyield; (d) chloroformamidine hydrochloride, dimethylsulfone,
125°C, 1 h, 74% yield; (e) dimethylformamide dimethyl acetal, DMF, rt,
12 h, 68% yield; (f) piv-Cl, Py, rt to 70 °C, 1 h, 61% yield.

the synthetic hurdles and whether or not the heterocycle can
ultimately be subjected to common methods of C-glycoside
bond formation.®” The isothiazole core brings a unique chal-
lenge to the formation of the key carbon-carbon glycoside
bond. In particular, the alkylation of C5 on functionalized iso-
thiazoles, while previously observed, has only been reported for
a limited substrate scope.*

A priori, several approaches to forming our desired nucleo-
sides may be employed (Fig. 2). While the Friedel-Crafts type
glycosylation is classically the most common reaction used for
the construction of C-C glycoside bonds, in some instances
palladium may be used to catalyze a Heck-type coupling
between nucleobases and cyclic enol ethers in good yield and
high diastereomeric ratios.* Lithiated heterocycles may also be
used as nucleophiles with lactone- or aldehyde-derived carbo-
hydrate scaffolds as electrophiles.””* To extensively test the
reactivity of the isothiazole's C5 in such reactions, a number of
derivatives were first prepared (Scheme 1). The functionalized
isothiazole core was synthesized using known methodology
taking advantage of a modified Thorpe-Ziegler cyclization
(Fig. 3).

Glycosylation attempts

An N-tosyl derivative of ethyl 2-cyano-2-(hydroxyimino)acetate
(1, commonly known as Oxyma) was cyclized with ethyl thio-
acetate, yielding the basic isothiazole scaffold (Fig. 3). This
pathway provided a derivative furnished with o-amino ester
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Fig. 2 The synthetic family tree of an isothiazolo alphabet and potential synthetic routes.
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functionality (2), which can be used to construct the fused,
functionalized pyrimidine ring. After decarboxylation, the
heterocycle was furnished with varying functionalities,
including a formamide, dimethyl imine, trifluoroacetamide,
and guanidinylated species to provide diverse candidates for
exploring glycosylation reactions. Starting with the Friedel-
Crafts approach, the starting materials 3a-8a were treated with
SnCl, or BF;-OEt, and an O-acetylated ribofuranose as
a coupling partner and found to be unreactive.>* Given these
results and the absence of any detectable glycosylation prod-
ucts, other viable routes were explored.

We attempted to make use of palladium catalysis as an
alternate approach to form the desired bond. Heck coupling of
heterocycles to form C-glycosides, while frequently useful, is
reported to be inconsistent and highly varied depending on the
specific heterocycle.” To prepare suitable substrates, a variety of
halogenated precursors were synthesized (Scheme 2). In an
attempt to make the isothiazole C5-halogenated derivative more
susceptible to cross-coupling reactions, the exocyclic amine was
protected as a triflouroacetamide. The silyl-protected furanose
glycal (9) was used as a coupling partner (see Table S17 for
conditions).”® Unreacted starting materials were predominately
recovered when subjecting substrates 3b, 7b and 8b to various
palladium catalysts, including Pd(OAc),, Pd(PPh;),, Pd(Ph;P),Cl,,
and (Pd),(dba)s.

In an effort to test a reversal of the substrate roles in our
palladium coupling substrates, the non-halogenated nucleo-
base 7a was tested and found to successfully couple with
iodobenzene (see Scheme S17). The success of this latter
coupling with the failures of previous coupling reactions
suggests that, perhaps, the primary challenge of the reaction of
3b, 7b and 8b lies in the oxidative addition step. While the
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Fig. 3 Thorpe-Ziegler cyclization.
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Scheme 2 Bromination of derivatives. Reagents and conditions:
(a) Bry, AcOH, 55°C, 1 h, 73% yield; (b) Br,, AcOH, 50 °C, 2 h, 41% yield;
(c) (i) Bro, AcOH, 50 °C, 1 h, (i) TFAA, Py, 0 °C to rt, 9 h, 60% overall;
(d) Brp, AcOH, 50 °C, 2 h, 63% yield.®
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“polarity-reversed” coupling of 7a was promising, we found that
syntheses of a vinylogous halogenated ribose derivative capable
of cross-coupling with our substrate would not be viable. With
palladium catalysis not feasible for developing a scalable route
to our nucleosides, chemically harsher methods were consid-
ered for activating the isothiazole C-5 for alkylation.

