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Transition metal catalysis has emerged as a powerful strategy to expand synthetic flexibility of protein
modification. Herein, we report a cationic Ru(i) system that enables the first example of alkyne hydrosilylation
between dimethylarylsilanes and O-propargyl-functionalized proteins using a substoichiometric amount or

low-loading of Ru(i) catalyst to achieve the first C-Si bond formation on full-length substrates. The reaction
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Accepted 4th March 2017 proceeds under physiological conditions at a rate comparable to other widely used bioorthogonal reactions.

Moreover, the resultant gem-disubstituted vinylsilane linkage can be further elaborated through thiol-ene

DOI: 10.1039/c65c05313k coupling or fluoride-induced protodesilylation, demonstrating its utility in further rounds of targeted

rsc.li/chemical-science modifications.

Introduction

The chemical modification of biomolecules has emerged as
a powerful tool to study cellular systems.'* Alongside recombi-
nant methods,*” advances in organic chemistry have fueled the
development of an increasing number of chemical reactions
capable of modifying proteins at both genetically and chemically
predefined sites.*** These bioorthogonal reactions have trans-
formed our ability to visualize cellular processes, and have
enabled the development of new therapeutic strategies to treat
diseases."'® Within this “toolbox” of bioorthogonal reactions,
transition metal-mediated reactions are arguably the most
underdeveloped.”” This is likely due to transition metals’
propensity for unproductive chelation within the biological
milieu, resulting in the need for high catalyst loadings to achieve
acceptable reaction rates and labeling efficiency (Fig. 1a).
Previous examples of transition metal-mediated reactions
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include Cu(i) azide-alkyne -cycloaddition,”** Ru(u)
metathesis,>?® Pd(u) cysteine bioconjugation,?”
Miyaura*?*® and some of their intracellular variants.*>** However,

Cross-
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most published reaction conditions utilize high catalyst loading
and the development of a truly catalytic transition metal-
mediated bioconjugation strategy has received little attention.
Here we report a new Ru-catalyzed alkyne hydrosilylation
reaction for protein modification. Using the water-soluble Ru
catalyst [Cp*Ru(MeCN);]PF¢ (1) and dimethylaryl hydrosilane
derivatives, this methodology enables the efficient labeling of
multiple protein targets modified both stochastically and site-
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Fig. 1 (a) General metal-mediated protein modification protocols
using excess of metal catalysts and (b) our approach via Ru(i)-cata-
lyzed alkyne hydrosilylation.
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specifically with an alkyne-containing moiety (Fig. 1b). In
addition, hydrosilylation has orthogonal chemical reactivity to
ketone-hydrazine condensation reaction in vitro, and the
resultant gem-disubstituted vinylsilane product can be further
modified via thiol-ene coupling and fluoride-induced proto-
desilylation, demonstrating the potential of this methodology
for use in both orthogonal dual labeling and single-site,
multiple-probe imaging applications. To the best of our
knowledge, this represents the first example of a C-Si bond
formation on protein substrates using substoichiometric or
low-loading of transition metal catalysts — a feature that we hope
will reinstate this mode of catalysis as a viable avenue for future
research in the field.

Results and discussion

Although hydrosilylation has gained widespread utility in
organic synthesis and in the industrial production of organo-
silicon compounds,**?** aqueous alkyne hydrosilylation is
largely underdeveloped. Inspired by the development of
a cationic ruthenium catalyst [Cp*Ru(MeCN);]PFs 1 by Trost
and Ball,***” we examined the catalyst's ability to catalyze
hydrosilylation under biocompatible, aqueous conditions. We
started our investigation by reacting 3,6,9,12-tetraoxapentadec-
14-yne 2 as a model alkyne and a variety of water-soluble
hydrosilanes with 1 (5 mol%). Despite previously reported
reactivities of trialkoxy and trialkyl silanes, no vinylsilane
products were observed under the reaction conditions tested
(Table 1, entries 1-3).

Gratifyingly, hydrosilylation of dimethylaryl hydrosilane 4
with 2 proceeded smoothly (Table 1, entry 4), achieving full
conversion with 92% isolated yield in less than 5 min. This
apparent high reactivity may be attributed to the strong affinity
for Cp*Ru complexes to coordinate with aromatic rings,*”
allowing hydrosilylation to proceed rapidly in aqueous solution
and open air, thus reinforcing the use of aryldialkyl hydro-
silanes in further experiments. The reaction proceeded with
a 2™ order rate constant k, ~ 1.0 M~* s* (see ESI, Fig. 5207),
which is comparable to Ru(u) cross-metathesis and strain-
promoted alkyne-azide cycloadditions. Furthermore, 4 was
found to be stable in buffered conditions at neutral pH, with
a half-life (¢,,,) > 1 week (see ESI, Fig. S217).

