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Highly effective ammonia removal in a series of
Bronsted acidic porous polymers: investigation of
chemical and structural variationsy

Gokhan Barin,? Gregory W. Peterson,® Valentina Crocella,® Jun Xu, (2
Kristen A. Colwell,® Aditya Nandy,” Jeffrey A. Reimer,® Silvia Bordiga
and Jeffrey R. Long

Although a widely used and important industrial gas, ammonia (NHs) is also highly toxic and presents
a substantial health and environmental hazard. The development of new materials for the effective
capture and removal of ammonia is thus of significant interest. The capture of ammonia at ppm-level
concentrations relies on strong interactions between the adsorbent and the gas, as demonstrated in
a number of zeolites and metal—organic frameworks with Lewis acidic open metal sites. However, these
adsorbents typically exhibit diminished capacity for ammonia in the presence of moisture due to
competitive adsorption of water and/or reduced structural stability. In an effort to overcome these
challenges, we are investigating the performance of porous polymers functionalized with Brensted acidic
groups, which should possess inherent structural stability and enhanced reactivity towards ammonia in
the presence of moisture. Herein, we report the syntheses of six different Brensted acidic porous
polymers exhibiting —NHzCl, —CO,H, -SOzH, and —POzH, groups and featuring two different network
structures with respect to interpenetration. We further report the low- and high-pressure NHsz uptake in
these materials, as determined under dry and humid conditions using gas adsorption and breakthrough
measurements. Under dry conditions, it is possible to achieve NHz capacities as high as 2 mmol g~ at
0.05 mbar (50 ppm) equilibrium pressure, while breakthrough saturation capacities of greater than
7 mmol g~! are attainable under humid conditions. Chemical and structural variations deduced from
these measurements also revealed an important interplay between acidic group spatial arrangement and
NHsz uptake, in particular that interpenetration can promote strong adsorption even for weaker Bronsted
acidic functionalities. In situ infrared spectroscopy provided further insights into the mechanism of NHs
adsorption, revealing a proton transfer between ammonia and acidic sites as well as strong hydrogen
bonding interactions in the case of the weaker carboxylic acid-functionalized polymer. These findings
highlight that an increase of acidity or porosity does not necessarily correspond directly to increased
NHz capacity and advocate for the development of more fine-tuned design principles for efficient NHz
capture under a range of concentrations and conditions.

Introduction

Solid-state adsorbents such as metal-organic frameworks* and
porous polymers® are intriguing classes of materials that have
shown significant advancement over the past two decades.
Given the flexibility in their design and synthesis, the physical
and chemical properties of these materials can be fine-tuned?®
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for a specific application and in particular they have been
extensively investigated for applications in gas storage and
chemical separations.* In the context of gas capture or separa-
tions, it is important to have preferential binding sites with
a large enthalpy of adsorption to achieve selective and efficient
separation of ppm-level contaminants from the rest of the
mixture.’
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One example where this is of particular importance is in the
removal of ammonia (NH3) from air.®* Ammonia is one of the
most highly produced chemicals, and is widely utilized in many
essential segments of industry.” On the other hand, ammonia is
also highly toxic and poses significant health and environ-
mental concerns.®® For example, CAL-OSHA has limited short-
term ammonia exposure to levels as low as 35 ppm while an
eight-hour time-weighted average exposure has been limited to
25 ppm.' Effective protection mechanisms against excess
ammonia exposure are therefore highly desired in many
industrial settings, as well as for military applications. Another
potentially interesting application is the removal of residual
ammonia in NH;-based fuel cells after the gas decomposes to
hydrogen. Indeed, even a small amount of ammonia slip could
poison the catalyst and acidic membrane in a fuel cell, and
adsorbents that can capture ammonia efficiently at low
concentrations could play an important role in the advance-
ment of this technology. In addition to the selective removal of
ammonia, porous materials have the potential to exhibit high-
capacity storage of ammonia under ambient or high pres-
sures, which would provide a safer alternative to compressed
liquid ammonia (10 bar, 25 °C) for transportation and recycling
applications.

Ammonia can behave as both a Lewis base and a Brensted
base, and therefore porous materials decorated with Lewis or
Brgnsted acidic sites are promising targets for capture at
particularly low concentrations.” Certain metal-organic
frameworks exhibit exposed metal cations, which serve as Lewis
acid sites that strongly adsorb ammonia, and these frameworks
have been shown to take up high quantities of ammonia at low
concentrations under dry conditions.®*** However, the capac-
ities of these materials are generally significantly diminished in
the presence of moisture, a scenario that reflects actual prac-
tical operating conditions for ammonia scrubbers.®*** Such
behavior can be attributed to the competition between water
and ammonia molecules for Lewis acid sites, as well as to the
instability of some of the investigated frameworks under humid
conditions. To overcome these problems, a water-stable
framework, UiO-66, functionalized with a series of Brgnsted
acidic groups (-OH, -NH,, -CO,H, -SO;H) was recently inves-
tigated for NH; capture.®® Although considerable improvement
in NH; capacity was achieved using these materials, there was
also a significant reduction in porosity upon functionalization
with bulkier groups -CO,H and -SO;H, which hindered the
accessibility and complete utilization of the acid sites. More
recently, incorporation into a polymer membrane has been
demonstrated to impart enhanced stability to the framework
HKUST-1 under humid conditions, without diminishing NH;
capacity.™