Lithiated heterocycles may be used to alkylate ribose or
glucose derivatives, commonly functionalized as a lactone
but occasionally as a lactol or an aldehyde.*” Using 3b and 8b,
lithium halogen exchange reactions were tested (Table 1).
Upon treatment of a pivaloyl-protected substrate (8b) with n-
butyllithium, lithium halogen exchange was evident from the
debromination of the starting material after quenching with
water. Reaction of the piv-protected material with n-, sec-, and
tert-butyllithium also returned dehalogenated material upon
attempted alkylation of ketal-protected ribofuranose (10)
or silylated deoxy-ribonolactone (11). Attempts to enhance
the reactivity of the lithiated substrate with TMEDA failed.
Treatment of the trifluoroacetylated compound (3b) lead
to a trace amount of 12 that was not cleanly isolable with

1 R=OEt

BnO  OBn 16 R = NH,
17aR = OEt
17b R = NH,

Scheme 3 Thiol construction and cyclization. Conditions: (a) CHal,,
Meli, toluene, =78 °C, 1 h, 67%; (b) potassium thioacetate, DMF, rt, 6 h,
74%; (c) Et0, LiAlH4, 0 °Ctort, 1 h, >90%; (d) 16a or 16b, morpholine,
MeOH, 0 °C to rt, 12 h, 67% (17a), 79% (17b).

Table 1 Lithiated heterocycle alkylation attempts

o) o
Conditi /N\ CF.
Substrate _Conditions S, )N\H Q .< ¢
ZNNTN or o)
H H
8a
Substrate Conditions® Product
8b a,b,c,d, e 8a
3b b, e 12 (trace)

“ Conditions: (a) n-BuLi, THF, —78 °C to rt; (b) 10 or 11, n-BuLi, THF,
—78 °C to rt; (¢) 10 or 11, n-BuLi, TMEDA, THF, —78 °C to rt; (d) 10 or
11, s-BuLi, THF, —78 °C to 0 °C; (€) 10 or 11, #-BuLi, THF, —78 °C to
—40 °C.
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Table 2 Nucleoside deprotection conditions
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20 X=0H,Y=NH, "
22X=0H,Y=0H |
23X =NH,, Y =NH, |
24X=0H,Y=H
25X =NH, Y =H
27 X = NHy, Y = OH

_________ |

! Z2.AAX = NH,, Y = NH,
X=0H,Y=H
ZA  X=NH, Y=H
150G X = NHy, Y = OH

Substrate Cond.” Time (h) Product

20 a 72 n.r.

20 b 72 Monobenzyl

20 c 72 Dibenzyl

20 d 24 n.r.

a0, P25, ©24, e 438, P40, °48, G (59%), A (45%), “1 (30%),

927, °23, 22 472, °96, 72 “IsoG (51%), “2-AA (54%), X (68%)

“ Conditions: (a) Pd/C, H,, MeOH, rt, 90 psi; (b) Pd/C, ammonium formate, 60 °C, MeOH, sealed container; (c¢) Pd(OH),, H,, rt to 40 °C;
(d) ethanethiol, BF;-OEt,, DCM, rt; (e) 1,2-ethanedithiol, BF;- OEt,, DCM, rt.

primarily decomposition of the starting material. Attempts to
subject 7b to the same conditions showed reactivity of the
substrate but no desired compound. The failure of these
common methods thus necessitated taking a less traditional
bottom-up approach to the construction of the desired
nucleosides.

Thorpe-Ziegler cyclization approach

Inspired by previous syntheses of modified C-nucleosides,
a different strategy was ultimately pursued to construct the
isothiazolo-based glycoside.>® Returning to the Thorpe-Ziegler
cyclization used to construct the isothiazole nucleobase
precursor 2, we found that the originally published method for
preparing isothiazoles could also apply to an a-thio ketone (as
opposed to the thioglycolate, Fig. 3).”> We surmised that using
a ribofuranose-derived lactol prefunctionalized with a primary
thiol would likely suffice as a substrate for the proposed cycli-
zation. Thiol 15 would therefore be necessary to act as the
functional handle for installing the isothiazole ring (Scheme 3).

Conditions
BnO OBn BnO 0OBn
17a R = OEt 18a R = OEt
17b R = NH, 18b R = NH,

Scheme 4 Reduction of lactol. Conditions: (a) 17a, BFs-OEt,, trie-
thylsilane, DCM, —78 °C to rt, 4 h, 67% yield; (b) 17b, BFs-OEt,, trie-
thylsilane, DCM, —78 °C to rt, 4 h, 79% yield. (c) 17a, (i) NaBH4, MeOH,
0°C, 4 h, (ii) DIAD, PPhz, DCM, 0 °C to rt, 12 h, 30% over 2 steps; (d) (i)
17a, L-selectride, MeOH, 0 °C, 4 h, (i) DIAD, PPhs, DCM, 0 °Ctort, 12 h,
40% over 2 steps.