One of the side reactions of aqueous hydrosilylation is the
hydrolysis of hydrosilane to form silanol (Si-OH). In an effort to
reduce silanol formation, we installed substituents adjacent to
the Si-H bond with varying degree of steric hindrance
(compounds 5-7) in the hope to increase selectivity for hydro-
silylation over silanol formation. However, none of the tested
analogues gave better selectivity or reaction rates (Table 1,
entries 5-7). In particular, 6 and 7 showed incomplete conver-
sion despite prolonged reaction times (Table 1, entries 6 and 7).

The hydrophobicity of chemical probes and modifications
often require the use of organic co-solvents in the reaction
mixture. Alcohol-based solvents were found to be tolerated as
co-solvents in aqueous hydrosilylation and achieved similar
reaction rates to those using pure water (see ESI, Fig. S221).
Thus, the hydrosilylation of 2 with triethylene glycol
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Table 1 Optimisation of hydrosilylation conditions (alkoxy vs. alkyl/
aryl hydrosilanes)

e

5 ©
MecNvRu®  PFe
MeCN NCMe 1 (5mol%)

S e

AogoAm,

R;SiH
H,0, 37 °C, open air
Entry  Silane (R;SiH) Conversion” (%) t (min)
1 (EtO),SiH NR O/N
2 (TMSO),SiH NR O/N
Me
3 /foW?iH NR O/N
4 Me 3
4 OH R-Me4 100 (92%) <5
5 \ J/ 100 70
6 NG R R=ES xR O/N
7 BP\—Q—ISiH R=iPré 24 80
R R=Ph7
8¢ o 99? 30
gerhe 71° 30
H4O\/}3\H)K(>\
.H
si
8 Me Me

? Determined by 'H-NMR using 4,4-dimethyl-4-silapentane-1-sulfonic
acid (DSS) as an internal standard. ” Isolated yield. ¢ 50% ¢-BuOH in
PBS (pH 7.4). ¥ Reaction conducted in the presence of 10% human
plasma. ¢ 10 mol% hippuric acid (BZNHCH,CO,H) as an additive. O/
N: overnight; NR: no reaction (>95% starting alkyne recovered).

hydrosilane derivative 8 in 50% #-BuOH in phosphate buffered
saline (PBS) at pH 7.4 gave the corresponding vinylsilane in 99%
isolated yield (Table 1, entry 8). In the presence of human
plasma, the reaction initially proceeded extremely slowly and
gave only trace of product. It was suspected that 1 is inactive in
hydrosilylation due to nonproductive chelation to ruthenium in
10% human plasma. Remarkably, the addition of hippuric acid
(BzNHCH,CO,H) as an additive/ligand helped to stabilize the
Ru(un) complex from rapid exchange processes with, for
example, histidine®®** and aspartic acid*’ residues in plasma
protein and restored the activity of 1, with the corresponding
vinylsilane product isolated in a good yield (Table 1, entry 9).
This result demonstrates that our novel hydrosilylation meth-
odology for protein modification can proceed under physio-
logical conditions.

The scope of this reaction was further evaluated using
a variety of small molecule alkynes representative of amino
acids, carbohydrates, and hydrophobic drugs such as alkynes 9,
11-13 that may be considered substructural motifs of 3-O-
methyl-DOPA (3-OMD), which is one of the most important
metabolites of .-DOPA. We first investigated whether nearby
chalcogens on the terminal alkyne group could increase the rate
of hydrosilylation. With no nearby coordinating groups, the
reaction with alkyne 9 proceeded slowly, requiring a long

This journal is © The Royal Society of Chemistry 2017
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reaction time to reach 68% yield (Table 2, entry 1). Contrary to
the reported chalcogen effect in protein cross-metathesis,**® S-
propargyl 11 and Se-propargyl 12 inhibited hydrosilylation and
the respective vinylsilane products were not detected, despite
extended reaction times (Table 2, entries 2 and 3). Surprisingly,
O-propargyl 13 showed the most promise, affording vinylsilane
14 in 91% isolated yield (Table 2, entry 4). This is likely due to
the intricate balance between ruthenium-coordination (X = O)
and inhibition (X = S, Se).