Porous polymers have been investigated to a lesser degree in
the context of low-pressure NH; capture.*® In contrast to metal-
organic frameworks, porous polymers inherently exhibit'®
a high chemical and thermal stability, due to their covalent
backbone and accordingly should not suffer from degradation
in the presence of ammonia and/or moisture. Furthermore,
a diverse toolbox of synthetic organic chemistry allows not only
the preparation of polymers with desired porosity (surface area
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and pore size) but also the incorporation of Brgnsted acidic
groups in a facile manner. Recently, we demonstrated that
a three-dimensional porous polymer functionalized with
carboxylic acid groups exhibits a high ammonia uptake of
3.15 mmol g~ ' at an equilibrium concentration of ~500 ppm.?’
The spatial arrangement of multiple carboxylic acids in this
material—most likely a result of its multiply-interpenetrated
structure—leads to the cooperative reactivity, which in turn
creates strong adsorption sites for ammonia at low pressures.
Additionally, a sulfonic acid-functionalized porous polymer,
prepared from a non-interpenetrated, high-surface area porous
aromatic framework (PAF-1), exhibited a lower ammonia
capacity of 1.54 mmol g~ at ~900 ppm, in spite of its stronger
Bronsted acidity. This behavior was attributed to the presence
of isolated and non-interacting acidic groups due to the non-
interpenetrated structure of the material. Such a striking
difference between these two polymers prompted us to further
investigate the interplay between Brensted acidity and polymer
structure in a systematic manner.

Herein, we report the synthesis and characterization of six
distinct Bregnsted acidic porous polymers incorporating
-NH;Cl, -CO,H, -SO;H, and -POz;H, groups (Fig. 1a) and
describe their low- and high-pressure NH; uptake behavior
under dry and humid conditions using static gas adsorption
and dynamic breakthrough measurements. Through successful
incorporation of various acidic groups into non-inter-
penetrated”® (P1) and interpenetrated” (P2) frameworks
(Fig. 1b), we were able to investigate the impact of acidic group
strength and their spatial arrangement on the overall NH;
uptake in a three-dimensionally confined environment. For the
best performing materials, we also present the results of in situ
infrared spectroscopic characterization of the interactions
between ammonia and Brgnsted acid sites.

Results and discussion
Synthesis

The Brgnsted acidic porous polymers reported in this work were
synthesized following either a postsynthetic functionalization
strategy starting from PAF-1 or a de novo approach—i.e., first
installing Breonsted acidic moieties on one of the monomers
and then carrying out a Suzuki coupling polymerization. Prep-
arations for the polymers P1-NH;Cl (also known as BPP-2) and
P2-CO,H (also known as BPP-7) were recently reported,'” while
the synthesis of P1-SO3H (also known as PPN-6-SO;H) was
achieved following a literature procedure.*

Porous polymers P2-NH;Cl and P2-SO;H were synthesized
(Fig. 1a) through the Suzuki coupling route. Precursors 1a and
1b were produced starting from 2-amino-1,4-dibromobenzene
and 1,4-dibromobenzene, respectively (see ESIT). The tert-buty-
loxycarbonyl (Boc) protection®* of the amino group in 2-amino-
1,4-dibromobenzene using di-tert-butyl dicarbonate was fol-
lowed by Miyaura borylation to afford 1a. The sulfonation of 1,4-
dibromobenzene using chlorosulfonic acid (CISO;H) provided
2,5-dibromobenzenesulfonyl chloride.*” A neopentyl group was
chosen as the protecting group in this instance, due to the
stability of the resulting sulfonic ester under basic Suzuki-

This journal is © The Royal Society of Chemistry 2017
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Fig. 1

(a) General scheme for the syntheses of P1 and P2 polymers incorporating various Brensted acid groups. P1 polymers were synthesized

using a postsynthetic modification strategy starting from PAF-1, while the P2 polymers were prepared through Suzuki coupling polymerization.
Conditions: (i) Ni(cod),, 2,2'-bipyridine, DMF. (ii) Cu(NO3),, Ac,0, then NaS,04; HCL, 1,4-dioxane. (iii) CISOsH, CH,Cl,. (iv) HCHO, HCL, H3zPOy,
AcOH; P(OEt)s; MesSiBr, CH,Cl,, then MeOH. (v) SPhos Pd G2, K,COs, H,O, THF. (vi) HCL, 1,4-dioxane. (vii) NaNs, DMSO, then HCL. (viii) KOH,
DMSO. (b) lllustration of non-interpenetrated (P1) and interpenetrated (P2) polymer structures to demonstrate the proximity of Brensted acidic

sites in each structure type.

Miyaura coupling conditions, as well as to its ease of removal
after polymerization.”® Esterification of 2,5-dibromobenzene-
sulfonyl chloride with neopentyl alcohol and subsequent
Miyaura borylation delivered 1b. Suzuki polymerization of 1a
and 1b with the tetrahedral precursor tetrakis(4-bromophenyl)
methane using Buchwald's precatalyst (SPhos Pd G2) yielded
polymers P2-NHBoc and P2-SO;Neo, respectively. The utiliza-
tion of a 4 M HCl solution in 1,4-dioxane enabled the removal of
the Boc group and protonation of the amino group simulta-
neously to yield the final polymer, P2-NH;Cl. In the case of P2-
SO;Neo, hydrolysis of the neopentyl group was carried out using
NaN; in DMSO and subsequent acidification with 6 M HCI
resulted in the polymer P2-SO;H.