2986 | Chem. Sci., 2017, 8, 2983-2993

Starting from the known benzyl-protected ribonolactone (13),
the lactone was subjected to alkylation via lithium-halogen
exchange with diiodomethane and furnished with a thiol via
substitution and reduction of a thioester.”””® The cyclization
was then accomplished in good yield to provide derivatives with
amide (17a) and ester (17b) functionalities, thus providing
access to the desired scaffolds necessary for constructing the
fused pyrimidine systems of the desired nucleosides.®

From the cyclized substrates 17a and 17b, stereoselective
reduction of the furanosyl lactol was required to provide
B nucleosides. While furanosyl oxocarbenium-based reductions
reportedly show a higher preference for the formation of the
B isomer in the case of ribose, several exceptions have been
reported to provide primarily the o configuration.””** The
cyclized substrates (17a, 17b) were subjected to Lewis-acid
mediated reduction with triethylsilane (Scheme 4). All condi-
tions cleanly gave the desired diastereomer, confirmed via
crystal structure analyses of the final products. Note that both
borohydride reductions followed by Mitsunobu conditions gave
similar results (Scheme 4 conditions (c) and (d)).

Isothiazolo-pyrimidine functional diversification

With the key substrate 18a in hand, construction of the fused
pyrimidine was implemented via guanidinylation to furnish the
“G analog as well as the non-canonical %isoG, "“2-AA and “X.
Typical methods used for guanidinylation of heterocycles to form
fused pyrimidine rings often require multistep reactions invol-
ving harsh conditions including strong bases or excessive heat.
Initially, 1,2,4-triazole-1-carboxamidine and chloroformamidine
were used in an attempt to guanidinylate 18a and fabricate the
guanosine analogue 20.*° Both reagents led to decomposed or
deglycosylated products. A mild method for guanidinylation
of our isothiazole species was therefore sought. Employing

This journal is © The Royal Society of Chemistry 2017
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21 22
Scheme 5 Protected %G (20), %X (22), #2-AA (23) synthesis. Condi-
tions: (a) (i) ethoxycarbonyl isothiocyanate, MeCN, rt, 6 h; (ii) EDCL,
HMDS, rt, 24 h, 63% over 2 steps; (b) 1 M NaOH, MeOH, 80 °C, 1 h;
(c) KOCN, H,0, acetic acid, rt, 12 h, 79%; (d) NaOMe, MeOH, rt, 12 h,
89%; (e) (i) POCls, pyridine, 100 °C, 2 h; (ii) NH3, MeOH, 80 °C, 24 h,
40% over 2 steps.

24
NH
Ty
Sl K. 26rR=coEt
o N0 7R d

c

BnO OBn

Scheme 6 Synthesis of protected %A (25) and %isoG (27). Conditions:
(a) triethyl orthoformate, acetic anhydride, 100 °C, 69% vyield; (b) (i)
P.Ss, Py, 120 °C, (ii) NH3, MeOH, 80 °C, 80% crude yield; (c) ethox-
ycarbonyl isothiocyanate, EDC, HMDS, MeCN, rt, 72 h, 40% yield; (d) 1
M NaOH, MeOH, 80 °C, 1 h, 90% crude yield.

ethoxycarbonyl isothiocyanate and EDC in a mild 1-pot, 2 step
synthesis, as reported by Fabis et al., gave the desired product,
starting from the ester-substituted substrate 18a (Scheme 5).** The
same method, used with the amide 18b, yielded the isoguanosine
analogue 26. The diamino purine analogue (23) was also found to
be formed in low (<5%) yield but could not be cleanly isolated.
The xanthosine derivative (22) was synthesized through the urea
intermediate (21) upon treatment with sodium isocyanate and
subsequent ring closure with sodium methoxide. To synthesize
the 2-aminoadenosine derivative in greater yield than the previ-
ously discussed reaction, a more straightforward approach was
used. The protected “X (22) was treated with POCI; followed by
ammonia in methanol to give the protected “2-AA (23) in
moderate yield (Scheme 5).

Using the amide precursor 18b, the synthesis of the adeno-
sine analogue A was completed through the inosine analogue
(24) using triethylorthoformate and acetic anhydride. Conver-
sion of the amide oxygen to an amine proceeded relatively
smoothly, albeit with low yields, through the use of P,Ss and
ammonia (Scheme 6).

