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t to catalyze: elucidation of the
subtle differences between the hexameric capsules
of pyrogallolarene and resorcinarene†

Qi Zhang,a Lorenzo Catti,a Ville R. I. Kailac and Konrad Tiefenbacher*ab

The closely related, self-assembled resorcinarene and pyrogallolarene capsules display contrasting and

puzzling encapsulation behaviors. Herein, we elucidate the reasons for these differences by combining

experimental studies and DFT calculations. Furthermore, we report that, in contrast to the resorcinarene

capsule, the pyrogallolarene derivative is not capable of catalyzing reactions with cationic transition

states. The molecular mechanisms responsible for these observations are probed in detail.
The functional mimicking of natural enzymes has been a very
fascinating but also challenging research topic for decades.
Several supramolecular structures have been identied that are
able to catalyze reactions inside their enzyme-like pockets.1

Nevertheless, neither the catalytic efficiency nor the selectivity
of such systems, can usually compete with natural enzymes.
Therefore, the renement of known structures, as well as the
development of new systems, is necessary. For the design of new
articial enzyme-like catalysts, it is of fundamental importance
to understand the prerequisites for catalytic activity. We2 and
others3 have shown that the hexameric resorcinarene capsule I,4

which self-assembles from six units of resorcinarene 1 and eight
water molecules (Fig. 1), is an efficient catalyst for a variety of
cationic reactions. Nevertheless, the reasons for the high cata-
lytic efficiency remain unclear. To learn more about the pivotal
requirements for the catalytic activity of hexamer I, we became
interested in the structurally closely related pyrogallolarene
hexamer II.5 It self-assembles from six units of pyrogallolarene
2. Surprisingly, hexamer II displays a different encapsulation
behavior compared to I in chloroform solution. It was reported
that hexamer I encapsulates both tertiary amines as well as
alkylammonium species,4c,d,6 while II only binds tertiary ami-
nes.5e,h Very recently, the Cohen group disclosed that binding of
ammonium salts in II can be observed to some extent in
benzene solution.7 The high affinity of ammonium salts for I
can be explained by strong cation–p interactions. However, the
surprising exclusion of alkylammonium species from II in
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chloroform solution remained puzzling,4g especially since
encapsulated tertiary amines were completely expelled aer
protonation by the addition of acid.5e,h This seemingly contra-
dictory encapsulation behavior of II has remained a mystery for
the last decade. We herein elucidate the reasons for these
differences in chloroform solution. Importantly, we report that
capsule II is catalytically completely incompetent in cationic
reactions which are efficiently accelerated inside I and probe
the molecular mechanisms responsible for these surprising
observations.

Our interest in capsule II started with the observation that,
while I is an efficient catalyst for cationic reactions, hexamer II
is catalytically incompetent in such reactions. The tail-to-head
Fig. 1 Structures of hexameric resorcinarene I and pyrogallolarene II
capsules, optimized at the density functional theory (DFT: PBE-D3/
def2-SVP) level and their respective building blocks 1 and 2.
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Fig. 2 Schematic overview of the proposed mechanism for the
cyclization of nerol (3) to eucalyptol (4), catalyzed inside capsule I
(CDCl3, 30 �C).2c

Table 1 Encapsulation studies with 1 eq. of (a) amine 5 with capsule II
and (b) ammonium compounds 6 with capsules I and II. The encap-
sulation of the ammonium guest by capsule II was increased by the
addition of the large amine base 7

(a)

R
Deprotonation
degree of II

Encapsulation
degree of 5

5a C2H5 29 � 2% 44 � 2%
5b C3H7 19 � 1% 22 � 1%
5c C4H9 12 � 1% 15 � 1%
5d C6H13 10 � 1% 7 � 1%

(b)

R

Encapsulation degree of 6+ by

I II
II,
aer addition of 7

6a+Br� C2H5 100% nda nda

6b+Br� C3H7 100% 4 � 0.3% 46 � 2%
6c+Br� C4H9 100% 0% 30 � 1%
6d+Br� C6H13 41 � 1% 0% 10 � 1%

a Precipitation occured (2 : 1 complex, ESI-Table 3).
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terpene cyclization of nerol (3)2c (Fig. 2) was investigated more
closely with II. 1H-NMR analysis conrmed the formation of the
host–guest complex 3@II (ESI-Fig. 14†). Therefore, the guest
uptake cannot explain its catalytic inertness.