This journal is © The Royal Society of Chemistry 2017

Similar to previously reported syntheses of P1-NH,Cl and P1-
SO;H, the polymer P1-PO;H, was prepared through post-
synthetic modification (Fig. 1a). The parent PAF-1 was synthe-
sized following the original procedure,® while the
chloromethylation of PAF-1 to afford the intermediate PAF-1-
CH,Cl was achieved as reported previously.*” The conversion of
PAF-1-CH,Cl into the ethyl phosphonate polymer P1-PO;Et, was
accomplished through a Michaelis-Arbuzov reaction in the
presence of neat triethyl phosphite, P(OEt);, at elevated
temperatures. The mild hydrolysis of the phosphonate ester
groups into phosphonic acid moieties was readily accomplished
using Me;SiBr, affording the polymer P1-PO;H, in a quantita-
tive manner.

Chem. Sci,, 2017, 8, 4399-4409 | 4401


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sc05079d

Open Access Article. Published on 27 April 2017. Downloaded on 1/19/2026 7:27:44 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

Polymer characterization

The formation of porous polymers incorporating protected
Bronsted acidic groups and their subsequent hydrolysis was
confirmed by Fourier transform infrared (FTIR) spectroscopy
(Fig. S7-S91) and solid-state "H and *C NMR spectroscopy
(Fig. S10-S197%). The FTIR spectra of P1-NH;Cl, P1-SO;H, and
P2-CO,H were found to be in accordance with previously re-
ported data.'”?® The formation of P1-PO;Et, was confirmed by
the appearance of characteristic P=O and P-O-C stretching
bands at 1240 and 960-1050 cm ™, respectively. The efficiency
of this conversion was also reflected in the elemental analysis
data (Table S17). The initial chlorine content of 16.2% in PAF-1-
CH,CI was reduced to 0.6% in the subsequent phosphonate
ester polymer. Moreover, hydrolysis of P1-PO;Et, to P1-PO;H,
resulted in a shift in the P=0 stretching band to 1140 cm ™" and
the appearance of P-O-H bands in the range of 930-1000 cm ™.
Complete hydrolysis of ester groups was also evidenced by the
absence of P-O-C stretching bands. Similarly, complete
removal of the Boc groups in P2-NH;Cl was unambiguously
demonstrated by the disappearance of a C=0 stretching band
at 1713 cm™* as well as the emergence of a broad N-H band
centered around 3345 cm ™. In the case of P2-SO;H, absorption
bands at 960 cm™" (S-O-C stretching) and at 1178 and 1350
em ™' (S=O stretching) were replaced by bands at 996 and 1020
cm ' (S-OH) and 1150 cm™ ' (S=O0), respectively. Finally, the
disappearance of C-H stretching bands in the 2900-3000 cm ™ *
region also indicated the removal of neopentyl groups.

The extent of removal for each protecting group and the
structural integrity of P1-PO;H,, P2-NH;Cl, P2-SO;H, and P2-
CO,H were further examined by magic angle spinning (MAS) "H
NMR spectroscopy and cross-polarization magic angle spinning
(CP/MAS) *C NMR spectroscopy. Acidic protons appear as
sharp, narrow peaks, especially in the cases of P1-PO3;H,, P2-
SOz;H, and P2-CO,H in the solid-state MAS "H NMR spectra,
reflecting the high mobility of acidic protons in these materials
(Fig. S12, S16 and S18f1). The disappearance of the protons
associated with protecting groups further suggested high
conversion efficiencies and purities of the final Bronsted acidic
porous polymers. The CP/MAS "*C NMR spectra also confirmed
the hydrolysis of protecting groups by revealing an absence of
chemical shifts in the range of 10-40 ppm, for aliphatic carbon
atoms on alkyl groups as well as in the 60-80 ppm, region for
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aliphatic carbon atoms attached to oxygen. Broad chemical
shifts in the 110-170 ppm region are ascribed to the presence of
aromatic subunits in both protected and final acidic polymers,
which also confirm the structural integrity and stability of these
polymers under harsh hydrolysis conditions. Scanning electron
microscopy images further revealed that the P1 polymers
consistently display a sphere-like morphology, while all P2
polymer particles exhibit sheet-like features (Fig. S20 and S217).

Elemental analyses verified polymer conversion efficiency,
with good agreement between experimental and calculated
compositions (Tables S1 and S2t), and also enabled quantifi-
cation of the Bronsted acidic site density within each polymer
(Table 1). Accordingly, data for P1-NH3;Cl and P2-NH;Cl
revealed a nitrogen content that corresponds to -NH;Cl group
concentrations of 6.0 and 3.4 mmol g ', respectively. The
analysis of sulfur content demonstrated a sulfonic acid loading
of 3.7 mmol g~ * for P1-SO;H and 2.8 mmol g~ * for P2-SO;H.
Phosphorus analysis of P1-PO;H, indicated a phosphonic acid
concentration of 3.2 mmol g~', which in fact corresponds to
6.4 mmol g~ ' of available Brensted acidic sites. Oxygen analysis
of P2-CO,CoH,;9 enabled determination of a carboxylic acid
loading of 6.5 mmol g~* in P2-CO,H. In the case of the P1
polymers, the number of -NH;Cl groups per biphenyl linker
(repeating unit) was found to be 1.4 in P1-NH;Cl, while the
number of -SO;H and -PO;H, groups was lower in P1-SO;H
(0.8) and P1-PO;3H, (0.7), respectively.