Benzyl ether removal

Debenzylation of the substrates was initially attempted with the
protected “G derivative 20 via palladium-catalyzed hydrogenolysis

This journal is © The Royal Society of Chemistry 2017
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with either H,/Pd or transfer hydrogenation using ammonium
formate (Table 2). With palladium hydroxide, only double
deprotection (monitored by ESI-MS) was observed with the third
benzyl group, presumably on the 2 oxygen, left intact. This could
perhaps be due to a combination of catalyst poisoning and
reduced electron density of the last benzyl group arising from
stacking with the adenosine ring as has previously been proposed
(and depicted in 20b, Table 2).** In a reported synthesis of fused
thiophene-containing nucleoside analogues, Seley et al. used
BF;-etherate and ethanethiol to remove benzyl ethers.*® When
tried with "G, we found that, interestingly, ethanethiol and
BF;-etherate yielded very little deprotected substrate. Upon
replacing ethanethiol with 1,2-ethanedithiol complete debenzy-
lation of most substrates was found to occur within 48 hours.*

To summarize, each isothiazole purine analogue was
successfully synthesized from the commonly derived benzyl-
protected thiol-substituted ribofuranose derivative 15. While
the most common methods for C-glycosylation of heterocycles
were unsuccessful with our isothiazole-based nucleobases, the
Thorpe-Ziegler cyclization approach proved to be effective in
completing the preparation of the isothiazolo[3,4-d]pyrimidine
family.

Crystal structures

With all nucleosides in hand, crystal structure determination
was necessary for final confirmation of connectivity and abso-
lute configuration (Fig. 4). Originally, crystals of the adenosine
and guanosine analogues were grown and found to all have the
correct stereochemistry and functionality.” The isothiazolo
xanthosine crystals were found to exhibit two different sugar
conformations in a unit cell. One conformer was found to
closely resemble the native xanthosine when overlaid with the
published crystal structure (see ESI Fig. S1}).** Note that while
the crystal structure of the isothiazolo 2-aminoadenosine was
not determined (due to the poor quality of the crystals ob-
tained), we are confident in the formation of the correct product
as reinforced by the transformation to isothiazolo guanosine
during deamination with adenosine deaminase discussed
below.

Photophysical properties

The photophysical features of the newly synthesized noncanonical
purine analogues were thoroughly analyzed and compared to “A,
“G, and "I. In investigating emission and absorption changes
relative to pH and sensitivity towards changes in polarity, we have
identified certain trends, which depend on the nucleosides’ het-
eroatomic substitution.

The absorption spectra of “isoG, “DAP, and X in aqueous
solution have shown bathochromic-shifted maxima in
comparison to the corresponding native nucleosides ranging
from 321 nm for *X to 346 nm for *2-AA, the most red-shifted
ground-state absorption spectra in the isothiazolo[4,3-d]
pyrimidine-based nucleoside family (Fig. 5).

Sensitivity towards environmental polarity was determined
by recording the absorption and the emission spectra of “isoG,
X and *2-AA in water, dioxane and binary mixtures of the

Chem. Sci,, 2017, 8, 2983-2993 | 2987
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Table 3 Photophysical properties of isothiazolo[4,3-d]pyrimidine nucleoside analogs
Solvent Aabs (€)* Aem (P)* Pe Stokes shift® Polarity sensitivity” pKa(abs)® pKa(em)®

“isoG Water 334 (9.14) 413 (0.05) 365 5.73 20 3.4,11.5 3.90, 11.20
Dioxane 342 (8.6) 416 (0.03) 345 5.21

=X Water 321 (6.61) 472 (0.04) 264 10.03 61, 3.0 9.03 1.98, 8.5
Dioxane 320 (6.60) 384 (<0.01) 13 5.10

“2-AA Water 346 (2.85) 447 (0.27) 712 7.52 140 6.91 2.55, 5.93
Dioxane 349 (3.08) 468 (0.22) 616 6.24

tzpd Water 338 (7.79) 410 (0.05) 413 5.23 28 4.25 3.29
Dioxane 342 (7.42) 409 (0.03) 193 4.76

gl Water 325 (5.4) 411 (0.05) 289 6.42 10 2.9 2.46,10.38
Dioxane 333 (5.03) 419 (0.04) 181 6.14

el Water 333 (4.87) 459 (0.25) 1203 8.27 102 3.55, 8.51 9.88
Dioxane 339 (4.65) 425 (0.17) 539 6.01

ey Water 312 (5.17) 392 (0.01) 4 6.53 45 2.2, 8.88 8.9
Dioxane 314 (5.2) 377 (<0.01) 21 5.36

ey Water 316 (7.6) 377 (0.01) 46 5.13 12.7 9.26 7.83
Dioxane 315 (6.6) 372 (<0.01) 26 4.79

@ Aabs € Aem and Stokes shift are reported in nm, 10> M~ cm
three independent measurements.