We rst probed whether the absence of catalytic activity of II
could arise from the reported resistance to bind alkyl ammo-
nium salts,5e which may indicate a lack of cation–p stabilization
inside the cavity. A cation–p stabilization of cationic transition
states has been proposed as a possible reason for rate acceler-
ation inside I,2c and may thus be a potential explanation for the
observed catalytic differences. Interestingly, however, it was
reported that tertiary amines bind well inside II.5e,h Recently, we
demonstrated that a proton transfer from capsule I to the
tertiary amines is responsible for their high affinity for I.2a This
raised the question of whether the same is true inside II.
Therefore, we investigated the encapsulation of differently sized
tertiary amines inside II. The encapsulation of triethylamine
(5a) in II is clearly evident in the 1H-NMR spectrum (ESI-Fig. 1†).
The integral of the phenolic groups of II diminishes upon
treatment with 5a, while a new broad peak emerges between 3
and 7 ppm. Careful integration (ESI-Schemes 1 and 2, Table 2†)
reveals that it accounts for the diminished phenolic protons, as
well as for the water signal, which is no longer visible as
a separate peak. These observations are consistent with our
previous ndings for capsule I, and thus indicate the concom-
itant protonation of tertiary amines upon encapsulation in II.2a

The integrity of the hexameric encapsulation complex was
conrmed by DOSY spectroscopy (ESI-Fig. 2†). Therefore, the
formation of smaller (dimeric, or monomeric) pyrogallolarene–
cation complexes observed in methanol solution5c and in the
solid state5g,8 can be excluded.

The size of the tertiary amine has a pronounced effect on
protonation and encapsulation, as shown in Table 1a. The degree
of protonation and encapsulation drops with the increasing size
of the alkyl groups, a behavior that is consistent with a decreased
cation–p interaction due to steric shielding. In the case of trie-
thylamine (5a), the deprotonation degree of II is considerably
lower than the encapsulation degree. Therefore, a [5H5]+@II�-
complex, also observed in capsule I,2a is likely formed.
1654 | Chem. Sci., 2017, 8, 1653–1657
These results indicate that capsule II encapsulates amines in
their protonated form and therefore is able to stabilize cations
inside its cavity. Indeed, our quantum chemical density func-
tional theory (DFT) calculations also indicate that capsule II
stabilizes cations as well as or even more strongly than capsule I
(within ca. 4–12 kcal mol�1 for NEt4

+; see ESI-Table 4†). This
seems to contradict the previous observation that the ammo-
nium salt Hex4NBr (6d+Br�) was rejected by capsule II.5e We
therefore repeated the encapsulation studies not only with
6d+Br� but with differently sized ammonium salts (Table 1b).
The small ammonium salt Et4NBr (6a

+Br�) is indeed encapsu-
lated to a considerable extent (see ESI-Fig. 5†). However,
quantication was hampered by precipitation of a dimeric
complex (see ESI-Table 3†). With the increasing size of the alkyl
residues, encapsulation drops dramatically: only 4% encapsu-
lation is observed in the case of Pr4NBr (6b+Br�), while the
longer ammonium salts Bu4NBr (6c

+Br�) and Hex4NBr (6d
+Br�)

do not show any degree of uptake inside II. This conrms the
earlier observation that larger ammonium salts are rejected by
II, but also demonstrated that the uptake of the smaller salts is
possible. Nevertheless, there is a striking difference between the
capsules, as I encapsulates salts (6a–6c+Br�) quantitatively and
6d+Br� to a large extent (see, ESI-Fig. 4†). This discrepancy is
even more surprising considering that our DFT calculations
suggest an even stronger stabilization of cations inside II rela-
tive to I. To elucidate the different behavior of I and II, we
calculated the electrostatic potential (ESP) map of the capsules’
This journal is © The Royal Society of Chemistry 2017
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Fig. 4 Schematic representation of encapsulation experiments of
alkylammonium salts and amines with capsule I and II. (a) In capsule II,
anions are not encapsulated; while capsule I encapsulated the ion pair.
(b) Addition of a large base increases the uptake of ammonium species.
(c) Tertiary amines are encapsulated in protonated form inside II. After
addition of a strong acid, an ion pair is formed which resists
encapsulation.
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inner surfaces. As shown in Fig. 3, the main difference between
the two systems are high potential areas on the inner surface of
I, which represent positively charged hydrogen atoms of the
bound water molecules. These could potentially stabilize the
anions of encapsulated ammonium salts via hydrogen bonds.
Such a stabilization of anions inside II is lacking, and could
therefore explain the dramatically weaker binding of ammo-
nium salts. Our DFT optimizations of the capsules in presence
of the ammonium salt 6a+Br� conrm this hypothesis: although
capsule II stabilizes cations better than capsule I, capsule II
binds the ammonium salt weaker (ca. 3–9 kcal mol�1, see ESI-
Table 4†) than I.