Surface area and pore size distribution

Surface area and porosity analyses were carried out using
nitrogen gas adsorption isotherms collected at 77 K. Pore size
distributions were calculated from the adsorption branch of
isotherms employing a quenched solid-state DFT (QSDFT)
model, which takes surface heterogeneity into account and
assumes the presence of a mixture of slit, cylindrical, and
spherical pores. All polymers display type I reversible isotherms,
as typically observed for microporous materials (Fig. S24-S297)
and the overall results from these measurements are summa-
rized in Table 1. The BET surface areas of P1-NH;Cl, P1-SO;H,
and P1-PO;H, were found to be 975, 1220, and 835 m?* g,
respectively. Since the parent material PAF-1 is considered to be
a non-interpenetrated framework owing to its high surface area
and expected pore size of ~11 A postsynthetic

Table 1 Textural properties including surface areas, pore volumes, and functional group densities of P1 and P2 polymers

SBETa (m2 gil) Smicrob (mz gil) Sextb (mz gil)

Vmicrob (Cm3 g7 1)

Vioral’ (cm® g7')  Acid group density? (mmolaeiq g7 )

P1-NH;ClI 975 833 142 0.33
P1-SO;H 1220 1035 185 0.41
P1-PO;H, 835 674 161 0.27
P2-NH;ClI 980 835 145 0.33
P2-SO;H 400 303 97 0.12
P2-CO,H 715 637 78 0.25

0.53 6.0
0.64 3.7
0.49 6.4°
0.45 3.4
0.20 2.8
0.30 6.5

“ Brunauer-Emmett-Teller (BET) areas were calculated over the pressure range (P/P,) 0.01-0.06. ” Micropore/external surface areas and micropore
volumes were calculated using the ¢-plot method. ¢ Total pore volumes were obtained at P/P, = 0.95. ¢ Density of acidic sites were determined from
elemental analysis using the N, S, P, or O content of the corresponding polymer. * The value corresponds to twice the number of phosphonic acids to

account for its diacidic nature.
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functionalization to afford the P1 polymers is expected to
preserve this architecture, thus rendering Bronsted acidic sites
relatively well-isolated. In spite of the expanded repeating unit
length for the P2 polymers (terphenyl instead of biphenyl), the
BET surface areas are lower overall than those of the P1 poly-
mers (Table 1). The narrower pore sizes for the P2 polymers, in
the range 6-10 A, also suggests a significant degree of inter-
penetration and that the Brgnsted acidic groups are most likely
in close proximity to one another. The relatively high BET
surface area for P2-NH;Cl (980 m? g™ ) in this series might be
attributed to the presence of the sterically encumbering Boc
groups used in the synthesis of the P2-NHBoc precursor, which
could reduce the degree of interpenetration.*

It should be noted that the total pore volumes for P1 poly-
mers (>0.5 cm® g~ ') are consistently higher than those for P2
polymers (<0.5 cm® g~ '), reflecting the influence of interpene-
tration in the latter frameworks. The microporosity of each
sample was also further confirmed by ¢-plot curves (Table 1). All
polymers exhibit pore size distributions mainly in the micro-
pore range, while a closer inspection and comparison of pore
size distributions for P1 and P2 polymers carrying similar
Brgnsted acidic groups further reveals some structural differ-
ences (Fig. S30-S32t). For instance, although the pore size
distributions for P1-NH;Cl and P2-NH;Cl appear similar, the
total volume contribution from pores smaller than 15 A is
slightly larger in P2-NH;Cl. This difference becomes more
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obvious for the polymers comprising -SO;H moieties; indeed,
while the pore width maxima centered around 6 and 9 A for P1-
SO;H are associated with nearly equal pore volume contribu-
tions, the major pore volume contribution in P2-SO;H arises
from the pores centered around ~6.5 A. In the case of P1-PO;H,
and P2-CO,H, both materials exhibit a pore-width maximum at
~6 A as well as a pore size distribution in the range 7-10 A,
although the overall contribution of 6 A pores is larger for the
interpenetrated polymer P2-CO,H, while the 7-10 A pores
contribute more to the pore volume for P1-PO;H,. Even though
these two polymers possess different Brgnsted acidic groups,
their pore size distributions are in excellent agreement with the
anticipated structural features based upon interpenetration.

NH; adsorption

After thermally degassing the polymers under vacuum, NH;
uptake was investigated at pressures of up to 1 bar at 298 K
under dry conditions (Fig. 2). As mentioned earlier, the NH;
isotherms for P1-NH;Cl, P1-SO;H, and P2-CO,H were recently
reported."” For the sake of a clear discussion and comparison in
this section, these isotherms have also been included with those
newly collected for P1-PO;H,, P2-NH;Cl, and P2-SO;H.