!, nmand10®cm™*
b Sensitivity to solvent polarity reported in cm ™

(keal mol )™

respectively. All photophysical values reflect the average of at least
is equal to the slope of the linear fit in Fig. 6b.

‘ pKa values reflect the average over three independent measurements and are equal to the inflection point determined by the fitting curves in Fig. 6¢

and d. ¢

two (Table 3, Fig. 5 and S6a-ct).% It is reported in cm™*
(keal mol )" and is equal to the slope of the linear fit shown in
Fig. 5¢, correlating the Stokes shifts and E1(30),*” a microscopic
solvent polarity parameter. The value obtained for “isoG (20 + 1)
is very similar to that of *“A (28 + 2) and five times lower than **
(102 £ 7) (Fig. S6dt). The importance of the N2 exocyclic amine
in conferring high sensitivity to environmental changes is
evident by the remarkable polarity sensitivity of *“2-AA (140 & 2),
where the exocyclic amine in position 2 is added to the A
skeleton, enhancing the sensitivity to environmental polarity by
a factor of five (Fig. S6ff).

The polarity sensitivity of X (61 & 2) was similar to that of
the previously reported N-glycosylated isomer, “U (45 + 4), in
low water-content binary mixtures (up to 40% v/v water in
dioxane).” We noted the presence of a double emission band,
perhaps a result by water-mediated tautomerization in the
excited state.*® While the ground state absorption spectra did
not show any change in the different binary solvent mixtures,
the intensity ratio of the two emission maxima (PL,;,/PL3g,)
changed from 0.07 in dioxane to 2.84 in pure water due to the
lower-energy band intensity enhancement in water-enriched
mixtures (Fig. S6bt).

Fig. 4 X-ray crystal
analogs: (a)

©ZisoG (b) ®X.

structures
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isothiazolo[3,4-d]pyrimidine

From previous work.’ See ESI Table S4 for expanded data including experimental errors.

Previously, the quantum yields of the purine analogues “A
and "G were found to be 0.05 and 0.25, respectively. We found
a striking reversal in quantum yield values, when comparing G

“isoG (0.047 £ 0.004) and “A to *2-AA (0.27 £ 0.03). Again,
the changes seemingly occur due to the presence of the amino
group at C2. A five-fold enhancement of quantum yield of *2-AA
compared to *“A is noteworthy and comparable to the reported

T
A\ /\ Water % v /v

415

(sdo 504 X) 1d

300 400 500

Wavelength (nm)
T e
10 PR -+ 4 104 aoe---- r
; 9 4 94 4
5
]
* 8 4 84 y
£ .
ﬁ 71 4 74 4
s 3 JhE=STR
N o L1 e gt g 1
gle=rs T i — slE
35 40 45 50 56 60 5 35 40 45 50 55 60 65
E,(30) (keal mol) E,(30) (kcal mol)
Fig. 5 (a) Absorption (dashed lines) and emission (solid lines) spectra
of %isoG (magenta), #2-AA (cyan) and %X (brown) in water. (b)

Absorption (dashed lines) and emission (solid lines) traces in water,
dioxane and mixture thereof for 2X. (c) Stokes shift correlation versus
solvent polarity (Er(30)) of water/dioxane mixtures for “isoG
(magenta), #2-AA (cyan) and X (brown). (d) Stokes shift correlation
versus solvent polarity (E+(30)) of water/dioxane mixtures for X
(brown) in comparison to the structural isomer U (purple).
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quantum yield of the native purine-based 2-aminoadenosine
riboside, in comparison to that of native adenosine.* Literature
reports suggest that, in the case of the dramatic enhance-
ment of fluorescence quantum yield seen for 2-aminopurine
compared to adenine, the exocyclic N2 may shape the excited
state manifold such that a barrier exists to avoid conical inter-
sections, thus preventing ultrafast nonradiative decay.*® We can
only speculate that in the isothiazole series, “2-AA exhibits
similar electronic trends arising from the presence of the amino
group at position 2. In contrast, the xanthosine analogue "X is
quenched in dioxane while the quantum yield in water is
significantly higher (0.043 £ 0.003), especially in comparison to
the N-glycosylated *U (0.008 + 0.001).