This observation was further confirmed by the decreasing
isolated yields when reacting PhMe,SiH 15 with O-propargyl-
serine 16, S-propargyl-cysteine 18, and Se-propargyl-
selenocysteine 20 derivatives (Table 2, entries 5-7). Nonethe-
less, hydrosilylation proceeded smoothly on amino acids 21 and
23, as well as alkyne-sugar derivative 25, affording the corre-
sponding products in excellent isolated yields (Table 2, entries
8-10). These examples are of particular importance, as

Table 2 Alkyne scope for aqueous hydrosilylation
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strategies for the in vivo incorporation of such moieties into
proteins and cell-surface glycans have been developed.*** Full
conversion was also achieved on a model peptide 27 with bio-
tinylated hydrosilane 29, demonstrating the potential for Ru(u)
aqueous hydrosilylation protocol to modify more complex
biomolecules (Scheme 1). Furthermore, the stability of the
resulting gem-disubstituted vinylsilane moiety was assessed
under physiological conditions and in the presence of biolog-
ical thiols, with no observable degradation at 37 °C for up to
24 h (see ESI, Fig. S241).

Biocompatible chemical transformations are often most
powerful when used in conjunction with each other, allowing
for the site-specific incorporation of multiple chemical modifi-
cations into a single biomolecule.** Encouragingly, hydro-
silylation was found to be compatible with the widely used o-
substituted amine/carbonyl condensation,**** where O-prop-
argyl 13 reacted smoothly with hydrosilane 15 in the presence of

H Ar R/\\\ , 1 (5 mol%) R\)J\ A
Si Ar
Me Me 50% t-BuOH in PBS pH 7.4 Me’S!Me
37 °C, open air
Entry Silane (ArMe,SiH) Alkyne Product” (yield%)
HN
MeO
1° 8 o] 10 (68%)
MeO 9
A\
2 8 _ NR
3 8 l/\to/\%zx\// NR
4 8 HN__O X=S11 14 (91%)
X=8e12
X=013
OMe
OMe
5¢ PhMe,SiH (15) _— 17 (98%)
6° 15 X~ x=016 19 (29%)
BocHN” >CO,Me X=S18
=
4
> s Se /
20 NR
AcHN” >CO,Me
S
. O
8¢ 8 & j;\\\ 22 (85%)
AcHN™ “CO,Me 21
oy o”
o 8 HN ) 23 24 (81%)
4
BocHN™ "CO,Me
OH
AN (82%)
10 8 26 (82%
HO OH o\/;

“ Isolated yield. ? 5 h reaction time. ¢ 10 mol% hippuric acid added as an additive. NR: no reaction (>95% starting alkyne recovered).
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Scheme 1 Hydrosilylation of peptide 27 with biotinylated hydrosilane 29. °Conversion (%) determined by HPLC.

ketone 30, achieving >95% conversion to desired vinylsilane 31
in 30 min. Subsequent addition of hydrazine 33 resulted in
complete conversion of 30 to hydrazone 32. This demonstrates
the utility of tandem hydrosilylation and condensation reac-
tions via a step-wise, one-pot ligation strategy without any
undesired interference to their reactivities (Scheme 2a).

Most site-selective dual-labeling efforts require the incorpo-
ration of two unique bioorthogonal functional groups*>*° or the
use of bifunctional substrates,®** which can be a synthetic
challenge and limits the wide adoption of such methods.
Moreover, it would be advantageous to have the ability to
selectively remove synthetically incorporated chemical modifi-
cations, allowing for potential “switch on/off” applications. To

address these issues, we sought to further elaborate the gem-
disubstituted vinylsilane linkage via radical thiol-ene**~* and
fluoride-induced protodesilylation reactions®* (Scheme 2b).
To illustrate the dual-labeling methodology, we incubated
model vinylsilane substrate 31 with benzyl mercaptan, 10 mol%
2,2-dimethoxy-2-phenylacetophenone (DMPA) and irradiated at
365 nm to give doubly-modified derivative 34 in excellent iso-
lated yield (81%). Furthermore, the gem-disubstituted vinyl-
silane linkage can be cleaved by treatment with TBAF to give the
corresponding O-allyl 35, demonstrating the potential for
chemical Si-modifications installed via hydrosilylation to be
selectively removed.