Among the P1 polymers, P1-SO;H and P1-POz;H, exhibit
a significant improvement over P1-NH;Cl at low pressures,
consistent with the stronger Bregnsted acidity of the sulfonic and
phosphonic acid groups. For example, at 0.5 mbar (500 ppm),

6
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Fig. 2 Left panels: NH3z adsorption isotherms for (a) P1 (circles) and (b) P2 (triangles) polymers measured at 298 K. Right panels: Low-pressure
region for these plots, up to 3 mbar. Dotted gray lines are guides to compare the uptake values at 0.05 mbar (50 ppm) and 0.5 mbar (500 ppm).
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P1-NH,Cl displays an excess uptake of 0.37 mmol g ' compared
to 1.35 and 3.3 mmol g, for P1-SO;H and P1-PO;H,, respec-
tively (Fig. 2a). Notably, P1-PO;H, shows an uptake of
18.7 mmol g ' at 1 bar, which represents a substantial
improvement over the uptakes of 11.2 mmol g~ * for P1-NH;Cl
and 12.1 mmol g~ for P1-SO;H at the same pressure. It should
be noted that even though phosphonic acid is less acidic than
sulfonic acid, P1-POz;H, exhibits a steeper uptake in the low-
pressure region of the isotherm and higher uptake at low and
high pressures under dry conditions. The diacidic nature of this
functional group, which increases the total number of acidic
sites, and the smaller surface area and pore volume of the
associated polymer most likely contribute to the enhanced
adsorption under dry conditions. As expected within the series
of interpenetrated P2 polymers, P2-SO;H and P2-CO,H outper-
form P2-NH;Cl in terms of low-pressure NH; uptake (Fig. 2b).
The NH; capacity at 0.5 mbar is 2.25 mmol g~ for P2-SO;H and
3.15 mmol g~ " for P2-CO,H, compared to 0.27 mmol g~ * for P2-
NH,Cl. Moreover, despite the weaker acidity of the carboxylic
acid groups compared to sulfonic acids, the higher carboxylic
acid density (6.5 compared with 2.8 mmol g " sulfonic acid
groups) enables greater NH; uptake at low pressures in P2-
CO,H—a comparison that also suggests the formation of strong
binding sites with multiple weak acidic groups. At 1 bar, P2-
NH,Cl and P2-CO,H display similar NH; uptakes of 16.3 and
16.1 mmol g’l, respectively, whereas P2-SO;H has a lower
uptake of 13.1 mmol g~ .

Perhaps more interestingly and relevant to permissible
exposure limits, we now compare the uptake properties of these
materials at a significantly lower NH; concentration of 50 ppm
(0.05 mbar, see right panels in Fig. 2a and b). At this pressure,
P1-SO;H and P2-SO;H exhibit a capacity of 0.01 and 1.79 mmol
g !, respectively. Given the lower -SO;H loading in P2-SO;H
(Table 1), it is clear that the spatial distribution and proximity of
neighboring acidic groups within the pores is also an important
factor that can substantially influence the ammonia affinity of
the material. On the other hand, at 50 ppm P1-PO;H, and P2-
CO,H display similarly high NH; uptakes of 2.03 and 1.62 mmol
g~', respectively. The improvement in the case of P2-CO,H
clearly demonstrates that the cooperative action of multiple
weaker acidic sites can outperform strong acidic sites that are
more isolated. As for P1-PO;H,, the enhanced NH; uptake
relative to P1-SOzH is likely a result of: (i) a higher density of
acidic sites, (ii) the bulkiness and flexibility of the -CH,PO3;H,
groups compared to -SO;H groups, and/or (iii) a smaller surface
area and pore volume. All of these factors render the acidic sites
more proximal in P1-PO3H, than in P1-SOs;H.

Another plausible explanation for the increased NH; uptake
in the cases of P1-PO;H,, P2-SO;H, and P2-CO,H can be drawn
from some recent computational work.**? In this study of the
interaction of ammonia with isolated Brgnsted acidic groups, it
was established that protonation of ammonia depends on the
dielectric constant of the medium. Given the presence of more
isolated sulfonic acid groups in P1-SO;zH, it is possible that
a low local polarity contributes to decreased ammonia affinity at
these sites for concentrations as low as 50 ppm. Network
interpenetration in the case of P2-SO;H and P2-CO,H and the
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reduced pore volume in P1-PO;H, could, however, create a local
dielectric polarization around each acidic site in the pores and
therefore lead to stronger interactions with ammonia and
enhanced capacities. Most notably, the performance of these
latter materials at 50 ppm of dry ammonia is comparable to that
of 5A zeolite (1.86 mmol g~ at 58 ppm) and 13X zeolite
(1.74 mmol g~ ' at 41 ppm) and is significantly higher than
sulfonated polymeric resin Amberlyst 15 (0.38 mmol g~ ' at 71
ppm).”®