All isothiazolo-based nucleoside analogues reveal a remark-
able sensitivity to pH, facilitating the extraction of pK, values
(Fig. 6¢ and d). The absorption spectra of “isoG displayed small
hypso- and hyperchromic effects when the pH was elevated
from 1.5 to 6.4, while the emission spectra showed an isosbestic
point at 432 nm, suggesting deprotonation of the N1 [pK, 3.4 + 0.1
(abs) to 3.90 & 0.01 (em)] (Fig. 6¢c and d, magenta line). Another
deprotonation event, assigned to the heterocyclic nitrogen at
position 3, was depicted by 30 nm red-shifted ground state
spectra and isosbestic points at 350 nm in absorption and
438 nm in the emission spectra within the pH range of 9.5 to
12.2. Thisyields a pK, value range of 11.20 £ 0.01 (em) to 11.5 £+ 0.1
(abs), similar to the values of the native isoguanine nucleobase
and ribonucleoside (pK, 3.8-4.0 and 11.0-11.1).%%*

Absorption spectra of “2-AA showed a bathochromic shift
from 332 to 360 nm with a well-defined isosbestic point at
346 nm upon deprotonation of N1 (pK, 6.91 £ 0.01) (Fig. 6c,
cyan line) moving from mildly acidic to basic pH conditions
(pH 4.4-8.4). The same pH dependent equilibrium was detected

(a} NH2

.
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i Hﬂ 2> 11 5
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Fig. 6 (a) Schematic representation of possible isothiazolo-pyrimidine
nucleoside tautomers with labelled nitrogen atoms (red) and sug-
gested pKj; values (blue) corresponding to multiple possible proton-
ation/deprotonation sites (parenthesis). (b) Absorption (dashed lines)
and emission (solid lines) spectra of ¥*X as a function of water solution
pH. (c) Absorption maxima and (d) emission maxima variation versus
pH for %isoG (magenta), “2-AA (cyan) and X (brown).

This journal is © The Royal Society of Chemistry 2017

View Article Online

Chemical Science

by a shift of the emission spectra to 467 nm and the presence
of an isosbestic point at 410 nm, providing a pK, of 5.93 £ 0.02.
This value corresponds well to the pK, value reported for
2-aminoadenosine (pK, 5.4-5.9).** In addition, the emission
spectra showed a remarkable bathochromic shift at lower pHs,
which might be associated with either an additional proton-
ation event involving N3 or N7 (pK, 2.55) or with other processes
(e.g., tautomerization) in the excited state.

With regard to the pH sensitivity of “X, the presence of iso-
sbestic points at 334 and 437 in the absorption and emission-
based pH titration, respectively, were suggestive of N1 deproto-
nation (pK, 9.03 + 0.05, 8.5 &+ 0.2) (Fig. 6¢c and d, brown line).
These values compared well to those of the native xanthine
(pK. 9.6).%® The emission spectra of X depicted a remarkable
70 nm red-shifted fluorescence maxima at lower pHs, which might
indicate a protonation/deprotonation of N7 (pK, 1.98 + 0.01).

For each of the noncanonical nucleoside analogues, the
emission spectra displayed shoulder peaks at certain pHs. We
speculate that pH-dependent excited state processes may yield
distinct emissive states. To shed light on the origin of these
peaks, excitation and emission spectra were recorded at varying
wavelengths.

In the case of “isoG, the acid-base equilibria were further
investigated by recording emission spectra at pH 3.49, 4.43 and
11.39, upon excitation at different wavelengths. This analysis
confirmed that the overall fluorescence signals (Fig. 7 and
S3a-ft) were a linear combination of the emission spectra of two
distinct species (Fig. 7d and S3g-1t). We speculate that the
second observed species in the excited state may be a tautomer
of “IsoG (Fig. 6a), proposed to be a favorable one based on
previous studies of isoguanosine.’®*!

With regard to “2-AA, the emission spectra recorded at pH
1.63 upon excitation at different wavelengths (Fig. S4a and df),
were characterized by a shoulder and maxima at 395 and
480 nm, respectively. The excitation spectra did not display
significant variations (Fig. S4gt), nevertheless suggesting the
presence of two species with very close absorption maxima,
relatively shifted to one another by 1-1.5 nm (the limit of our
instrument). A similar investigation confirmed the presence of
two different species at pH 6.42, near the pkK, value (Fig. S4b, e,
h and kt) and no further detectable deprotonation in basic
media, pH 11.43 (Fig. S4c, f and if). While the existence of
a second species arising near the pK, may suggest a second
tautomer existing in the excited state (Fig. 6a), we note the
proposed structure is only speculated and inspired by previous
computational studies of 2,6-diaminopurine.**