a
H 1) PhMe,SiH 15, 1 (5 mol%) Me, Me
& N(\/\oﬁ;\\\ 0 50% MeOH in H,0 (\/\OW COH

37 °C, 30 min NH

¥ Me + N~

2)  NHNH, ‘
M OMe MeO OMe ) o OMe /@\)\Me
OMe
30 33,37°C,1h OMe MeO OMe
13 FiNE
31 (>95%) 32 (>95%)?
b
Ve, e
nSH,
Me, Me (\/\o
o hv (365 nm)
(\AOW MeOH, tt, 1 h ph/\
34, 81%
OMe Protodesilylation MeO
OMe i: . o § _
DMSO/THF 0 (‘/\OZ\/
31 37°C,16 h o
35, 85%
Scheme 2 (a) Tandem hydrosilylation and hydrazine condensation reaction. (b) gem-Disubstituted vinylsilane reactivity under thiol-ene

coupling conditions and fluoride-induced protodesilylation, giving thioether 34 and O-allyl 35 in 81% and 85% isolated yields, respectively.

?Conversion (%) determined by HPLC.
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With these promising results in hand, we conducted protein-
labeling experiments via hydrosilylation on different protein
systems. First, lysine residues on lysozyme (Lyz) were non-
selectively modified with 36 to give O-propargyl modified Lyz
(OP-Lyz) (Fig. 2a and b). When treated with biotinylated
hydrosilane 29 and only 10 mol% of 1, we were pleased to
observe selective labeling of OP-Lyz over Lyz with negligible
background labeling (Fig. 2c). Similarly, when the reaction time
or concentration of 29 was held constant (1 h and 250 uM,
respectively), dose- and time-dependent labeling was observed,
even at very low catalyst loading (2 mol%) (see ESI, Fig. S11).
Inductively coupled plasma-mass spectrometry (ICP-MS) deter-
mined that ruthenium content was <10 ppb after purification
when using 10 mol% catalyst (see ESI} for details). To the best
of our knowledge this result is the first demonstration of
a protein modification protocol mediated by a sub-
stoichiometric amount of transition metal catalyst.

Next, we incorporated O-propargyl groups site-specifically
into a super-folder GFP (sfGFP) protein (Fig. 2d).”® Briefly,
PylRS/pylT pair, the wild-type orthogonal Methanosarcina bar-
keri pyrrolysyl-tRNA synthetase and ¢(RNAcya pair and C-
terminally hexahistidine-tagged sfGFP containing an amber
codon (TAG) at position 150 (SfGFP;5¢ragHise) were introduced

View Article Online
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into E. coli. Addition of 37 (5 mM) led to the amino acid
dependent synthesis of full-length sfGFP-37,5, in good yield
(15 mg L™" of culture). A similar approach was used to obtain
sfGFP-38,5, as a negative control for labeling experiments
(Fig. S2 and S31). We subsequently incubated sfGFP-37,5, with
fluorescent hydrosilane 39 and 1 (5 mol%) in PBS (pH 7.4) at
37 °C. A fluorescent band was detected after 24 h of incubation
with limited background fluorescence observed. This result is
particularly noteworthy because no fluorescence was observed
when sfGFP-38,5, was reacted under the same conditions,
highlighting the bioorthogonality and specificity of this reac-
tion towards O-propargyl groups (Fig. 2e). The formation of the
expected ligated protein was further confirmed by LC-MS (see
ESI, Fig. S4%).

As an alternative to recombinant techniques, we also site-
specifically incorporated the alkyne handle through chemical
modifications at cysteine. Using the methodology developed by
Davis and co-workers,* the single cysteine mutant of the C2A
domain of Synaptotagmin I C2Am (eukaryotic marker of
apoptosis) was converted to OP-C2Am via the dehydroalanine-
tagged protein intermediate in >95% conversion (Scheme 3a).
Gratifyingly, 1 successfully mediated hydrosilylation of OP-
C2Am with 8 at 37 °C for 1 h to afford VS-C2Am as detected

a Vi
A( Me, H
// 5 5 Me-Si H
O:<NH OZI<NH ° q i
o) S NH
o:<o T h o O u%ﬂo 3
HN"0 HN
Me,N
HoN HoN ° ’
2l 2
ON COH COH 0> N"So NMe; siH
3 H Me’ Me
36 37 38 29 39
o o c
g L 1 (10 mol%) - + +
Cﬂ%‘ o) fﬂ%m o 29 (250 M) - + +
_ X y OP-Lyz (125 uM) + - +
Cheg, =, (Cheg,” 2 . (Chegy we-si e c-tiotr |
) ;
4 non-selective 6 ¥ W'
Lysozyme OP-Lyz
125 uM
d SIGFP-37,5 | + + + ¥ -
SfGFP-38,5 | - = 7 - +
PyIRSARNAcuA 1 (5 mol%) - + 2 *
protein expression
37 — > 39 (250 uM) s s + +