The polymer acidity within the P1 and P2 series, as well as
between those with the same functional group (e.g., P1-SO;H
and P2-SO;H), was compared after plotting gravimetric NH;
isotherms with respect to the number of acidic functionalities
(mmolyy, mmol,q ') determined by elemental analysis. The
absolute pressure corresponding to the capture of one equiva-
lent of ammonia per acid site was found to correlate well with
the acid strength of functional groups within P1 and P2 (Fig. S33
and S34t). It should be noted that this pressure does not
necessarily correspond to complete saturation of acidic sites,
since NH; adsorption is typically complex® and capture mech-
anisms through strong hydrogen bonding and/or van der Waals
interactions in small pores cannot be ruled out. Nevertheless,
such a comparison is still useful for comparison of the overall
binding affinity of the polymers towards ammonia. The above-
mentioned 1:1 interaction is apparent at 12 mbar for P1-
PO;H,, 35 mbar for P1-SO;H, and 380 mbar for P1-NH;Cl
(Fig. S337), and the lower pressure observed for P1-PO;H,
compared to P1-SO;H can be attributed to reasons discussed
above. The 1 : 1 interaction occurs at 2 mbar for P2-SO;H, 12
mbar for P2-CO,H, and 40 mbar for P2-NH;Cl (Fig. S347),
correlating well with the Brensted acidity of individual sites in
these materials. Remarkably, comparison of these pressures
between polymers with the same Brgnsted acidic functionality
reveals the importance of structural features on the overall
acidity. For instance, P2-NH,Cl exhibits a saturation pressure of
40 mbar compared to a much larger 380 mbar for P1-NH;Cl,
thus demonstrating that acidic site proximity due to interpen-
etration can enhance site acidity. Likewise, a similar effect is
apparent for P2-SO;H and P1-SO;H, in which the corresponding
pressures are 2 and 35 mbar, respectively.

Breakthrough measurements

In order to gain further understanding of the NH; adsorption in
these Brensted acidic porous polymers and to investigate their
removal efficiency under practical conditions, we carried out
dynamic microbreakthrough measurements®'**” under dry
and humid conditions at 293 K. The breakthrough curves for
the P1 and P2 materials are shown in Fig. 3 and the corre-
sponding capacities upon saturation are summarized in
Table 2. The breakthrough curves are plotted on a weighted
mass basis to correct for the density of the materials and the
partial pressure of ammonia in the feed stream (C,,
2000 mg m~*) was approximately 2.8 mbar.

Under dry conditions, the trends in breakthrough saturation
capacity and uptake are in excellent agreement with those ob-
tained from gas adsorption measurements (Fig. 3a and b, solid

This journal is © The Royal Society of Chemistry 2017
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Fig.3 Ammonia breakthrough curves for (a) P1and (b) P2 polymers under dry (left, solid lines) and humid (right, dashed lines) conditions at 293 K.
The challenge concentration (Co) of ammonia in air was 2000 mg m~2 with a flow rate of 20 mL min~. Once saturation was achieved, desorption
curves were obtained upon purging the column with air under the corresponding initial dry or humid condition.

Table 2 Breakthrough capacities of P1 and P2 polymers

Saturation NH; loadings (mmol g~ )

Dry (0% RH) Humid (80% RH)

P1-NH,CI 0.7 2.0
P1-SO,H 3.9 8.1
P1-PO;H, 5.2 7.2
P2-NH,Cl 1.0 1.5
P2-SO;H 4.0 4.3
P2-CO,H 6.7 7.4

lines). For all polymers, the breakthrough curves exhibit a steep
slope that suggests that the ammonia capture process is not
diffusion controlled. As expected, the breakthrough of
ammonia in P1-NH;Cl and P2-NH;Cl, with the weakest
Bronsted acidic functionality, occurs much earlier than for the
other polymers carrying sulfonic, phosphonic, or carboxylic
acid groups within the same series. Also in agreement with the
NH; adsorption isotherms, P1-PO;H, and P2-CO,H display
highest uptake capacities of 5.2 and 6.7 mmol g, respectively,
under dry breakthrough conditions.

This journal is © The Royal Society of Chemistry 2017

We also sought to establish whether the NH; uptake in these
materials is reversible, and accordingly monitored the shape of
desorption curves obtained upon purging with dry air after
ammonia saturation. In the case of the P1 polymers, broad
desorption curves suggest a gradual elution of ammonia, while
a significant amount of adsorbed ammonia is released from P1-
SO;H and P1-PO;H,. In contrast, P2-SO;H and P2-CO,H retain
higher amounts of the gas, as evidenced by their steeper
desorption curves. This greater ammonia retention of the
interpenetrated P2 polymers can be explained by the presence
of a more confined environment around the acidic groups and
enhanced interactions with ammonia as a result of the frame-
work interpenetration.

Notably, in the presence of 80% relative humidity (RH), the
NH; saturation capacities improve for all polymers when
compared with capacities under dry conditions (Fig. 3a and b,
dashed lines). The overall capacity increase in the P1 polymers
is greater than for the P2 polymers in the presence of water. For
example, P1-NH;Cl and P1-SO;H display saturation capacities
of 2.0 and 8.1 mmol g, respectively, corresponding to more
than twice their dry capacities, and P1-PO3H, exhibits a humid
capacity of 7.2 mmol g, nearly 1.5 times the uptake under dry
conditions. The saturation capacities increase only marginally