Lastly, comparing the emission spectra of "X at pH 1.57 and
6.49 upon excitation at different wavelengths shows an inver-
sion of the two emission bands over five pH units (Fig. S4a,
b and d, ef). In acidic media, the higher energy band at 403 nm
was followed by a shoulder at 472 nm, while at neutral pH the
lower energy band was predominant. We speculate that this
inversion in relative band intensity, without clear differences in
the excitation spectra (Fig. S4g and ht), could likely be due to
different populations of two excited state tautomeric forms of
X, shown in Fig. 6a, at different pHs. The same analysis,
carried out at pH 11.39 (Fig. S5¢, f, i and 1}) clearly showed the

Chem. Sci,, 2017, 8, 2983-2993 | 2989
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Fig.7 (a) “isoG emission spectra at pH 3.49, recorded upon excitation
at different wavelengths and normalized for the corresponding
absorbance intensity. (b) ZisoG emission spectra at pH 3.49, recorded
upon excitation at different wavelengths and normalized to unit in
intensity. (c) Excitation spectra normalized to unit recorded at selected
emission spectra wavelengths, covering the whole emission band of
aqueous solutions of ZisoG at pH 3.49. (d) Reconstructed excitation
spectra of ZisoG at pH 3.49, plotting the emission intensities at the
relative maxima 415 (red) and 500 (blue) nm upon excitation at
different wavelengths. The grey line represents the relative ratio of the
emission intensities upon excitation at different wavelengths.

contribution of two different species to the absorption and
emission spectra due to partial deprotonation of “X around the
pK, value.

In summary, each noncanonical analogue displays unique
photophysical properties, which are sensitive to changes in pH
and polarity. Absorption and emission spectra have allowed us
to obtain pK, values, which are generally close to those of the
native counterparts. The quantum yield values associated with
each analogue granted further insight into structural determi-
nants that affect the overall fluorescence features of the nucle-
osides. In particular, the presence of the exocyclic amine on
the pyrimidine ring of G and "2-AA seems to be a key deter-
minant in maintaining a high quantum yield of these purine
surrogates.

Enzymatic interconversion

While we have previously demonstrated the potential utility of
isomorphic purine analogues in enzymatic interconversions,®°
we sought to extend it to ¥2-AA, our newly-synthesized non-
canonical adenosine analogue. With “2-AA possessing a signif-
icantly higher quantum yield relative to *“A, the non-canonical
nucleoside, if accepted as an adenosine deaminase (ADA)
substrate, may possess an advantage for inhibitor discovery
assays. Furthermore, we also sought to showcase the intercon-
version between two different modified nucleosides, beyond
that of ““A to "I, by directly converting “2-AA to “G. Lastly, we
wished to investigate the substrate selectivity for our iso-
thiazolo-based analogues compared to the native adenosine in
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an effort to showcase the elevated isomorphicity of our synthetic
analogues.

To evaluate the activity of *2-AA with adenosine deaminase,
we subjected our substrate to ADA under previously published
conditions and followed the reaction via absorption, emission,
and HPLC (Fig. 8a).® The half-life of the deamination reaction
was initially determined using steady state absorption and real-
time emission spectroscopy for the conversion of *2-AA into "G
(t42 = 29 £ 1 and 28.4 £ 0.5 s for absorption and emission,
respectively). Different from the native nucleosides (¢;, =57 £ 4
and 207 + 2 s for A and 2-aminoadenosine (2-AA) respectively,
Table 4), the reaction half-life of *2-AA was found to be similar
to that of “A.

To gain insight into the selectivity of the enzyme, the
deamination reaction was performed on binary combinations
of A, ¥A and "2-AA (with a total substrate to enzyme ratio of
1.1 U pmol ') under pseudo first order conditions. HPLC
analyses at different time-points (Fig. 8b-d) evidenced that the
enzymatic half-life of the adenosine conversion to inosine was
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Fig. 8 (a) Enzymatic competitive deamination of %2-AA and native A
to provide G and inosine as monitored by HPLC traces at T=0s and
T =600 s. (b) Enzymatic deamination of native 2-AA (grey) and %2-AA
(black) monitored by change in absorption spectra intensity at 290 and
368 nm respectively. Inset: ADA-mediated deamination of %2-AA
followed by absorption spectroscopy at 368 nm (black), real-time
emission at 475 nm (pink) and HPLC relative peak area variation (cyan)
at different time-points for “2-AA. (c) Enzymatic competitive deami-
nation of #2-AA (cyan) and native A (green) to provide G (orange)
and inosine (purple) monitored by HPLC relative peak area variation
at different time-points. (d) Enzymatic competitive deamination of
22-AA (cyan) and %A (blue) to provide %G (orange) and *l (red) moni-
tored by HPLC relative peak area variation at different time-points.
(e) Enzymatic competitive deamination of %A (blue) and native A (green)
to provide ¥l (red) and inosine (purple) monitored by HPLC relative peak
area variation at different time-points.
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Table 4 Enzyme deamination half-life

t12 ()