genetic
encoding

SFGFP-37450
25uM

Fluorescence

Coomassic “HlF W SN S

Fig. 2 Selective labeling of O-propargyl (OP) modified protein substrates via hydrosilylation. (a) The structures of unnatural amino acids 37 and
38 and other reagents used in this study. (b) Modification of solvent-exposed lysine residues on lysozyme (Lyz) with 36 and subsequent labeling

with 29. (c) Selective labeling of OP-Lyz via hydrosilylation with 29 and 1.

Lyz (=) and OP-Lyz (+) (125 uM) was independently incubated with 29

(250 uM) and 1 (10 mol%) for 2 h at 37 °C and the presence of biotinylated protein was detected by Western blot using a-biotin-HRP conjugated
antibody. (d) Genetic encoding and fluorescent labeling of 37 via hydrosilylation. (e) In-gel fluorescence demonstrating specific labeling of

SfGFP-37150 with 39. In (c) and (e), equal protein loading was verified by
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X -37°C, 6 h = (50 mM, pH 8) )
Y c2am C2Am-Dha t,25h 3 OP-C2Am
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Calcd. mass Calcd. mass Calcd. mass
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16435
8 (15 mM)
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o Me\ Me
Hippuric acid 3 si’ Calcd. mass
7.5% MeOH in H 16703 Da
NaP; (50 mM, pH 8)
: a7ec, 1h N*(\/\oiH
= mass
- OP-C2Am o
52 uM 16000 18000

Scheme 3

VS-C2Am, 45%

(a) Site-specific incorporation of 40 into C2Am via C2Am-Dha and (b) subsequent hydrosilylation with 8. Found masses corre-

sponding to OP-C2Am (16 394 Da), Oxidized-OP-C2Am (16 435 Da), and VS-C2Am (16 704 Da).

by LC-MS (Scheme 3b). Compared to the high loading of tran-
sition metal complexes used in typical metal-mediated protein
modification protocols, Ru(n) complex 1 mediated aqueous
hydrosilylation offers a milder alternative and these results
highlight its potential for site-specific chemical protein modi-
fication using either substoichiometric or low-catalyst loading
systems.

Having succinctly demonstrated the ability to carry out
alkyne hydrosilylation on numerous protein systems, efforts
were then directed towards ascertaining whether it was possible
to modify the protein-incorporated vinylsilane through our
earlier described radical thiol-ene and protodesilylation reac-
tions. Vinylsilane-modified lysozyme (VS-Lyz) was chosen for
initial studies. We found that treatment of VS-Lyz with a pro-
tected cysteine amino acid and DMPA under hv irradiation
yielded Cys-Lyz, as detected by LC-MS (see ESI, Fig. S18%).
Similarly, treatment of VS-Lyz with TBAF-3H,0 afforded Ene-
Lyz (see ESI, Fig. S19}). These proof-of-principle experiments
show that the vinylsilane can be further modified after its
introduction on a protein through Ru(u)-catalyzed aqueous
hydrosilylation.

Conclusions

In conclusion, we have demonstrated that O-propargyl groups
and dimethylaryl hydrosilanes (HSiMe,Ar) are effective
coupling partners for Ru(n) complex 1 catalyzed aqueous
hydrosilylation, where alkyne-labeled small-molecules and
peptides are site-specifically modified in good to excellent
yields. Furthermore, hydrosilylation is shown to have

3876 | Chem. Sci,, 2017, 8, 3871-3878

orthogonal reactivity to the widely used bioorthogonal hydra-
zine condensation reaction, giving rise to potential biomolecule
dual-labeling applications. Furthermore, O-propargyl tagged
proteins (via chemical and genetic strategies) successfully
undergo site-specific hydrosilylation in the presence of sub-
stoichiometric or low loading of 1 to achieve the first C-Si bond
on protein substrates. Finally, the resultant gem-disubstituted
vinylsilane linkage serves as a reactive chemical handle for
thiol-ene coupling and protodesilylation, highlighting the
potential for single-site dual-modification and the selective
removal of vinylsilane modifications. Hence, we believe this
work greatly expands the reaction conditions and substrate
complexity of hydrosilylation and complements the growing
interest in metal-mediated protein modification strategies.
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