Chem. Sci,, 2017, 8, 4399-4409 | 4405
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for P2-NH;Cl, P2-SO3;H, and P2-CO,H. Such differences in
uptake improvement between the two polymer families can be
ascribed to the larger pore volumes of the P1 polymers, which in
turn can potentially accommodate more water molecules.
Indeed, P1-SOzH has the largest total pore volume and exhibits
the most significant improvement in NH; uptake. Water
adsorption experiments further confirmed a high water uptake
of ~40 mmol g~ ' for P1-SO;H at 80% RH (Fig. S41t). Provided
a material is stable under humid conditions, it has previously
been found that the presence of water can enhance NH;
capacity.'>'s>%?8 In these cases, dissolution of ammonia in water
has been identified as an ammonia retention mechanism.>
Furthermore, since the polymers presented here are decorated
with polar Brensted acidic groups, it is possible that: (i) the
presence of water facilitates proton transfer between acid sites
and ammonia molecules and (ii) dissolution of ammonia is
enhanced due to the formation of hydrogen bonding interac-
tions between the polar adsorbent surface and ammonia.*
These possible mechanisms highlight the advantage of
Brensted acidic sites over Lewis acidic sites in the context of
NH; capture.

We note that while P1-PO3;H, displays a broad desorption
curve under humid conditions, the curve for P1-SO;H is rather
steep (Fig. 3a, dashed lines). Although ammonia dissolution is
a weak retention mechanism and captured ammonia can be
released easily upon purging with air,® it appears that the
acidity enhancement afforded by water is more pronounced for
P1-SO;H. On the other hand, ammonia is more strongly held in
the P2 polymers, for instance both P2-SO;H and P2-CO,H
exhibit steep desorption curves (Fig. 3b, dashed lines) with
a significant ammonia retention. Therefore, depending on
whether a high saturation or retention capacity is desired, the
polymer structure and chemical features can be adjusted to
tune the performance. Based upon humid breakthrough
experiments, P1-SO;H, P1-PO;H,, and P2-CO,H are identified as
the best performing materials with saturation capacities of
greater than 7 mmol g~ . Importantly, this value surpasses the
capacities of a number of other porous polymers (Table S37).
Moreover, the NH; capacities of the Bregnsted acidic polymers
reported herein are also commensurate with one of the best
performing metal-organic frameworks, HKUST-1, which
exhibits NH; loadings of 6.6 and 8.9 mmol g ' under dry and
humid conditions, respectively.” However, this framework
degrades in the presence of moisture and displays diminished
NH; uptake after the initial cycle of exposure unless it is
embedded™ within a polymer membrane. In addition to
enhanced uptakes, high structural stabilities of P1-SO;H, P1-
POz;H,, and P2-CO,H under humid conditions are highly
advantageous in terms of recyclability and reusability of these
materials in an NH; capture process.*

In situ FTIR spectroscopy

We sought to further probe the interaction of ammonia with
Bronsted acidic groups utilizing in situ infrared spectroscopy.
Experiments were carried out on P1-SO;H, P1-PO;H,, and P2-
CO,H at ambient temperature and at an equilibrium NH;
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pressure of 3 mbar, corresponding to the partial pressure of
ammonia in our breakthrough experiments. Notably, spectral
changes were observed at around 1450 cm ™ for all three poly-
mers, associated with the formation of the ammonium cation
(NH,"),* as well as changes corresponding to deprotonated
species of the Bregnsted acidic sites. Thus, at this coverage,
a proton transfer mechanism appears to be involved in NH;
uptake for these different acidic moieties. Spectral changes
were also monitored upon desorption to assess the reversibility
of ammonia binding.

We note that the parent material, PAF-1, does not exhibit any
substantial spectral changes upon exposure to ammonia
(Fig. S371). The initial spectrum is dominated by the typical
features of this aromatic framework, and upon NH; adsorption
the spectral changes all corresponded to those associated with
the roto-vibrational profile of gaseous ammonia.

The spectrum of activated P1-SO;H exhibits a series of very
intense and sharp absorption bands in the 800-1800 cm™*
spectral range, which are ascribed to the vibrational modes of
the aromatic structure and sulfonic acid group (Fig. 4a, red
curve). In particular, the signals at 1370, 1095, and 895 cm ™" are
generated by out-of-phase (v,s) and in-phase (vy) stretching
vibrations of the SO, group, and the OH bending mode of the S-
OH moiety, respectively.** After equilibrating the sample with 3
mbar of ammonia, important spectral modifications become
apparent (Fig. 4a, blue curve). A new broad signal emerges in
the 1440-1490 cm ™' region as a consequence of the formation
of ammonium ions and overlaps with one of the peaks resulting
from aromatic ring vibrations at 1465 cm™'. The absorption
bands assigned to SO, and S-OH moieties in the activated
material also disappear and two strong signals appear at 1035
and 1225 cm ™' due to »s and v, modes of the newly formed
sulfonate (-SO; ™) group.®” All of these spectral changes indicate
that proton transfer to ammonia indeed occurs at 3 mbar. After
NH; adsorption, the sample was evacuated for 2 h at beam
temperature (residual pressure < 10~* mbar) to evaluate the
reversibility of the proton transfer (Fig. 4a, green curve). The
aforementioned absorption bands at 1035, 1225, and 1485 cm ™
remain almost unchanged upon desorption, demonstrating the
high stability of the generated ammonium ion. Additionally, the
v45(SO,) and v¢(SO,) modes of the sulfonic acid moieties could
not be restored, even after prolonged outgassing.