HPLC-based
Substrate UV-vis PL HPLC conversion® (%)
A? 57 — — 100
tzpb 39 33 — 99
2-AA 207 — — 100
7y AA 29 28 33 100
A/"A — — 66/54 87/94
A/"2-AA — — 64/59 100/100
“A/%2-AA — — 30/56 92/88

“ HPLC peak area quantification over a 600 s reaction time. ” From
previous work.’

slightly increased in the presence of A or “2-AA (t;, = 66 + 1
and 64.3 £ 0.4 s, respectively, in the presence of each analogue)
in comparison to the reaction in which adenosine was the only
substrate (t,,, = 57 £ 4 s). On the other hand, both *“A and “2-AA
conversion Kkinetics were decreased two fold when the native
adenosine was present (¢, = 54.5 = 0.7 and 58.8 + 0.4 s,
respectively, vs. t;, = 33.2 £ 0.2 and 29 + 1 s), suggesting
a higher binding affinity for the native adenosine relative to the
analogues. Interestingly, when mixing the two fluorescent
analogs A and "2-AA, we noticed that *“A had a similar effect as
that of A on the reaction half-life of “2-AA (¢, = 56 & 3 s) while
maintaining a high rate of conversion to "I (¢, = 29.7 £+ 0.9 s).

Finally, it is worth noting that *I, as the deaminated product
of A, seems to show a slight inhibitory effect, as is also re-
ported for the corresponding native inosine.** HPLC-based
quantification of the enzymatic reaction after 600 seconds
(Table 4 and Fig. 8) have shown that, different from the native
nucleosides and “2-AA, all competitive enzymatic deamination
reactions in which A was present did not proceed to full
conversion. As previously reported, the conversion to “I was
almost quantitative (99%) for A as the sole substrate for the
enzyme. This potential slight inhibitory effect was more
pronounced in the competitive assays of *“A in the presence of
native A. In both cases, after 10 minutes, neither of the
substrates were completely converted to the corresponding
product.

Overall, when comparing the relative enzymatic deamination
half-life of A, A, and "2-AA and their corresponding binary
isomolar mixtures, we surmise that, as single enzymatic
substrates, A and *2-AA are converted to their respective
products faster than the native A. A was also converted faster
than “2-AA, likely due to the increased electronic perturbations
caused by the added exocyclic amino group.

Enzyme-mediated deamination via ADA is suggested to
proceed through an SyAr-like mechanism, via the addition of
OH followed by NH; elimination at Cé6. It has been suggested
that modifications that decrease the aromatic character of the
heterocycle and promote rehybridization may increase the
reaction rate.*** We propose that this indeed leads to the
increase in deamination rates of “2-AA and A (Fig. 8a),
compared to A. We would also speculate that this reasoning
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applies for the difference in rates between ““2-AA and the native
2-AA riboside. Their diminished performance in competition
reactions, however, likely reflects their lower affinity to the
enzyme.

While ADA is a validated drug target, growing evidence
suggest that misregulation of A to I editing in mRNA is associ-
ated with human disease, and that tRNA deamination and the
enzymes involved may also impact human pathologies.*> The
range of our emissive adenosine analogues (A, A, “2-AA) are
all viable substrates for adenosine deaminases and thus can
serve as substrates for the development of high throughput
inhibitor discovery assays for such transformations. Beyond the
advantages of fluorescence-based tools over HPLC, NH; detec-
tion or absorption measurements, the range of emissive
analogues with distinct deamination rates provides opportuni-
ties to fine tune such discovery assays.

Conclusions

In summary, we have completed an entire family of canonical
and noncanonical isothiazolo[4,3-d]pyrimidine analogues,
providing not only insight into synthetic intricacies of devel-
oping a unique structural scaffold, but also into its electronic
features via the observed photophysical trends. Lastly, we have
demonstrated the ability of our nucleosides to enzymatically
interconvert to other emissive purine-based nucleoside
analogues through deamination via adenosine deaminase with
high rate and selectivity. We predict these nucleosides will
behave as faithful fluorescent purine surrogates in other bio-
logically relevant systems.
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