The energetically unfavorable encapsulation of anions inside
II raises the question of whether the anion is encapsulated
at all. Its presence would weaken the cation–p interactions,
as has been shown in cyclophane hosts in organic solvents
of low dielectric constants.9 Therefore the ammonium salt
EtPr3N

+MeSO3
� (6e+MeSO3

�) containing an organic anion,
detectable by 1H and 13C-NMR spectroscopy, was investigated.
1H- and 13C-NMR investigations (ESI-Fig. 8–10†) conrm that
the counterion is located outside of II (Fig. 4a). In capsule I,
however, the ion pair is encapsulated (ESI-Fig. 11–13†). The
minute uptake of 6+ by neutral II is likely achieved by an ener-
getically unfavorable charge separation in CDCl3. This could
explain the low encapsulation ratio of 6+ by II. If so, the addition
of the large base 7 (Table 1), which cannot be encapsulated due
to its size, should increase the uptake of ammonium species: it
would deprotonate the capsule and form an ion pair with the
bromide outside the capsule, as depicted in Fig. 4b. Indeed,
upon the addition of 7, the encapsulation of ammonium species
increases as anticipated (see also Table 1b). These ndings solve
the puzzling encapsulation behavior of capsule II and also
explain the expulsion of encapsulated trihexylamine (5d) aer
HCl-addition5h (Fig. 4c). Aer the addition of HCl, the ion pair
5dH+Cl� is formed, which is rejected by capsule II.

The evidence presented clearly indicates that capsule II is
able to stabilize cations inside its cavity due to cation–p inter-
actions. Therefore, its catalytic incompetence originates from
a different source. Aer successful substrate uptake, proton-
ation is required for substrate activation (Fig. 2). Although II is
able to protonate amines (Table 1a), the acidity of the system
may be too low for activation of the alcohol substrate. Therefore,
Fig. 3 Comparison of the inner electrostatic potential (ESP) surfaces
of capsules I and II (for details see ESI Chapter 6†).

This journal is © The Royal Society of Chemistry 2017
the acidity of hexamer II was determined analogously to I2a by
a series of protonation experiments with amines of varying
basicity. The pKa value of capsule II is approx. 9.5–10 (see ESI-
Fig. 15 and 16;† ca. four pKa units higher than resorcinarene
capsule I). These results are in excellent agreement with our
DFT calculations at the PBE-D3/def2-SVP/3 ¼ 4.81 level of
theory, suggesting that the proton affinity of I is ca. 5 kcal mol�1

lower than that of II (ESI-Fig. 18†). The surprisingly low acidity
of II may be a result of mesomeric destabilization of the
phenolate (ESI-Fig. 17†). Our DFT calculations further show that
the anionic defect can delocalize across several hydrogen bonds
in I, while we observe a more localized defect in II, leading to
a lower relative pKa in capsule I (ESI-Fig. 19†). Therefore, the low
acidity of II is the likely cause of its catalytic incompetence
which prevents activation of the substrate by proton transfer
(see also Fig. 2). We tried to overcome this limitation by the
addition of stronger external acids (see ESI 4.3†), but could not
observe a difference to the background reaction, caused by the
acid added. This result, however, is not too surprising, since an
external acid forms an ion pair with the substrate, which will
resist encapsulation (see also Fig. 4c).
Chem. Sci., 2017, 8, 1653–1657 | 1655
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The elucidation of the differences in these two systems
allowed us to learn important lessons concerning catalytic
activity in hydrogen-bond based molecular capsules. The iden-
tication of acidity as the crucial element of the catalytically
active derivative I is essential for the design and construction of
novel hydrogen bond-based supramolecular catalysts. These
studies provided us with a rst estimate on the required acidity
for catalytic activity in such systems. Additionally, we demon-
strated that externally added acid cannot function as a co-
catalyst for capsule II since the substrate acid ion pairs formed
are not encapsulated.

Conclusions

In conclusion, the differences between the closely related hex-
americ capsules I and IIwere elucidated for the rst time. To the
best of our knowledge this is the rst study of two very closely
related supramolecular host systems which completely differ in
their catalytic activity. Evidence was presented showing that
capsule II does not stabilize anions inside its cavity, as opposed
to I. Therefore, alkyl ammonium salts are encapsulated only to
a small extent with concomitant charge separation. Cations,
nevertheless, are stabilized inside II even more strongly than
inside I via cation–p interactions. The much lower acidity of
capsule II was determined to be the cause of its catalytic
incompetence. These ndings are of great signicance for
future developments in the eld of enzyme-like catalysis and
have a profound impact on the design of new hydrogen bond-
based catalytically active host systems.
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