Spectra collected for in situ ammonia-dosed on P1-POz;H,
suggested a similar proton transfer between ammonia and
phosphonic acid groups within the polymer. The activated
spectrum of P1-PO;H, exhibits typical features, in particular,
strong and broad signals located at around 1000 and 1200 cm ™"
and corresponding to P-O(H) and P==0 stretching vibrations,
respectively (Fig. 4b, red curve).”> Upon dosing with ammonia,
the 6(NH;") mode of the ammonium ion clearly appears as
a broad component at ~1450 cm ™', while the P-O and P=0
stretching modes are deeply perturbed, indicating deprotona-
tion of one or both acidic protons (Fig. 4b, blue curve). Inter-
estingly, outgassing following NH; adsorption results in
a partial restoration of the spectral features of the activated
sample (Fig. 4b, green curve).

This journal is © The Royal Society of Chemistry 2017
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Fig. 4 Infrared spectra of (a) P1-SOszH, (b) P1-POzH>, and (c) P2-CO,H
in the 1800-800 cm™! spectral range collected at 298 K after its
thermal activation under vacuum (red lines), equilibration with
ammonia at an equilibrium pressure of 3 mbar (blue lines), and
subsequent evacuation under vacuum (green lines).

The spectrum of activated P2-CO,H exhibits two broad
signals at 1688 and 1393 cm !, which we assign to »(C=0)
stretching and 6(C-OH) bending vibrations of the carboxylic
acid group, respectively (Fig. 4c, red curve).** Exposure of the
sample to 3 mbar of ammonia leads to immediate appearance
of the §(NH,") mode at ~1458 cm ' (Fig. 4c, blue curve).
Moreover, the »(C=0) and §(C-OH) band intensities decrease,
and this change is accompanied by the appearance of two new
bands at 1525 and 1378 cm ™' that can be ascribed to 7,,(OCO)
and »5(OCO) modes of the carboxylate (-CO, ) group, respec-
tively.*” Notably, in contrast to what was observed for P1-SO;H
and P1-PO;H,, for P2-CO,H, the proton transfer to ammonia
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seems to be quite reversible (Fig. 4c, green curve). Indeed, after
outgassing the ammonia-exposed sample, the §(NH,'") and
»(OCO) bands decrease dramatically and the characteristic
signals of the carboxylic acid groups are partially restored.

Another unique feature exhibited by P2-CO,H upon
ammonia exposure is the noticeable change in the scattering
profile of the whole spectrum (Fig. S40%). The spectrum displays
an evident increase in the absorption profile below 3000 cm ™,
indicative of very strong hydrogen bonding. In conjunction with
the partially reversible appearance of the ammonium and
carboxylate signals, this feature is indicative of the presence of
a hesitating proton with high mobility—i.e., the proton fluctu-
ates between carboxylic acid and ammonia.*® Importantly, this
observation sheds further light on the enhanced NH; adsorp-
tion capacity of P2-CO,H over P1-SO;H at low pressures, as
discussed earlier. In spite of a weaker acidity, the high density of
carboxylic acid groups in an interpenetrated structure creates
strong binding sites for ammonia as well as a stabilizing polar
environment for ammonium ions.

Conclusions

The foregoing results demonstrate the efficient removal of
ammonia from air in two series of Bregnsted acidic porous
polymers, one without (P1) and one with (P2) framework
interpenetration, wherein the strength of the acidic functional
groups was systematically varied. Adsorption isotherms
revealed that NH; capacities of the P1-PO3;H,, P2-SO;H, and P2-
CO,H polymers are competitive with those of traditional
adsorbents, such as zeolites, and are significantly better than
acidic polymer resins, particularly in the low pressure region.
Furthermore, dynamic breakthrough experiments performed
under humid conditions, which are more relevant to air filtra-
tion applications, also revealed that P1-SO;H, P1-PO;H,, and
P2-CO,H outperform most other metal-organic frameworks
and porous polymers reported to date for NH; capture (Tables
S3 and S47). These findings emphasize the advantage of
Bronsted acidic over Lewis acidic sites, specifically due to the
competition between ammonia and water adsorption that has
been observed in zeolites and metal-organic frameworks with
open metal coordination sites. Furthermore, study of the
mechanism of NH; adsorption in P1-SOz;H, P1-POs;H,, and P2-
CO,H via in situ infrared spectroscopy revealed a proton transfer
reaction as well as strong hydrogen bonding interactions in the
case of P2-CO,H. Most strikingly, the proximity of multiple
weaker acidic groups in the interpenetrated polymer P2-CO,H
and their cooperative reactivity amplifies the strength of inter-
action with ammonia molecules. The NH; uptake in P2-CO,H is
thus larger than for P1-SO;H, which exhibits stronger-binding
but more isolated acid groups. Taking both the low- and high-
pressure uptake behavior of these polymers into account, it
can be concluded that both the Brgnsted acidity strength and
pore environments govern the amount of ammonia adsorbed,
while humidity and corresponding water co-adsorption also
plays an important role in the NH; uptake mechanism. More
broadly, the high stability of porous polymers and the level of
synthetic control demonstrated here suggests that these
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materials may present excellent platforms for a range of desired
capture and storage applications, for ammonia as well as other
toxic gases.
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